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CIUDAD DE MÉXICO DICIEMBRE DE 2016







Resumen

Esta tesis describe los elementos que componen al programa Al-

phaGo, desarrollado por Google, y que hicieron que este programa

tuviera un desempeño superior al humano en el juego de Go. Se

presentan algunos detalles de los diferentes métodos usados en Al-

phaGo ası́ como la implementación de algunos de ellos para ayu-

darnos a entenderlos mejor. Usando estas implementaciones se creó

NdsGo, un programa que puede jugar Go en tableros de tamaño

2× 2, 3× 3, 9× 9 y 19× 19. Para las primeras dos medidas de

tablero, el programa logra jugar de manera perfecta, pero en 9× 9

y 19× 19 se necesita más trabajo para que este programa logre ser

competitivo.
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Abstract

This thesis describes the elements used in Google’s AlphaGo that

made it achieve super-human performance in the game of Go. We

present some theory on the different methods used in AlphaGo and

implement some of them in order to understand them better. Using

these implementations, we created NdsGo, a computer Go program

able to play in 2×2, 3×3, 9×9 and 19×19 board sizes. For the first

two sizes, the program plays perfect play, but on 9× 9 and 19× 19

more work needs to be done for this program to be competitive.
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Chapter 1

Introduction

Early this year, one of Artificial Intelligence grand challenges was solved: a computer

program beat a professional player in the game of Go. The program, called AlphaGo, was

developed by DeepMind, a company whose goal is “to solve intelligence”. This was a huge

achievement, since many researchers on Computer Go though there was still a long time

for this to happen. However, using some of the most recent techniques of Reinforcement

Learning and Deep Learning, AlphaGo did what was thought as impossible.

In this work, we present the techniques used by AlphaGo, and also, the implementation

of some of them in our computer Go program NdsGo. The purpose of this is to understand

the elements that compose AlphaGo, and how the combination of all of them permitted

super human performance.

1.1 Motivation

Board games have interested researchers since long ago. There has been a lot of work to

create computer programs that are able to play well on different games such as Othello,

Checkers and Chess. Many of the techniques developed to play well on these games have

been translated to other problems. This is possible because games resemble the real world,

but in a more simple and controlled environment.

During a long time, chess was the most challenging game in artificial intelligence. After

the world champion was beaten by DeepBlue in 1997, many researchers looked for another

challenging problem. This problem was the game of Go. Nevertheless, Computer Go

research has been around for a long time, having the first work in 1970 [29]. But it was not

until the 1990s that increased interest to this game began.

During a long time, Go was though to be too difficult to be solved. For example,
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Muller [17] predicted in 2002 that at least 50 years would pass before a computer reached

the level of a professional Go player. In 2015, the computer program AlphaGo became

the first program to beat a professional player in an even game. This game was against the

European Go Champion. In 2016, Google arranged a match against Lee Sedol, one of the

best current players, which has more titles than any other players in the world.

Although AlphaGo beat Lee Sedol and now has super-human performance, the prob-

lem of Go is not solved yet and it is still useful to try new techniques. Since the victory

achieved by AlphaGo, many other academic and commercial programs have implemented

some ideas from AlphaGo. Also, interest in the game of Go and research in computer

Go has increased as a result of AlphaGo’s winning. In the years to come, we may see

those same ideas applied to other areas as well. These are some of the reasons of why it

is important to understand these concepts very well and to have a framework to work with

them.

1.2 The game of Go

The game of Go is a game that has been played for at least 2000 years. It is thought that it

was created around 2500-4000 years ago. This game is a game of strategy that originated

in China, and was played mainly by nobles. A legend says that a Emperor invented the

game to teach his son about discipline [20]. The game became very popular in Japan after

its introduction, where it developed a lot of strategy and became really competitive.

Despite its great complexity, the game is actually very easy to learn. The game consists

of two players who take turns to put stones on the intersections formed by the lines of

the board. The player with the black stones plays first. The objective of the game is to

surround intersections; these surrounded intersections are called territory. Each surrounded

intersection counts as one point. Also, the players can capture opponent stones which are

called prisoners; each prisoner counts as one point. To finish the game, both players must

pass their turns. The player with more points at the end wins the game.

Now we will explain how to capture stones. We say that two stones are connected, if

they are horizontally or vertically adjacent to each other. Many connected stones form a

group of stones. Liberties are the intersections adjacent to the stone or group of stones that

are empty. We capture a stone by reducing the number of liberties of that stone to zero;

the same applies to groups of stones. In other words, if we surround a group of enemy

stones, we capture them, so they are removed from the board (and stored as prisoners for

later counting). We say that a group of stones is in atari if it has only one liberty left; that

is, in the next move, we can capture that stone. In Figure 1.1 we can see some examples of

2



(a) (b)

Figure 1.1: Stones in atari (a) and captured stones (b)

groups that are in atari, and how the board will be after capturing them.

(a) Move at A is illegal (b) If we place a white
stone here.

(c) The stone is immedi-
ately captured.

Figure 1.2: A suicide move is illegal

There are some moves that are illegal. The first one is trivial: we cannot place a stone

in an occupied position. The second one is: suicide moves are forbidden. Suicide moves

are moves that by playing them makes one of our groups to be completely surrounded, so

the stones are removed. This rule prevents the player from giving free points to the other

player.

The rule of ko is the last one. This rule says the following: in our turn, it is forbidden to

make a move that makes the entire board configuration equal to the last board configuration.

This rule is designed to prevent infinite loops (See Figure 1.3). So in order to place a stone

at the forbidden position, we must play in another place first, and then if we want, we could

place a stone there.

That are all the rules, now we will describe some of the implications that come after

beginning to play the game. We will define what we mean when we say a group is ”dead”
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(a) Typical Ko position (b) Capture white stone (c) Illegal position.

Figure 1.3: The ko rule. White has to play somewhere else before playing in the ko position.

Figure 1.4: Two eyes. Stones are said to be alive.

and when we say a group is ”alive”. When there is no way for a group to survive, we say

that the group is dead. However, there is a way to survive even if the group is surrounded;

we have to make two eyes. An eye is an empty intersection that is surrounded by our stones;

the opposing player can play here only if by playing he captures our stones, because if he

cannot capture then it is an illegal position. Then, for a surrounded group to survive, the

group must have two eyes, that is, two suicide positions (See the examples in Figure 1.4.

The opposing player can never capture the group, because he cannot place two stones in

one turn, so as to reduce the number of liberties of the group to zero. At the end of the

game, all dead stones are removed from the board and counted as prisoners.

There is a concept called false eyes. We have a false eye when the intersection is not

really a suicide move, since the player can capture some stones. The problem here is that

we have two groups instead of only one group of stones, so that is why we have two eyes.

We can see examples of false eyes in Figure 1.5.

There are many rulesets to play the game of Go, and they vary from country to country,

or from club to club. The most recognized scoring rules are the Japanese rules and the Chi-

nese rules. Although difference in score is minimal, the scoring rules are always specified

4



(a) False eyes (b) Reduced to one eye.
Dead stones

(c) Captured stones.

Figure 1.5: False eyes. Stones with only one (real) eye are said to be dead

in tournaments to avoid problems. In computer Go there is a popular scoring ruleset called

Tromp-Taylor scoring.

The Chinese scoring is very simple. In these rules, points come from territory and

number of stones in the board; captures are not counted. So, once both players pass, the

procedure to count is to fill white’s territory with white stones, and black’s territory with

black stones.

The last counting rule is Tromp-Taylor scoring. This scoring was developed by Tromp

and Taylor in an attempt to formalize the rules of Go. They described the rules of Go in a

formal way, and that included scoring. This scoring assumes that all the stones in the board

are alive, so we only have to count white territory plus white stones in the board and black

territory plus black stones in the board. There can be neutral points, that are not counted.

The difference in score is minimal, although for computers it is easier to count Chinese

scoring.

Additionally to the scoring used, most of the time there is an initial quantity of points

given to the white player to compensate of him playing second. This quantity is called komi

and is generally 4.5, 5.5, 6.5 or 7.5; the quantity varies from tournament to tournament and

from club to club.

In the game of Go, the level of players is defined as in Figure 1.6. The kyu levels are for

beginners, and the dan levels are for the masters. However, we have two categories for the

dan levels, those for amateur players and those for professional players. As we can see in

the figure, the maximum level for amateur players is 7 dan. Nevertheless, this rule varies

among go clubs and associations, with some of them having also 8 and 9 dan for amateur

players. This is the case in the Kiseido Go Server (KGS), where the amateur dan levels go

from 1 to 9.
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Figure 1.6: Go rank system

1.3 Objectives

The main goal of this thesis is:

• To understand the elements that made possible for AlphaGo to beat one of the best

professional Go players.

Additionally, we have the following objectives:

• To implement a framework to experiment with computer Go.

• To implement a computer Go player for 2×2 and 3×3 boards using the most basic

techniques of Reinforcement Learning to give intuition about how this works.

• To implement a computer Go player for 9× 9 and 19× 19 by creating a move pre-

dictor using Supervised Learning and Convolutional Neural Networks.

1.4 Limitations

This section is especially important since the work presented here is very limited compared

with the work done by the team that developed AlphaGo. Some of the limitations are:

• Hardware: We use a regular PC with a single GPU (GTX 960) for the CNN. Google

used 50 GPUs in the training.

• Time: The time for training the Convolutional Neural Networks reported in the Al-

phaGo paper is in the order of weeks. We trained at most for some hours.

That said, this work is intended to provide the reader with an explanation of the main

techniques used, and present some experiments using those techniques, but it is not our

intention to replicate exactly what AlphaGo did.
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Chapter 2

Deep Learning

Deep Learning is a topic that has gained a lot of popularity amongst computer scientists

since the last decade. Deep learning is a set of tools and techniques that make learning

faster for deep neural networks. This boost in speed has let the computers reach new levels

of performance on many difficult areas like Computer Vision, Speech Recognition and,

recently, in Computer Go. This of course are just some examples, since every day a new

application is found.

In this chapter we will give a brief introduction to neural networks and backpropaga-

tion; then, how to extend this knowledge to convolutional neural networks, which are one

kind of Deep Neural Networks; and finally, we will introduce some techniques to improve

convolutional neural networks that were used in this work. The formulas and the notation

used in this chapter come mainly from [18]

2.1 Neural Networks, Backpropagation and Stochastic Gra-
dient Descent

Neural Networks have had many ups and downs along their history. The beginning of this

field was in 1943 when the first model of an artificial neural network was developed by

McCulloch and Pitts. Many years later, in 1959, Widrow and Hoff developed ADALINE,

the first artificial neural network that was applied to a real world problem: predicting the

next bit in a streaming of bits from a phone line.

Artificial Neural Networks are used in many tasks; here, we will describe its use in the

classification task. In this task, we want the computer to learn to classify objects in classes.

For this, we need a dataset with examples, with which our network will learn to correctly

classify the different objects. This is a very abstract definition, so the applications are very
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diverse. For example, we can apply neural networks to classify images. In this thesis, we

will use ”classification” to predict the next move for our computer Go program. The move

can be seen as a class.

The most basic unit of neural networks are the neurons themselves. These neurons

are mathematical models of a neuron. The neuron has some number of parameters, the

weights and the bias. Each input to the neuron has an associated weight. The network sums

all the weighted inputs and the bias, and then send it to an activation function. The most

basic activation function is the step function. However, this function has the disadvantage

of not being differentiable at zero. For that reason, many times, the sigmoid function is

used instead. However, we can use other activation functions; some examples are the tanh

function, the sigmoid function and the rectifier function.

σ(z) =
1

1+ e−z

Gradient Descent is a common optimization method that can be used to learn parame-

ters, but it depends on having an efficient way to calculate the gradient. The backpropaga-

tion algorithm is simply a way to compute the gradient with respect to the parameters of

the network. The way to do this is first to define the cost that we we will minimize. The

key idea for this algorithm is the chain rule from calculus. The idea is to get the partial

derivatives of parameters from earlier layers as a function of the partial derivatives of the

weights in later layers. The following equations define the backpropagation algorithm.

δ
L = ∇aC�σ

′(zL)

δ
l = ((wl+1)T

δ
l+1)�σ

′(zl)

∂C
∂bl

j
= dl

j

∂C
∂wl

jk
= al−1

k dl
j

Gradient Descent is an optimization method; that is, if we want to maximize or min-

imize a function, we can use gradient descent to do it. Since the gradient of a function

is a vector that tells us the direction of maximum growth, we can use this vector to move

around the function surface and find a maximum or the minimum, using the negative of

the gradient. This algorithm is guaranteed to find the global optimum (the values of the
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parameters that optimize the function) as long as the function is convex; so, if we do not

have a convex function, gradient descent only guarantees local optimums.

w′ = w− η

N ∑
j

∂C
∂wk

b′ = b− η

N ∑
j

∂C
∂bk

Generally in deep learning we use a variation of Gradient Descent called Stochastic

Gradient Descent. The change is that instead of calculating the gradient for all the dataset

of size N and then applying the updates on the parameters, we calculate the gradient for a

mini-batch of the data of size m, such that m < N. The gradient of the mini-batch is only

an estimate of the true gradient, but in practice it is generally good enough, and it makes

training faster. The size of the mini-batch becomes an hyperparameter of the network.

w′ = w− η

m ∑
j

∂C
∂wk

b′ = b− η

m ∑
j

∂C
∂bk

There are many ways in which we can select the cost (or objective) function. Some

common choices are the least squares cost function and the cross-entropy cost function:

C =−1
n ∑

x
∑

j
[y jlnaL

j +(1− y j)ln(1−aL
j )]

C =
1

2n ∑
x

∑
j
(y j−a j)

2

There are advantages and disadvantages to each one. For each application we have

to analyse which one is better. Sometimes, this is done simply by testing different cost

functions and seeing which one gives better results. This is a recurrent problem in Neural

Networks and Deep Learning, that there is still not enough theory to understand them, so

for now we have mainly a trial and error approach.

2.2 Convolutional Neural Networks

Deep Learning is a subfield of machine learning that focuses on computational models for

hierarchical data. It can be seen as a set of techniques for learning in very deep neural

networks [18]. One of these techniques that has had a lot of impact in many applications
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is the use of convolutional neural networks. Convolutional Neural Networks (CNN) can be

seen as Multi-layer neural networks with the following characteristics:

• Sparse connectivity. The neurons are only connected with a subset of the outputs

from the previous layer.

• Shared weights. The weights from each layer are shared among the neurons, so each

neuron in the layer has the same weights.

• Automatic feature detection. The convolutional layer permits the feature selection

Convolutional Neural Networks are commonly used for data that has two or three di-

mensions. A great example of this is the classification of images using CNNs. The idea is

to take advantage of spatial data characteristics to reduce the number of parameters that we

need to learn; for a single neuron, we will only input some neighbourhood of the data, not

the entire image. The same can happen with later layers.

It is common to have a fully-connected layer at the end of the network. Some re-

searchers interpret this as using the CNNs as automatic feature detectors. Then, using the

output from the convolutional layers, we can then pass it to a fully connected layer. This

is just an interpretation, because we do not know very much about neural networks in gen-

eral; more theoretical work has to be done. However they have been successful in various

domains.

The operation of convolution is defined by:

σ

(
b+∑

l
∑
m

wl,ma j+l,k+m

)
Notice that this equation is different from traditional convolution in that here we invert

the indices. We could use the original form, but this is easier to work with visually, since

the learned filters are generally interpreted later and it is better to have them in this position.

2.3 Regularization and Learning Rate Decay

There is a big problem that often arises in neural networks: overfitting. Overfitting refers

to a neural network that is too specialized in reproducing the training set, but does not

generalize well. This is a problem because we do not want to learn to predict on the

training set but on new information.

There are many techniques to address the problem of overfitting and they are called

regularization techniques. One of the most common is the L2 regularization. The idea is to
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try to get the weights of the network not too large, so we add the L2 squared norm of the

vector of all the weights to the cost function.

C =C0 +
λ

2d ∑
w

w2

The parameter λ becomes a hyperparameter of the network which controls how much

we penalize large weights; if λ is large, then the parameters will be small; but if λ is small,

then the parameters can increase.

There are many other ways to solve this problem. A popular one is early stopping. To

do early stopping we need to evaluate on a validation set. The error on the validation set

must always decrease. When we see that the validation error increases, we can stop the

training. There are many variations on this technique, but the idea is the same.

Another problem is the trade-off of speed versus precision that the learning rate has. If

we select a learning rate that is too small, we will have better accuracy, but the training will

take a lot of time. If on the other side we choose a large learning rate, we could have faster

training, but we have the risk of making the model diverge, or simply not have enough

precision.

To solve this problem we can use a learning rate schedule. This schedule is very de-

pendant to the application and we need to experiment a lot to come with a good schedule.

One way to do this is to decrease the learning rate a fixed percent every n epochs, or every

n mini-batch steps.
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Chapter 3

Reinforcement Learning

Reinforcement Learning is an area of Machine Learning. It was born from a combination

of various disciplines in science; however, the main foundations come from research in

Psychology, Dynamic Programming and Temporal Difference methods. There are many

examples of successful applications using Reinforcement Learning. One of the earliest

applications was the Tic-Tac-Toe player called MENACE [16], which learned how to play

Tic-Tac-Toe just by playing against itself.

The area of reinforcement learning solves problems which generally have these charac-

teristics:

• Closed-loop problems. The actions taken by the system affect future inputs.

• Not having direct instructions for actions. The actions taken should be learn from

experience.

• Not knowing when the consequences of actions appear. This includes reward signals

and next states seen.

Figure 3.1: The Reinforcement Learning problem. Image taken from [24]
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In Reinforcement Learning we have two objects that interact: the agent and the envi-

ronment (See Figure 3.1). We can think of the agent as the program that will learn; the

environment is everything outside the program. Given a state in which the agent is, the

agent gives the environment an action and in return it gets a reward signal and the next

state. The objective is to maximize the sum of the reward signals over the long run. In

Reinforcement Learning we have four main elements that describe the problem:

• Policy π(a|s)

• Reward signal r(s,a)

• Value function vπ(s) or qπ(s,a)

• Model of the environment p(s′|s,a)

Many techniques use only some of them, but the policy and the reward signal are always

necessary to be able to solve the problem.

Reinforcement Learning has had a lot of success in games. One of the first successful

applications of RL was TD-gammon. This program achieved a master level of play, just a

little below the top players. The program learned to play backgammon by many iterations

of self-play. Another successful application of RL was made on the game of Go, where it

was responsible for the increase in level of Computer Go programs from amateur kyu levels

to amateur dan levels. In this chapter we will explain some techniques that are relevant to

this thesis.

In this chapter we describe some of the basics of Reinforcement Learning and some

of the techniques used in AlphaGo to achieve super human performance. This chapter is

mainly based on the book Reinforcement Learning by Barto and Sutton [24]. For more

detail the reader can see the book.

3.1 Markov Decision Processes and Bellman equations

The reinforcement learning problem can be defined as the way to maximize the expected

value of the total rewards over episodes. The objective is to find Gt , called the return. The

return for state s at time step t is the sum of all the rewards obtained after that time step.

Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT

Some times we want the return to be ”discounted”, that is, that future rewards count

less if they are more distant in the future. This is especially important once we take the
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expected value, because for us it can be more important to have immediate rewards than

future rewards. So, to include the discount we have the equation:

Gt =
T−t−1

∑
k=0

γ
kRt+k+1

Once we have this, we have to make an assumption in order to make the Reinforcement

Learning methods work: all the transitions from state to state must follow the Markov

property:

Pr(St+1 = s′,Rt+1 = r|S0,A0,R1, ...,St−1,At−1,Rt ,St,At)=Pr(St+1 = s′,Rt+1 = r|St = s,At = a)

Basically, what this property says is that the next state is completely determined by the

current state and action. So in this case, the previous history of states, actions and rewards

are not needed to know what the next state will be (or the probability of having some next

state). In practice, methods often work even in non-Markovian environments, but they can

work not so well.

The reinforcement learning problem can be completely specified by a Markov Decision

Process. The following equations define the Markov Decision Processes. It is important to

note that some methods only need the reward in order to work. We say that methods that

do not need these equations to work are model-free methods.

r(s,a) = E[Rt+1|St = s,At = a] = ∑
r∈R

r ∑
s′∈S

p(s′,r|s,a)

p(s′|s,a) = Pr(St+1 = s′|St = s,At = a) = ∑
r∈R

p(s′,r|s,a)

r(s,a,s′) = E[Rt+1|St = s,At = a,St+1 = s′] =
∑r∈R rp(s′,r|s,a)

p(s′|s,a)

Now we define the concept of state value function and action value function. These

functions give us the expected return given the current state, or the current state and action,

for a given policy π . By learning these functions for each state, we can see the current

rewards that we can obtain given the current policy. The idea of many methods is to use

these values to improve the policy to get better returns.

vπ(s) = ∑
a

π(a|s)∑
s′,r

p(s′,r|s,a){r+ γvπ(s′)}
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qπ(s,a) = r(s,a)+ γ ∑
s′

p(s′|s,a)∑
a′

π(a′|s′)q(s′,a′)

The optimality bellman equations are the equations that define the expected return given

the current state, or state and action, for the optimal policy π∗.

v∗(s) = maxa∈A(s)∑
s′,r

p(s′,r|s,a)
[
r+ γv∗(s′)

]
q∗(s,a) = ∑

s′,r
p(s′,r|s,a)

[
r+ γmaxa′q∗(s

′,a′)
]

These equations form a system of equations so, if we know the model of the envi-

ronment we could solve the system using traditional linear algebra techniques. However,

there is a more efficient solution called Dynamic Programming (DP). But even Dynamic

programming fails for problems where we have a very large state or action spaces, or con-

tinuos state or action spaces. RL methods try to solve the Dynamic Programming problem

for these cases, where DP is not feasible.

3.2 Monte Carlo prediction and control

The value function gives an idea of how good it is to be in a specific state. The state value

function of state s is defined as the expected value of the return given that we are at state

s. The action value function for state s and action a is defined as the expected return given

that we are at state s and we take action a.

vπ(s) = E [Gt | St = s]

qπ(s,a) = E [Gt | St = s,At = a]

Next is the unifying formula for both episodic and continuous tasks for the return.

Gt =
T−t−1

∑
k=0

γ
kRt+k+1

For this thesis, we will use approximate value functions, through the use of function

approximation using neural networks. This is a topic that we will explore in the next

section. Although these techniques are studied by supervised learning, we give here some

of the theory concerning its use in Reinforcement Learning.
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In order to improve a policy we will use a process called Generalized Policy Iteration

(GPI). For this we have two steps: evaluation and improvement. An alternative is to use a

method called value iteration. However, for the purposes of this thesis, GPI is enough. The

problem with the described method is that we need to store the value function for every

state, so if the state space is very large then this is not a feasible solution. That is why we

use approximate value functions using artificial neural networks.

3.3 Value functions using function approximators

The method described before assumes we store the value for each state-action pair. There

is a problem with that approach: if the set of states or the set of actions are too large we

could not even store the value functions. But storage is not the only problem: even if

the value function fits in memory, the learning will be very slow to converge since Monte

Carlo convergence is based on visiting each state-action pair infinitely many times. Lastly,

we want to generalize better, that is, if we have similar state-action pairs that are ”close” to

each other, we can think it is reasonable to have similar values to also learn from experience

of only one of them. To address all of these problems we use function approximation for

the value functions. This section is based on Chapter 9 from [24].

So, in order to overcome the problems mentioned before, we need to use a function

approximator. The most common function approximator used in Reinforcement Learning

is the linear function approximator.

v(s,θ) = θ
>

φ(s)

where the function φ(s) returns a vector of features for state s and the vector θ is the

vector of parameters that define of function approximator and that we will need to learn.

The linear approximator can give good results, but depending on the application, we could

use other approximators, like artificial neural networks.

To learn the parameters of the function approximator we need to define an error measure

to see how much the outpus from the approximator and the value function we want to

approximate differ. In this case we will choose the Mean Squared Value Error (MSVE):

MSV E(θ) = ∑
s∈S

d(s) [vπ(s)− v̂]2

where d(s) is a distribution that weights the importance of the error on each state. We

call error to the squared difference between v(s,θ) and vπ(s) (the value we are trying to
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approximate). This ”error” function is often called the objective function, because this is

the function we will try to minimize.

The previous definition has two problems: we did not say how to choose d(s), and we do

not know the real value function vπ(s). We will address the first problem first. One simple

way to choose d(s) is by the number of times we visit each state during the simulations or

episodes of experience. The second problem can be solved by using an estimator instead

of the real value function. For example, for Monte Carlo simulations we can use the return

Gt as an estimator.

Finally, to learn the parameters, we need to minimize the MSVE given before. To do

this we can use any optimization method. One of the most common optimization methods

is Stochastic Gradient Descent, which was explained before. It is important to note that

in this case the training examples will be constructed from experience, so the input vector

will be the state St and the output of the function will be vπ(St) (actually, an estimator of

it). Then the update of the parameters will follow the formula:

θt+1 = θt−
1
2

α∇ [vπ(St)− v̂(St ,θt)]
2

= θt +α [vπ(St)− v̂(St ,θt)]∇v̂(St ,θt)

where α is the learning rate. It is important to see that the gradient in the last equation

is only over v̂(St ,θt). This is because the gradient is over the parameters θ and they are

only present in v̂(St ,θt). In general, for any function f (θ) we have:

∇ f (θ) =
(

∂ f (θ)
∂θ1

,
∂ f (θ)

∂θ2
, · · · , ∂ f (θ)

∂θn

)>
The formulas presented before are very general, so from them we can define different

algorithms. The most simple algorithm is Monte Carlo prediction. In Monte Carlo pre-

diction with function approximation we run an episode and get a return. Then for each

time-step t of that episode, we update the parameters using the formula given before, but

with Gt instead of vπ(St).

3.4 Policy Gradient Reinforcement Learning

Policy Gradient methods are another way to solve the Reinforcement Learning Problem.

However, instead of learning the state value function or the action value function, we learn

the policy directly. There are many variations on these methods, but the algorithm we will

17



use is called the REINFORCE algorithm. This algorithm assumes we have a differentiable

function approximator defining our policy. This section is based on Chapter 13 from [24].

In Policy Gradient methods we have a parametrized policy. We need to define a per-

formance measure η(θt) that defines how well the policy is doing. Then, we need to learn

the weights that maximize this performance measure. To do this, we use optimizations

methods like gradient ascent. Note that now we say ascent instead of descent because in

this case we follow the gradient and not the negative of the gradient, because we want to

maximize instead of minimize. The update rule for the parameters will be:

θt+1 = θt +α∇̂η(θt)

where the ∇̂η(θt) is an approximation of the performance measure that we selected.

Depending on the election of η(θ) we will have different algorithms. For the episodic case

we generally use η(θ) = vπθ
(s0) and for the non episodic cases we use η(θ) = r(θ) where

r(θ) is the average reward rate.

The REINFORCE algorithm updates the parameters with the following rule.

θt+1 = θt +αγ
t (Gt−b(St))

∇θ π(At |St ,θ)

π(At |St ,θ)

where b(St) is called the baseline and is used to diminish variance, but it could be zero.

One kind of baseline that we can use is an approximation of state value function or the

action value function. Generally this is done by having an estimated value function using

some kind of function approximator; this kind of method is called actor-critic [24]. We

can use the log trick [22] ∇π(At |St ,θ) = π(At |St ,θ)∇ logπ(At |St ,θ) to simplify the last

formula.

3.5 Monte Carlo Tree Search

Monte Carlo Search Tree (MCTS) has been very useful in the Game of Go. Thanks to

this method, the computer Go program Fuego was the first program to defeat a 9 dan

professional Go player in an even match on the 9× 9 board [7]. Previous to AlphaGo,

all the strong playing programs implemented this technique, but for 19× 19 this was not

enough. This section is based on section 8.7 from [24] and section 3.3 from [10].

Monte Carlo Tree Search is different from the previous described techniques because

it focuses on planning more than on learning. In order to select an action, the agent has to

make a search tree. The method is based on ”random” simulations (like in Monte Carlo

method) but in this case we do many simulations to update the nodes of the tree. We will
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describe the most basic version of MCTS with a technique called Upper Confidence Tree

(UCT).

Each node represent a state-action pair (s,a). Each node in the tree has two values:

a count n that tells how many times the node has been visited during simulations and an

action value Q(s,a) that is estimated by the simulations. At fist we only have the root of the

three. Then we apply these four stages iteratively:

1. Selection. From the current node, if that node has child nodes, we select next node

(action) by selecting one according to a tree policy.

2. Expansion. When we reach a state-action pair that is not in the tree, and at the end of

the episode, get the Q(s,a) of this state-action pair and add it to the tree.

3. Simulation. From the new added node, we simulate a game from that position using

a rollout policy and get the total return of the episode.

4. Backup. We update the value of the child node, and update the values of the previous

nodes, using this node’s value.

The most simple tree policy is ε-greedy. However, a technique called Upper Confidence

Tree can be used to select actions within the tree. This method is based on the Upper

Confidence Bound that works on the bandit problem [24]. So in this case, we will treat

each action as a bandit, so we select the action that maximizes:

Z(s,a) =
W (s,a)
N(s,a)

+B(s,a)

B(s,a) =C

√
logN(s)
N(s,a)

where B(s,a) is called the exploration bonus and W (s,a)
N(s,a) is the approximated action value

function. We can see here that as we visit a state action pair more times, the exploration

bonus goes to zero.
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Chapter 4

Related Work

Computer Go research has been present since 1970 [29], but in this chapter we focus spe-

cially on the works done from 2000 to the present year. In this chapter, we will introduce a

synthesis of the work done previous to AlphaGo, since AlphaGo, although proposing some

innovations, is mainly a combination of multiple techniques.

4.1 Introduction to Computer Go

Research on Computer Go began in the 1970s, with the first Computer Go engine made

in 1970 as part of the PhD thesis of Zobrist [29]. Some of the early progress on research

was made by Wilcox and Reitman [17], who set the basis for many programs to come.

The first Go program to play better than an absolute beginner was designed by them. This

program illustrates the subsequent generation of Go programs that used abstract represen-

tations of the board, and reasoned about groups. They developed the theory of sector lines

and dividing the board into zones, so as to reason about these zones.

Place Prize

1st NT$200,000

2nd NT$40,000

3rd NT$20,000

Table 4.1: Prizes offered by the Ing Foundation. Taken from [8]. US$1 was equal to NT$25

at the time of publication (2013).

During the 1990s many tournaments were created for computer Go programs to play.

One of the most important was made by the Ing Wei-Chi Educational Foundation. They
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made yearly tournaments and gave prizes for the top programs. The prizes for these yearly

tournament are shown in Table 4.1 and Table 4.2.

Handicap Moves Games Prize (NT$) Status

Even 4 of 7 40,000,000 -

First play 3 of 5 20,000,000 -

One move 2 of 3 10,000,000 -

Two moves 2 of 3 5,000,000 -

Three moves 2 of 3 2,000,000 -

Four moves 2 of 3 1,000,000 -

Five moves 2 of 3 850,000 -

Six moves 2 of 3 700,000 -

Seven moves 2 of 3 550,000 -

Eight moves 2 of 3 400,000 -

Ten moves 2 of 3 250,000 Won by Handtalk in 1997

Twelve moves 2 of 3 200,000 Won by Handtalk in 1995

Fourteen Moves 2 of 3 150,000 Won by Handtalk in 1995

Sixteen Moves 2 of 3 100,000 Won by Goliath in 1991

Table 4.2: Prizes for beating a top professional Go player. Taken from [8].

The tournament consisted of a pre-qualification where programs around the world could

participate. To qualify for the tournament they had to be able to beat two low level pro-

grams. The tournament required 12 to 16 players so when less players were available, local

computer Go programs were invited. Once the tournament was over, the computer-human

handicap games began. For the handicap games, the winning program competed against

three young professionals which rank was 5 dan or 6 dan, to try to beat at least two of them

to get the prize. If the match was won, then another match followed with less handicap

moves, until the program could not beat the human players. The purpose of the tourna-

ments and prizes was to get a computer Go program able to beat a professional Go player

by the year 2000. Although this was not achieved, the prizes motivated a lot of research in

these years, as noted by Muller [17], both at universities and private companies.

During the 1990s and beginning of the 2000s the research was focused on solving

Go in two levels of abstraction: the strategic level and the tactical level. Some work on

combinatorial game theory was able to surpass professionals in very late game positions

[2]. In this time, Temporal Difference learning, a technique from Reinforcement Learning,

was known and tested, but with little success, leading to a weak player. In this period
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the majority of programs used pattern recognition and dictionaries of common responses

to these patterns to play, also making some local searches and few global ones. These

techniques will be described in the next section.

4.2 Traditional techniques in Computer Go

We call these techniques traditional techniques because, as mentioned in the introduction,

they share a lot in common with the first computer Go program. These techniques were

the techniques that were used before the arrival of MCTS to computer Go. This techniques

were very difficult to implement, and consisted of many modules that needed to work

together to get a strong computer Go program. One of the noted difficulties is that these

programs played generally very good at the local positions, but performed bad globally, at

least, when playing against stronger players.

An example of this type of programs is GnuGo. GnuGo is an open-source software

which uses many traditional techniques like pattern matching and databases of common

patterns. The program has a strength of between 5 to 7 kyu and has become the standard

benchmark program to beat. This is mainly because it represents the older programs, and

is open-source and free to download, so this is a good advantage.

The computer Go programs from this period contained all or many of the following

modules [17]:

• Patterns and Pattern Matching. The program uses a database and a pattern matching

subsystem.

• Knowledge representation.

– Go board.

– Go rules, executing and undoing moves.

– Blocks.

– Connections, dividers and section lines.

– Chains.

– Surrounded areas, potential and safe territory.

– Groups.

– Global move generation.

– Move evaluation.
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• Game Tree search.

– Single goal search.

– Multi goal search.

– Global level search.

• Subproblems solver.

– Life and death.

– Safety of stones and territory.

– Semeai (capturing race).

– Endgame.

One can see that these techniques required a lot of work. According to Muller [17],

”most competitive programs required 5-10 person-years of effort, and contain[ed] 50-100

modules dealing with different aspects of the game”. The code of GnuGo can give us some

insight about this. That is why the MCTS revolution was so amazing, but we will talk about

that in a later section.

4.3 Convolutional Neural Networks in Computer Go

Neural Networks were used since 2003 in Computer Go [27], but with very limited suc-

cess. It was not until recently that Neural Networks, specifically Convolutional Neural

Networks, had a huge success. This was done thanks to the recent advances on neural

network research. Additionally, the combination with Reinforcement Learning gave per-

formance even a bigger boost. Convolutional Neural Networks have been introduced to

many research areas successfully, and Computer Go is not the exception. In this section

we will present some of the work done in Computer Go. This section is based on the work

done by Van Der Werk [27], Sutskever and Nair [23], Clark and Storkey [3] and Maddison

et al.[15].

Early work using neural networks for move prediction was done by Van Der Werf [27]

on 2003. His approach used a two layer fully connected neural network and consisted of

four different techniques combined. First, he avoided ”unnecessary” weight adjustments by

defining an error function that went to zero when the prediction was accurate. Also, he used

dimensionality reduction because of the large number of features. Then, preprocessing was

applied to get the most relevant features. Lastly, a second round of training was done with
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the newly selected features. The features were encoded as binary features which included:

stones, edges, ko, liberties, liberties after move, captures after move, nearest stones and last

move. This approach managed to get a 25% on predicting expert moves.

Later work by Sutskever and Nair in 2008 [23], showed an improvement in perfor-

mance by using two layer convolutional neural networks for move prediction. They trained

various convolutional neural networks and averaged over the predictions of all of them.

The architecture of their neural networks were: in the first convolutional layer, they used

15 kernels of size 9× 9. In the second convolutional layer, they used 15 kernels of size

5× 5. Each convolutional layer was zero-padded in order to preserve the output size on

each layer. The output layer only applied a softmax to the outputs in order to have a proba-

bility distribution over the different positions to make a move on the board. Their ensemble

of networks achieved an accuracy of 36.9% and their best convolutional neural network

achieved an accuracy of 34%.

It was not until 2014 that more progress was made using convolutional neural net-

works. The work done by Clark and Storkey [3] used deep convolutional neural networks

to increase performance. They used some techniques to take into account symmetries in

the weights to improve the performance of their networks. Their networks had 8 layers,

including one final fully connected layer. As before, the convolutional layers were zero-

padded. Although they experimented with many architectures, the best network used one

convolutional layer with 64 filters of size 7×7, two layers with 64 filters of size 5×5, two

layers with 48 filters of size 5× 5, two layers with 32 filters of size 5× 5 and one fully

connected layer. The results for this network were of 44% of accuracy on predicting moves

made by experts on the KGS dataset. Also, they tested the network against GnuGo, and the

network won 86% of the time.

The work published by Maddisson et al., in 2015, achieved even better accuracies.

They trained a large convolutional neural network consisting of 12 layers. They also used

symmetries on the weights of the network to improve performance. The architecture of

their network was: the first convolutional layer had filters of size 5× 5; the next layers

had filters of size 3× 3. Again, the convolutional layers were zero-padded to preserve

the output size. Each layer had the same number of filters, ranging from 64 to 192. The

accuracy achieved by their best network was of 55% for predicting expert moves. They

also were able to defeat GnuGo 97% of the time, using this network directly to play.
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4.4 Monte Carlo Tree Search in Computer Go

Monte Carlo Tree Search (MCTS) became very popular in Go after the Upper Confidence

Tree (UCT) algorithm was proposed by Kocsis and Szepesvári in 2006 [13]. Gelly imple-

mented the first program using MCTS UCT in 2006. The first computer Go program to

beat a professional Go player on the 9×9 board used this technique and some extensions

[7]. Here we will explain this technique and some of its extensions. This section is based

on [10].

Monte Carlo Tree Search uses Monte Carlo prediction on a game tree. The procedure

is similar to minimax search, but the tree will grow in vertically rather than horizontally,

because it adds new nodes of states that were experienced during simulations. Also, here

we do not have an evaluation function, so the values of the nodes are estimated from expe-

rience.

In MCTS, and in many other techniques of Reinforcement Learning, we always have

the trade-off of exploitation vs exploration. We would like to simulate more over the nodes

that gives us the best action values, that is, the ones that give greatest return. However,

if we only do that, we give up on exploration, so maybe there are some very good nodes

that we have not explored and that have greater values. A simple method to address this

problem is the ε-greedy algorithm, but we have the disadvantage that the agent will always

have some probability of exploring, which does not diminish over time.

One of the techniques developed to balance this exploration-exploitation problem is

the Upper Confidence Tree (UCT) algorithm. The idea is that at the beginning, we want

too explore many nodes, but as time passes, we want to diminish that exploration. This

algorithm is based on the Upper Confidence Bound algorithm for the bandits problem [24].

We will choose actions based on a score, instead of directly choosing from the estimated

action value function.

Z(s,a) =
W (s,a)
N(s,a)

+B(s,a)

B(s,a) =C

√
logN(s)
N(s,a)

where B(s,a) is called the exploration bonus, C controls the level of exploration, N(s,a)

is the number of times this node was selected during simulations, and W (s,a) is the sum of

returns for this node. We see that as N(s,a) goes to infinity, the exploration bonus goes to

zero, so the score will only take into account the estimated action value W (s,a)
N(s,a) .
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This algorithm is proved to converge given enough exploration. The idea behind this is

that as time passes the best nodes will be selected, and their estimates will be more accurate.

Although convergence could take a lot of time to occur, even with estimates we have a very

good algorithm, since intuitively the nodes of the tree are chosen in a more intelligent way.

Many variations of the UCT algorithm try to address the problem of slow convergence.

The main problem of MCTS is that we do not generalize, and each node estimates its

value only considering the simulations that passed through that node. It would be good if

we could improve our estimates by improving from the simulations in which similar nodes

occur. There is an heuristic called all-moves-as-first (AMAF) treats every action the same,

independently of the state in which it was played.

Based on AMAF, Silver and Gelly [9] developed the Rapid Action Value Estimate

(RAVE) algorithm. The idea is that in the subtree from any node, the value of taking

an action will be the same for any node in that subtree. The estimate resulting from this

procedure will not be an accurate estimate as time passes, but RAVE helps in making faster

updates.

Z̃(s,a) = (1−β (s,a))
W (s,a)
N(s,a)

+β (s,a)
W̃ (s,a)
Ñ(s,a)

where β (s,a) controls how much the AMAF estimate is taken into account, Ñ(s,a) is

the AMAF count and W̃ (s,a) is the AMAF total reward. The function β (s,a) goes to zero

as N(s,a) goes to infinity.

There are other extensions that permitted further improvement using MCTS. However,

for the purposes of this thesis this is enough. Later, when we describe the architecture of

the MCTS part of AlphaGo we will see the similitude with the MCTS-RAVE algorithm.

4.5 AlphaGo: Deep Learning and Reinforcement Learn-
ing in Computer Go

The previous sections described some of the work done on Computer Go using Reinforce-

ment Learning or Convolutional Neural Networks, but not together. These previous works

gave the foundations for AlphaGo. AlphaGo is composed of four elements. In this section

we will describe all the elements, given that we know a lot of the previous work, and see

how this was innovative. The most important thing was the creativity to combine all of the

techniques. This section is based on [21]. The notation is also taken from there.

The first element of AlphaGo is a move predictor implemented by a deep neural net-

work. As we saw in previous sections, a move predictor is not necessarily a good player,
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Figure 4.1: AlphaGo architecture. Taken from [21].

however it can give very good results alone. The neural network was trained using the KGS

dataset [12], and the architecture consisted of 12 layers, with each layer implementing a

convolution and a linear rectifier. The input to the network is a representation of the board

through features like color of stone, liberties, ko, etc. They used 192 filters in each layer

with size 5× 5 for the first layer, and size 3× 3 for the following layers. The algorithm

used for training was Asynchrounous Stochastic Gradient Descent using following hyper

parameters: learning rate α of 0.003 and mini batch size m of 16. The parameters σ were

updated using the following formula:

∆σ =
α

m

m

∑
k=1

∂ logpσ (ak|sk)

∂σ

The second stage used the same network but applied reinforcement learning to it. As we

saw before, we can improve a policy, in this case the move predictor, by policy gradient and

games of self play. In this case, the old parameters σ were copied to parameters ρ . A pool

of players was created, initializing this pool with the fixed parameters σ from the previous

step. Each game was played between the player with parameters ρ and a randomly chosen

player from the pool of players. Every 500 games of self play, the parameters ρ were

backed up and stored in the pool of players. This was done in order to avoid overfitting. At

the end of each episode the reward zt = ±r(ST i) was used to update the parameters. The

reward is +1 if the player won and -1 if it lost. The algorithm used for learning was the

REINFORCE algorithm using v(si
t) to reduce the variance. The formula used to update the

parameters of the network is:

∆ρ =
α

n

n

∑
i=1

T i

∑
t=1

∂ logpρ(ai
t |si

t

∂ρ
(zi

t− v(si
t))

The last part of training was the creating of a state value function. This could be seen

as the most important element of AlphaGo and one of its main contributions. This state
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value function gives use a measure of how good it is to be in a given state. It was thought

that obtaining this ”evaluation” function was impossible because of the complexity of the

game of Go. However, the team that created AlphaGo made a good approximation of this

evaluation function using the approximate state value function. We saw earlier that the state

value function is given by the following formula:

vp(s) = E[zt |st = s,at...T ∼ p]

To approximate this value function we can use a neural network that just outputs a

single value between -1 and 1. This can be done solving the problem of regression using

supervised learning, using a deep neural network as before. The dataset to train the neural

network was generated from the RL network since it was stronger than the SL network.

The dataset was generated by playing games of self play and obtaining the result. One

of the problems with the algorithm in Chapter 3 for the approximate value functions is

that the positions in each episode are highly correlated, so the assumptions of supervised

learning do not hold. In order to have a dataset that holds the assumption of independence,

for each game of self play they took a single training example (s,z) where s is the state of

the board and z is the score at the end of the game. The algorithm used for learning was

stochastic gradient descent, using the mean squared error (MSE) as the objective function

to minimize. The formula used to update the parameters of the network is:

∆θ =
α

m

m

∑
k=1

(zk− vθ (sk))
∂vθ (sk)

∂θ

where zk is the score, and sk is the state of the board, for the k-th training example, α is

the training rate, and m is the size of the mini-batch.

The dataset used contained 30 million examples. At the end of training, the training

error was 0.226 and the test error was 0.234, indicating that there was no overfitting. This

value network was tested against Monte Carlo evaluation and gave similar accuracy but

with 15,000 times less computation.

The only elemet left to explain of the AlphaGo program is searching. For this, the

AlphaGo team developed a new version of the MCTS algorithm. This algorithm was called

Asynchronous policy and value MCTS algorithm (APV-MCTS). In this algorithm, each

node represents an state s and from each node we have edges (s,a) for all the possible

actions from that state. The edges store the following variables: P(s,a), Nv(s,a), Nr(s,a),

Wv(s,a) , Wr(s,a), and Q(s,a), where P(s,a) is called the prior probability initialized on the

output of the move predictor with parameters σ , Nv and Nr are counters of the number of

times the node was visited during simulations and Wv and Wr are the total rewards obtained
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Figure 4.2: AlphaGo MCTS. Taken from [21].

during simulations for this node. The sub-index v indicates that the estimated value of the

node Wv
Nv

uses the value network, and the sub-index r denotes that the estimated value of the

node Wr
Nr

uses the roll-out network. We can combine both estimates using parameter λ and

the formula:

Q(s,a) = (1−λ )
Wv(s,a)
Nv(s,a)

+λ
Wr(s,a)
Nr(s,a)

During searching, multiple simulations are executed in parallel on separate search threads,

and also, the evaluation using the state value function is done in parallel. The APV-MCTS

algorithm proceeds in the four stages outlined in 4.2.
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Chapter 5

Proposed Solution

In the previous chapters we gave the theory needed to understand the elements of AlphaGo,

and how those elements worked separately. Now we will describe the development of

our own computer Go playing program called NdsGo. This program is meant to help to

understand the concepts better by implementing them. The program was designed to play

in 2× 2, 3× 3, 9× 9 and 19× 19 boards. We used Python to develop this program along

with some libraries like Numpy, which we was used for the management of arrays, and

Tensorflow, used for the implementation of different architectures of neural networks.

The program is composed of many modules that have different functions. In general,

we can describe the program as having these parts:

• Implementation of board representation.

• Implementation of Go Text Protocol for playing against other programs.

• Data processor which converts a set of files in SGF format to a binary file for CNN

training.

• Implementation of a Player for 2×2 and 3×3 based on Monte Carlo self-play.

• Implementation of a player for 9×9 and 19×19 using CNNs to predict moves.

In this chapter we describe the details of each of these elements.

5.1 Implementation of Board representation and the Go
Text Protocol

A computer Go player must have an internal board representation in order to be able to

know how to play. For this task we based our board implementation in the one described by
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Muller in [17]. The board is stored in a flat array, and we transform from two-dimensional

coordinates to one-dimensional coordinates. The basic features that the board representa-

tion should have are the ability to manage capturing stones, and the ability to detect and

prevent illegal moves like playing in a ko position, playing in a non empty space, or playing

a suicidal move.

Another important feature for a computer Go program is the implementation of the Go

Text Protocol. This protocol allows the programs to communicate in order to play against

each other. This is an important feature for our program, because it permits to compare our

program against other programs.

The Go Text Protocol (GTP) is a very simple communication protocol which involves

two parts, the controller and the engine [11]. The specification says that it can be imple-

mented There are many use cases in the specification of the protocol; however, we only

implemented the ”engine” part of the protocol. The implemented commands are shown in

table 5.1

Command Description

name Returns the name of the Go playing program.

version Returns the version of the Go playing program.

known command Command to ask if a command is implemented.

list commands List all the implemented commands.

quit Finish the connection.

boardsize Define a new boardsize.

clear board Clear the board and number of captures to begin a new game.

komi Defines the komi given to the white player.

play Play a stone of the indicated color in the indicated position

genmove Generate a move for the indicated color.

undo Undo the previous move.

showboard Tells the program to print the board.

Table 5.1: Engine commands for the GTP protocol.

These commands made it possible for the program to play against other programs using

GoGui [6] and against human players using the Kiseido Go Server 1. See the description

of these tests in the experimental results chapter.

1W. Schubert, KGS Go Server. [Online]. Available: https://www.gokgs.com/
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5.2 Implementation using Monte Carlo Self-Play for 2×2

and 3×3 boards

The techniques that we reviewed in Chapter 3 work for MDPs, where we have an agent and

an environment. But in games we want to learn the policy for ”two agents”; that is, the two

players. The techniques work by taking into account some details. Instead of using MDPs

we will work on Markov Games.

This section describes the implementation of a computer player which learns the action

value function Q(s,a) by Monte Carlo Reinforcement Learning. However, there is a differ-

ence with the Monte Carlo technique described before. In the case of games, we have two

players but we will only learn a single value function. So we need to define what we mean

by the value function. We consider zero sum games, that is:

RP1 +RP2 = 0

The formula says that the rewards for both players at each time step have the same

absolute value, but opposite sign. The new value function takes into account both players,

and this function is the one we will learn. The policy that we want to learn is π =
〈
π1,π2〉.

So taking this into account, the value function is the same:

qπ = E [Gt |St = s,At = a]

For this module, we want to learn by Monte Carlo control the estimated action value

functions. For this the program plays n games of self play to train. For each state-action

pair it stores an action value estimate Q(s,a) and a count of how many times that value has

been seen (and updated), N(s,a). After each game, it updates both Q and N according to

the following formulas:

N(s,a) = N(s,a)+1

Q(s,a) = Q(s,a)+
1

N(s,a)
[Gt−Q(s,a)]

We used the ε-greedy policy to allow exploration. Also we experimented with Opti-

mistic Initialization for exploration.

32



5.3 Datasets and data formatting

For the supervised learning training of our networks we used two datasets: one comes from

the Kiseido Go Server dataset2 and the other from the Games of Go on Disk3. The first

dataset was used for training the 19× 19 player; the second one was used for training the

9×9 player. Some details about the KGS dataset are shown in table 5.2. We used only the

games from 2016, mainly because of storage issues.

KGS dataset no of games

2001 2,298

2002 3,646

2003 7,582

2004 12,106

2005 13,941

2006 10,388

2007 11,644

2008 14,002

2009 18,837

2010 17,536

2011 19,099

2012 13,665

2013 13,783

2014 13,029

2015 8,133

2016 19,442

Total 199,131

Table 5.2: KGS dataset as of October 2016

We trained neural networks for predicting moves in 19× 19 and 9× 9 boards. The

dataset used for training the 19× 19 CNN were obtained from the KGS dataset. This

dataset contains games of from 2001 to 2016 played on the KGS Server. This dataset also

has the characteristic of only containing games in which one player is 7 dan or both players

are 6 dan. Remember from the introduction that although this rank is in the amateur level,

2U. Görtz, KGS Game Records, 2016. [Online]. Available: https://u-go.net/ gamerecords/
3T. M. Hall and J. Fairbairn, GoGoD - Games of Go on Download. [Online]. Available:

http://gogodonline.co.uk/
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Dataset Board size games train examples test examples

KGS 2016 19x19 19,442 2,776,980 385,694

GoGoD 9x9 subset 9x9 146 4,608 643

Table 5.3: Datasets used

7 dan is the maximum possible rank, so the level of play is very good. The total number of

games in this dataset is 190,450. Since in average we have 150 moves per game, we have

approximately 28 millions of training examples. Later we will talk about how we divided

this dataset for train and test.

The format of the data is converted to a more convenient format to feed the deep neural

networks that we created. The original format is called SGF, and is easy to understand

since it describes each move made by the players during a match. However, for the neural

network we need to represent each state of the game by the complete configuration of the

Go board. After converting the SGF files, we divided the datasets into a train set and a test

set. The details are shown in table 5.3

For the format, we encoded the board configuration using four planes of size 19× 19

or 9× 9, depending on the dataset. These four planes are composed of 1’s and 0’s that

describe the features of the board. We selected the most basic board features to begin

experimentation, but adding more features will surely improve performance, as was seen

in the works of Sutskever [23], Clark and Storkey [3] and Maddison [15]. Then, we have

four channels, described here:

1. First plane. Presence of player’s stones. A 1 in the position if a player stone is present

and 0 otherwise.

2. Second plane. Presence of opponent’s stones. A 1 in the position if an opponent

stone is present and 0 otherwise.

3. Third plane. Presence of empty spaces. A 1 in the position if the position is empty

and 0 otherwise.

4. Fourth plane. All ones. This feature helps the network to distinguish the boundaries

of the board, since in the network we use zero-padding in each convolutional layer.

Since the information is only 1’s and 0’s, after creating these planes we stored them

in binary form. The ”label” for each of these binary arrays was the next move to play,

encoded as a number between 0 and 360 (or 0 and 80 for the 9×9 board). For this number

we used two bytes to encode it in binary form. We stored each example as a fixed length
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record were the first two bytes contained the label, and the following 361× 361× 4 (or

81×81×4) bytes corresponded to the board configuration.

After creating records for the entire SGF dataset, we then divided these records into

training and test sets. We then shuffled each set because during training since we will

estimate the gradient from mini batches, we want those mini batches to be as diverse as

possible, in order to be good representatives of the entire dataset. Also it is important to

note that we first divided the data and then shuffled it; this is important, because we want

the test data to be as much independent from the training data as possible. In the way we

did it, the examples of the test data are from different games than those on the training data.

This has the intention of being able to measure if the neural networks generalize well.

5.4 Convolutional Neural Networks for move prediction
using Supervised Learning

The first stage of training used in AlphaGo was Supervised Learning using Convolutinal

Neural Networks to predict expert moves. We did the same, experimenting with three

different architectures. Also we experimented with the 19×19 dataset and the 9×9 dataset,

so the architectures take this into account. In the diagrams shown below, for 9× 9, the

details are the same, just changing the size to 9 instead of 19. All the architectures used the

same hyperparameters: fixed learning rate of 0.1, batch size of 128 and number of filters

on each convolutional layer equal to 32, with the exception of the last layer which only has

one filter.

Figure 5.1: CNN architecture with 2 convolutional layers

The first architecture consisted of a network with 2 convolutional layers. This network

was inspired in the work done by [23]. The first convolutional layer has 32 filters of size

5×5×4. After the convolution, we add a bias and apply a rectifier function. The second

and last layer has only one filter of size 1× 1× 32; This outputs a feature map of size

19× 19 to which we add a bias for each position and apply a linear rectifier. The outputs
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are ”numerical preferences” for each position on the board. Using these outputs from the

convolutional layer we pass them to a softmax layer, which outputs probabilities for each

position of the board.

Figure 5.2: CNN architecture with 3 convolutional layers

The second architecture consisted of a network with 3 convolutional layers. The first

convolutional layer has 32 filters of size 5× 5× 4. After the convolution, we add a bias

and apply a rectifier function. The second layer has 32 filters of size 3× 3× 32; we also

add a bias and apply a rectifier function here. The third and last layer has only one filter

of size 1× 1× 32. As before, these outputs are passed to a softmax layer, which outputs

probabilities for each position of the board.

Figure 5.3: CNN architecture with 13 convolutional layers

The third architecture consisted of a network with 13 convolutional layers. This is the

same as the one used by AlphaGo, but we have different hyper parameters. The difference

in hyper parameter is mainly because we do not use the same algorithm; AlphaGo used

Asynchronous Stochastic Gradient Descent and we used Stochastic Gradient Descent. The

first convolutional layer has 32 filters of size 5×5×4. After the convolution, we add a bias

and apply a rectifier function. The layers 2 to 12 have 32 filters of size 3×3×32; we also

add a bias and apply a rectifier function in each one of them. The last layer has only one

filter of size 1×1×32. As before, the outputs from the last convolutional layer are passed

to a softmax layer, which outputs probabilities for each position of the board.
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The training was done using Stochastic Gradient Descent, using a mini batch in each

step. We trained for 10,000 steps for each of the architectures and each of the datasets. The

results are reported in the next chapter.

5.5 What is left to reach AlphaGo performance?

In order to complete the study on the different elements of AlphaGo, we would need to

implement three more elements:

• A Convolutional Neural Network for move prediction using Policy Gradient

• A Convolutional Neural Network to approximate the state value function.

• A Monte Carlo Tree Search implementation.

The last step would be to make an unified architecture similar to that of AlphaGo.

For these implementations, we would use a centralized system, because we only want to

understand the concepts, not make a competitive program. But another option could be to

try to implement a distributed version, similar to the one used in the distributed version of

AlphaGo.
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Chapter 6

Experimental Results

In this section we present some experiments and results from the NdsGo program. We used

GoGui [6] to compete against GnuGo. Also we give some intuition about how the learning

process was made, and a description of the difficulties found on each implementation.

6.1 Results for the Monte Carlo Self Play Implementation
on 2×2 and 3×3 boards

For the 2× 2 board, we training the player for 1,000,000 games of self-play. For each

episode, we saved the values of all the 810 possible state-value pairs in order to plot them

later and see how the values changed over time. In Figure 6.1 we can see the evolution of

these values as more games are played for training. The three graphs in Figure 6.1 show the

values, but the first one only for the first 100 episodes, the second one for 10,000 episodes,

and the last one for 1,000,000 episodes.

(a) After 100 games (b) After 10,000 games (c) After 1,000,000 games

Figure 6.1: Q(s,a) values for 2×2 board learned after 100, 10,000 and 1,000,000 games of

self-play.
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From these graphs we can see how the values start to converge after many episodes

have being played. However, this happens only because the state space is too small, so

exploration is enough. Also, we noted that during training there were a lot of long episodes

because we added the passing move as one of the possible actions, so we did not finish the

game until the program passed two consecutive time.

(a) After 100 games (b) After 10,000 games (c) After 1,000,000 games

Figure 6.2: Q(s,a) values for 3×3 board learned after 100, 10,000 and 1,000,000 games of

self-play.

In Figure 6.2 we can see the evolution of the values for state action pairs, but this time

for the 3×3 board. Because of the limitations in memory, we only followed the evolution

of 1,000 of the state action pairs during training; in total there were 393,660 different

values. These state action pairs were selected randomly, but we can see from the graphs

that convergence is not so clear as in the 2×2 case. There are two factors for this, the first

one is that we are not plotting all the values, so maybe the most promising values are not

along these plotted values. The second reason is that since we have a larger state space, we

would need more iterations of self-play in order to learn.

(a) 2×2 board. Score: 0 (b) 3×3 board. Score: B+8

Figure 6.3: GnuGo (B) vs NdsGo (W) on the 2×2 and 3×3 boards.
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We tested the program against GnuGo on 2× 2 and 3× 3 (6.3. In 2× 2 board the

program ties against GnuGo on all its games (assuming a komi of 0), whether playing as

Black or as White. This board is very simple and one can easily see that there is no other

way to play to get more points. The problem here is that the only way to get points here

is to capture stones, but when we try to capture stones we end up in an infinite loop where

neither player gets more captures than the other one.

On the 3×3 board the player playing black always wins if he plays in the center. Again,

this is because of the limited size of the board that does not let us surround territory. The

only way to gain points is to capture opponent stones, but here the first one to take the

center has the advantage. So once one of the players takes the center, we can say that the

game is over. It is important to note that the program learned to play in the center, although

when playing as white, it tries to keep playing.

The main problem here is that we included the pass move among the possible actions.

This turned out to be a bad approach. Although the first moves are perfect, then the pro-

gram tries to keep playing, so we have infinite games. This is because it is difficult to

learn when to pass, a problem that we will have later again with the neural network based

implementation.

To solve this issue against other programs we made a simple trick: we pass when the

other player passes. This is done assuming the other player is honest, and knows better

than us when the game is over. This trick is applied directly on the GTP implementation.

This must be changed for later versions of the program.

Board size Byte size

2 6.4 KB

3 3 MB

4 10 GB

5 320 TB

Table 6.1: Memory to store the Q(s,a) for the Monte Carlo Self Play implementation

We limited this implementation to 2×2 and 3×3 because of the memory needed. We

can see in Table 6.1 how the memory requirements increase exponentially for this kind

implementation. As we stated in chapter 3, this kind of reinforcement learning is very

inefficient and almost exclusively used to understand the concepts.
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6.2 Results for the Convolutional Neural Network imple-
mentation on the 9×9 board

For the 9×9 board implementation, we used the GoGoD subset that contained 9×9 games

played by professionals. This dataset contains only 146 games, so it is very limited com-

pared to the 19×19 dataset.

Figure 6.4: Precision on the test set for the GoGoD 9×9 dataset.

In Figure 6.4 we can see the precision of classification on the test set. We trained for

each of the architectures for 20,000 steps. We can see that the precision increases, so we

do not reach overfitting yet. The regularization used helps in doing this.

We tested our program on the 9×9 board against GnuGo. Figure 6.5 shows two games

played against GnuGo. In both games, our program loses, however, in the first one, the

program is able to build two eyes. We used the learned parameters for the architecture of

13 layers.
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(a) Game 1. Score: W+26. (b) Game 2. Score: W+82.

Figure 6.5: NdsGo (B) vs GnuGo (W) on 9×9 without komi.

6.3 Results for the Convolutional Neural Network imple-
mentation on the 19×19 board

As stated before, we used only the games from 2016 from the KGS dataset to train for the

19× 19 board. We trained for 20,000 steps in each case. We did training for each one of

the three proposed architectures described earlier. The hyperparameters are the same for

both sizes, as described earlier.

The results for the different architecture are shown in 6.6. We can see that the networks

learn very fast at the beginning and the they seems to be no improvement. This is not totally

right, since they keep improving but more slowly.

We tested our program on the 19× 19 board against GnuGo. Figure 6.7 shows two

games played against GnuGo. In the first game our program won by a small margin, but in

the second game it loses terribly. We used the learned parameters for the architecture of 13

layers.
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Figure 6.6: Precision on the test set for the KGS 2016 19×19 dataset.

(a) Game 1. Final score: B+2 (b) Game 2. Final score: W+96

Figure 6.7: NdsGo (B) vs GnuGo (W) on 19×19 without komi.
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Chapter 7

Conclusions and Future Work

We presented the main elements used in AlphaGo and the previous work in which this

program was based. We also created a computer Go program, that is not too strong, but

permitted experimentation with Reinforcement Learning and Deep Learning. Another con-

tribution of this work is that now we have a platform to experiment with; we can later use

this platform to continue implementing the elements that we did not implement, like Policy

Gradient and Monte Carlo Tree Search, or maybe try new ideas.

Some of the future work that can be done is:

• Implementation of Policy Gradient Reinforcement Learning on the CNNs in order to

have a better player instead of a good move predictor.

• Implement Monte Carlo Tree Search and extensions.

• Test NdsGo in the Computer Go Server (CGOS) to compare against other programs.

• Test NdsGo in the KGS Go Server, to test the strength of the program against human

players.

Although AlphaGo achieved something great by defeating a professional go player,

computer go research will continue. It is true that there were a lot of innovative ideas that

allowed AlphaGo to beat a professional, but the amount of computational resources used

to do this was also influential. So, one of the next steps is to try to get those ideas working

for smaller systems. This thesis was a small attempt to do so.

One of the difficulties during the implementation of the computer Go program was that

although there is a lot of papers on computer Go, some very important information was

difficult to find. For example, although all the programs need a board representation, we

only found one paper describing how to implement it [17]. Another example is how to
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tell the program to stop playing, that is, to tell it to pass when the game is over. This is a

difficult task, because even for people it is often difficult to tell when the game is finished

and when one should pass. However, every program needs at least a heuristic to do this.

We were not able to find a description of this type of heuristic in the literature, which is

crucial for a competitive computer Go program.

One of the things that made it easier to develop this computer Go program was the in-

formation contained in the Computer Go Mailing List 1. We recommend to look at this list

to find some discussions and answers to questions on computer Go research. The commu-

nity there is very diverse, having developers, scientists and Go players which interchange

messages. It is a good idea to subscribe to this mailing list to get the latest news from

different researchers around the world. This mailing list is active as of today.

It seems impossible to get an AlphaGo-like program developed by only one person.

The hardware available for students is also important since the experiments take longer

depending on the equipment used. However, as seen here, we can develop some of the

ideas and start experimenting with those simple ideas. In future work it is our hope that

other students can develop from what we created.

1http://www.computer-go.org/
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Appendix A

Source Code

The source code of the program developed for this thesis can be found at:

https://github.com/maburto00/ndsgo.

The version of the program at the time of submission of this thesis includes the following

elements:

• Dataset generator that generates datasets for neural network training with the required

format using SGF files.

• Computer go player based on basic Reinforcement Learning techniques for 2x2 and

3x3 boards.

• Computer go player based on Supervised Learning and Deep Learning using convo-

lutional neural networks trained on the KGS dataset (19x19) and the GoGoD dataset

(9x9).

• Implementation of the Go Text Protocol (GTP) for playing against other go programs.

File Description

board.py Implementation of the board.

lookup players.py Implementation of the 2x2 and 3x3 player using RL techniques.

param players.py Implementation of the 9x9 and 19x19 player using SL techniques.

gtp engine.py Implementation of the Go Text Protocol.

cnn models Directory containing the code for the neural network model.

data processing Directory containing the code for creating the datasets.

Table A.1: Description of the most important source code files

In table A.1 we can see the description of the most important files and directories of the

program. There are other files in the project but they are just utilities for this core files.
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