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Space-time pattern recognition in electrophysiological signals from evoked
potentials using dynamic neural networks
por

M. en C. Mariel Alfaro Ponce

Resumen

Durante siglos la humanidad ha tratado de descifrar la manera en que funciona el cerebro,
tecnologias como el electroencefalograma (EEG) son capaces de registrar la actividad eléctrica
del cerebro [67]. La popularidad del EEG en la investigacién cientifica se debe a la gran can-
tidad de estudios y aplicaciones que se pueden realizar a través de sus registros, también por
la portabilidad y el costo del equipo que es menor a otros que permiten registrar la actividad
cerebral. Las técnicas derivadas del EEG incluyen los potenciales evocados (PE), que registra
un promedio de la actividad EEG con respecto al tiempo, utilizando la presencia de un estimulo
que puede ser de tipo visual, somatosensorial o auditivo [49]. Estd claro que la lectura de la
respuestas electrofisioldgicas del cerebro no representan un reto tecnoldgico, sin embargo, el
problema principal actual respecto a estas sefiales, centra en la decodificacion de la informacién
integrada en estas senales [85]. En la actualidad, existen muchos algoritmos de decodificacién
que se han propuesto para ello, que van desde estimadores lineales 6ptimos, hasta diferentes ver-
siones de decodificadores bayesiano, e incluso diferentes topologias de redes neurales artificiales
(ANN, por su definicién en inglés). Hoy en dia, la mayoria de los algoritmos de interpretacion
automdtica de EEG se enmarcan en la denominada teorfa de reconocimiento de patrones [8].

Talvez la mds importante limitacion que tienen las técnicas de decodificacién del cerebro
es, de hecho, la necesidad de implementar tratamientos preliminares para la senal de EEG [56],
[64]. Se ha establecido que estos pretratamientos implican una pérdida de informacién que
puede limitar la eficiencia del decodificador.

Con la intensién de limitar los efectos de la perdida de informacién, se han desarrollado
algunos algoritmos que pueden utilizar la senal de EEG sin procesar, no obstante, la velocidad
de decodificacién de la senal es lenta con incluso bajas tasas de clasificacién adecuada.

Las ANNs se han aplicado con éxito en diversas dreas de la disciplina de teoria de com-
putacién denomina clasificaciéon de patrones [15], [38], [93], [71]. De hecho, diferentes tipos de
NN estaticas se han utilizado para la lograr la correcta decodificacién de la senal de EEG [98],
[127]. La mayoria estas soluciones se han aplicaciones en diagnéstico de condiciones cerebrales
patoldgicas, tales como; la epilepsia, el autismo, el Alzheimer, la degeneracién del cerebro tejido,
trastornos del suenio, entre otros. Pero estd claro, que este tipo de redes neuronales (NN, por
su definicién en inglés) desprecia el cardcter continuo de la senial electrofisiolégica del EEG.

En esta tesis se propone la aplicacién de una clase de NN denominadas Redes Neuronales
Dindmicas (DNNs, por su definicién en inglés), para lograr la decodificacién de las senales de



EEG tomando en cuenta la naturaleza continua de estas senales. Las DNNs son conocidas
por tener una estructura méas compleja para su implementacién que las NN estdticas, ademas,
son mads avanzadas dado que consideran el efecto de la retroalimentacién del estado de la red,
debido al hecho de que los datos se almacenan y se procesan a través del tiempo. Por otro lado
a pesar de que las entradas pueden ser independientes, estds interactuando e influyen entre si,
lo que enriquece la capacidad de clasificacién de este tipo de redes.

A lo largo de este trabajo se proponen cuatro topologias de DNNs con sus correspondientes
estructuras de ajuste para los pesos. En primer lugar se presenta una red neuronal recurrente
(RNN, por su definicién en inglés) que analizan una version discretizada de las senales de EEG
con un periodo de muestreo fijo. Posteriormente, se desarrolla una red neuronal diferencial
(DfNN, por su definicién en inglés), la cual tiene una estructura continua y cuya ley de ajuste
de los pesos obedece una ecuacion diferencial ordinaria. Ambos tipos de redes son aplicados
para clasificar senales de EEG obtenidas de diferentes bases de datos obtenidas tanto en fuentes
publicadas como desarrolladas como parte de este estudio.

En tercer lugar, se desarrolla una red neuronal en cuya estructura se considera el efecto de
retardos en el tiempo en la senal de entrada, lo que permite introducir el concepto de ventaneo
al algoritmo de clasificacién propuesto. Esta red en particular, se evalué solo con una de las
bases de datos mencionada anteriormente. Cabe notar que esta clase de red tiene la ventaja
de tomar en cuenta la informacién previa al momento del andlisis de la senal electrofisiolégica.
Por tltimo se describe una NN con estados complejos que permite el andlisis y clasificacion de
la senial de EEG utilizando la respuesta en frecuencia de esta misma senal.

En el caso particular de la red diferencial, se implementé una versién discretizada en un
dispositivo del tipo Field Programmable Gate Arrays (FPGAs), para evaluar su respuesta tem-
poral en un dispositivo dedicado. En este caso se obtuvo una mejora en el tiempo de simulacién
de 4 min a 23.6s. Posteriormente se implementé una versién de esta misma red en un modelo
Very-Large-Scale Integracién (VLSI), donde se pudo desarrollar una propuesta de circuito in-
tegrado que implementa el funcionamiento de la DfNN. Una iltima implantacion electrénica se
desarrollé utilizando un arreglo de circuitos analdgicos, para representar la naturaleza continua
de la DINN. Este diseno analégico fue evaluado por simulacién y se validé empleando una clase
de senales electrofisiolégicas similar a la del EEG.

Para todas las NN consideradas en esta tesis se realizé su entrenamiento y validaciéon en
software. La eficiencia de clasificacién se validé mediante dos métodos: el primero denominado
método de generalizacién — regularizacién [50] y el segundo denominado un k-fold cross valid-
ation. Ambos métodos demuestran una eficiencia de clasificaciéon correcta por encima del 90
%. En el caso de las NN implementadas en hardware el enfoque es diferente dependiendo de la
implementacién. Las tasas de clasificacién correcta de software NN estdn por encima de otros
métodos de clasificaciéon que emplean la misma base de datos y no aplican ningin pre proceso
de la senal de EEG. Para el conocimiento de autores que no hay aplicacién de la DfNN en
hardware haciendo de esto una de las mds importantes contribuciones de esta tesis.



Space-time pattern recognition in electrophysiological signals from evoked
potentials using dynamic neural networks
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MSc. Mariel Alfaro Ponce

Abstract

For centuries mankind has sought to understand the brain, technologies such as the electroen-
cephalogram (EEG) are able to record the brain electrical activity [67]. The popularity of EEG
in scientific research is due to the large number of studies and implementation of their records
, also its portability and the low cost of equipment in comparison than others that allow record
brain activity. Derivatives of the EEG technique include evoked potentials (EP), which involves
averaging the EEG activity time-locked to the presentation of a stimulus of some sort (visual,
somatosensory, or auditory) [49]. It is clear that reading the brain response does not represent
a challenge, nonetheless, the main problem is focused in the decodification of the information
that is integrated in these signals [85]. Nowadays, there are many decodification algorithms that
have been proposed for this task, choices range from the simple population vector algorithm,
optimal linear estimator, various versions of Bayesian decoders to different topologies of Arti-
ficial Neural Networks (ANNs). Today, most of the EEG automatic interpretation algorithms
are framed in the so-called pattern recognition theory [8].

One of the biggest limitation in brain decoding techniques is, in fact, the pretreatments
that are applied to EEG signals [56], [64]. It has been established that there is a huge amount
of information that has been lost from the pretreatment, and it may affect the decodificator
efficiency.

Trying to avoid this information lost, there are some algorithms that work with the raw EEG
signal, but their decoding of the signal is slow and with low rates of classification accuracy.

Neural Networks (NNs) have been successfully applied in various areas of the discipline of
computational theory known as pattern classification [15], [38], [93], [71]. In fact, different kinds
of the well developed Static NN have been used for EEG decoding [98], [127]. Most of these
solutions have been applied in the diagnostic of different brain conditions such as; epilepsy,
autism, Alzheimer’s, degeneration of brain tissue, sleep disorders, among others. But it is clear
that this type of NN depreciate the continuous nature of the electrophysiological signal.

This thesis propose the application of Dynamic Neural Networks (DNNs), to achieve the
decodification of the EEG signal taking into account the continuous nature of them. DNNs have
a more complex structure in their implementation than the static NN, also are more advanced
because they consider the effect of retroalimentation on the state of the net, due to the fact that
data is stored and processed throughout the time. Although the inputs may be independent,
they are actually interacting and influencing each other, enriching the classification capabilities



of this type of NN.

In this work four topologies of DNN were proposed among with their weights adjustment
laws. In the first place, a Recurrent Neural Network (RNN) that analyze a discretized version
of EEG signals with a fixed sampling period. Next, a Differential Neural Network (DfNN), that
have a continuous structure with weights adjustment law set by ordinary differential equations.
Both types of NN are implemented for the classification of EEG signals from different databases,
obtained from public resources and also from the development of them.

In third place, it was developed a NN in which structure is consider the effect of time-delays
in the input signal. As a result the concept of window is introduced to the proposed classification
algorithm. It is remarkable that this particular type of DNN have the advantage of taking into
account the information previous to the moment of analysis of the electrophysiological signal.

Finally, is described a NN with complex states that allow the analysis and classification of
the EEG signal by using the frequency response of the same signal.

In the particular case of the DINN, it was implemented a discretized version in a Field
Programmable Gate Array (FPGA), to evaluate its temporal response in a dedicated device.
In this particular case an improvement in the simulation time was achieved from 4min to
23.6s.Then, the same DINN was implemented in Very-Large-Scale Integration (VLSI), where
it was possible to develop a proposal of integrated circuit that implement a full DINN. A last
electronic implementation was developed employing an arrangement of analog circuits, in order
to recreate the continuous nature of the DINN. This analog design was evaluated by simulation
and validated by using an electrophysiological signal similar to EEG.

For all the NN considered in this work it was performed the training and validation in
software. Their classification accuracy were validated by two techniques the first one is a
generalization-regularization method taken from [50] and the other one is a k-fold cross val-
idation method. Achieving a classification accuracy average above 90%. In the case of the
NNs implemented in hardware the approach is different according to the implementation. The
software NN classification accuracy rates higher from others works that employed the same
database and do not apply any preprocess to the EEG signal. To the author knowledge there
is no implementation of DfNN in hardware making this one of most important contribution of
this thesis.

10



Contents

1 Preliminaries

1.1 Imtroduction . . . . . .. .. .. ... ...
1.2 Justification . . . . .. ..o
1.3 Contribution . . . ... ... ... 0.
1.4 Objectives . . . . . . . . ..
141 Main. . . .. ..o oo
1.4.2 Particulars . . .. ... ...

2 Theoretical background

2.1 Other technologies used to acquire brain response data . . . . . . .. ... ...
2.2 Electroencephalogram . . . . . . . . . ... ...
2.2.1 Technological basis of EEG . . . . ... ... ... ... ..........
2.2.2 Electrodes . . . . . ..
2.2.3 Cerebral rhythms observed in the scalp EEG . . . ... .. .. ... ...
2.2.4 Evoked potentials . . . . . . .. .. ...
2.2.5  Event related potentials . . . . . .. .. o o oo
2.2.6  Analysis and quantification of the EEG . . . . . ... ... ... .....
2.3 Cerebral plasticity . . . . . . . ...
2.4 Pattern recognition in electrophysiological signals . . . . . . . .. ... ... ...

2.5 Recurrent and continuous NN in pattern recognition

3 General scheme to perform the signal classification

3.0.1

Recurrent neural networks . . . . . . . .. ..

20
20
23
25
25
25
26

27
28
34
35
39
40
41
43
44
o1
53
95

57



3.0.2 Differential neural networks . . . . . . . . .. ... ... 62

3.0.3 Time delay neural networks . . . . . . . .. ... L oL 65
3.0.4 Complex valued neural networks . . . . . . .. ... ... ... ...... 69
3.1 Neural networks implemented in embedded systems . . . . . . .. ... ... ... 74
3.2  Off-line adjustment of weights in the classifiers . . . . .. ... ... ... .... 75
3.2.1 Training . . . . . . . . 76

3.2.2  On-line training scheme using the continuous version of least mean square
method for RNN . . . . . . ... ... 76

3.2.3  On-line training scheme using the continuous version of least mean square
method for DINN . . . . . .. ..o o 7

3.2.4  On-line training scheme using the continuous version of least mean square
method for TDNN . . . . .. ... o 78

3.2.5 On-line training scheme using the continuous version of least mean square
method for CVNN . . . . . ... . o 80
4 Experimental development 84
4.1 Database . . . . . . . . e 86
4.2 Database IT . . . . . . . . . 89
4.3 Material and EEG system . . . . . . .. .. oo oo 92
4.4 Embedded instrumentation of DfNN classifiers . . . . .. ... ... ... .... 95
5 Results 97
5.1 Recurrent neural network . . . . .. ... oL 97
5.2 Differential neural network . . . . . . .. .o Lo oo 99
5.3 Time delay neural networks . . . . . .. .. .o o oL o 103
5.4 Complex valued differential neural network . . . . . . ... .. ... .. ..... 104
5.5 Neural networks in real time . . . . . . . .. ... Lo L L 107
5.5.1 FPGAs differential neural networks . . . . . . .. .. ... ... ... 108
5.5.2  VLSI differential neural networks . . . . . . .. .. ... ... ... ... 110
5.5.3 Analog differential neural networks . . . . . . . ... .. ... ... 111

12



6 Published results & scholar activities 116

6.1 Articles published in journal included in the JCR . . . . . .. .. ... ... ... 116
6.2 Articles published as extended manuscript in international conferences . . . . . . 116
6.3 Workshops . . . . . . . 117
6.4 Visiting Scholar . . . . . . ... L 117
7 Conclusions & further work 118

13



List of Figures

2-1
2-2
2-3
2-4
2-5
2-6

2-8
2-9
2-10

3-2

3-3

fMRI cutaway [121]. . . . . . . ..o
Portable TCD system [48].. . . . . . . . .. .. .. .
Near-Infrared Spectroscopy Device [111]. . . . . . . . ... ... ... .. ..
PET test; a) Pacient during the test, b) Images obtained from the test (a) [110].
Basic Diagram of a MEG System [115]. . . . ... . ... ... ... ... ....
EEG electrodes 10-20 system: A) Head Sagittal View. B) Head Axial view.
Letters refer to brain positions; 0 = occipital, P = parietal, C = central, F =
frontal, and T = temporal [112]. . . . . . .. ... ... .o o
Technical block diagram of an EEG recorder [45]. . . . . . . ... ... ... ...
Technical block diagram of an EEG recorder [46]. . . . . . . ... ... ... ...
Some of the most important brain waves as seen during an EEG test [117].

Visual stimulation produce a response in the cerebral cortex, this response is call

VEP [124). .« . oo

RNN topology. On the top in black the RNN classifier structure. In purple the
W1 and in blue the Wy adjustment structures. . . . . . ... ... .. .. ....
Full implementation of the DINN. On the top the training description and below
the classification procedure. . . . . . . . . ... ... Lo
DINN topology. On the top in black the DfNN classifier structure. In purple the
W1 and in blue the W5 adjustment structures. . . . . . . .. ... ... ... ..
Full implementation of the TDNN. On the top the training description and below

the classification procedure. . . . . . . . . . .. ... . L

14

63

66



3-5

3-6

3-7

3-8

4-2

4-4

4-6
4-7

4-8
4-9

TDNN topology. On the top in black the TDNN classifier structure. In purple
the W7 and in blue the W5 adjustment structures. . . . . ... ... .. .. ...
Function’s time domain, shown in red, to the function’s frequency domain, shown
in blue. Full implementation of the CVNN for the classifier. On the top the
training description and below the classification procedure. . . . . . .. .. ...
CVNN topology. On the top in black the CVNN classifier structure. In purple
the W7 and in blue the W5 adjustment structures. . . . . ... .. ... ... ..

Digital and analog NNs implementation. . . . . . . . ... ... ... .. .....

Experimental development followed, where the different implemented NNs clas-
sify the two databases. Generalization (G). Independent Test (IT). . . . . . . ..
Examples of the signal taken from [92], class 1 signals correspond to extracra-
nial data taken form the neocortical structures. Class 2 signals correspond to
extracranial data taken from the hippocampus, class 3 signals correspond to in-
tracranial data taken from neocortical structures, class 4 signals correspond to
intracranial data taken from hippocampus and finally class 5 signals correspond
to intracranial data taken during seizure episode. . . . . . .. .. ...
Example of the different trajectories employed for the training of the different
NNs topologies, the amplitude of the trajectories could vary according to the
network needs. Also the number of trajectories depends in the number of classes
that the NN is classifying. . . . . . . . .. . . .
Different patterns (A, B and C) used for the building of the Database II.
Flowchart; Emotiv connection with MATLAB . . . . . .. ... .. ... .....
Volunteer during trial. . . . . . . .. oL oo

Fourteen evoked potentials recorded with the EMOTIV and plotted using MAT-

Emotiv Research Edition SDK interface window [26]. . . . . . . . ... ... ...
Implementation of the DINN from the PC to the FPGA. Here Matlab and Xilinx
are employed to develop the VHDL code that will run in the FPGA. Matlab also
help to generate and interface between the FPGA and the PC. . . . .. .. ...

15

87

91



5-1

5-2

5-3

5-5

Wi and Wy corresponding to the RNN after training with the database 1. In
both top images the black line correspond to the weights of the first class, the
blue line to the weights of the second class, the red line correspond to the weights
of the third class, the magenta line correspond to the weights of the class 4 and
finally the green one to the class 5. The images of the bottom are from left to
right the trajectories of the RNN Xe and X during the training process for a
signal of class 5 and the integral of the LMS error obtained. . . ... ... ...
W1 and Ws corresponding to DfNN after training with the database 1. In both
top images the black line correspond to the weights of the first class, the blue
line to the weights of the second class, the red line correspond to the weights of
the third class, the magenta line correspond to the weights of the class 4 and
finally the green one to the class 5. The images of the bottom are from left to
right the trajectories of the DINN Xe and X during the training process for a
signal of class 5 and the LMS error obtained. . . . . .. ... ... ... .....
Integral of the error per class obtained from the DfNN when the input is a signal
of class 5, the black line correspond to class 1, the blue line to class2, the red
line to class 3, the magenta line to class 4 and finally the green one is class 5. .
W1 and Ws corresponding to DfNN after training with the database 2. In both
top images the black line correspond to the weights of the first class, the blue
line to the weights of the second class, the red line correspond to the weights of
the third class. The images of the bottom are from left to right the trajectories
of the DfNN Xe and X during the training process for a signal of class 2 and the
LMS error obtained. . . . . . . ... oo
Integral of the error per class obtained from the DfNN when the input is a signal
of class 2, the black line correspond to class 1, the blue line to class2, the red

line to class 3. . . . . . . . e

16

. 102



5-6

5-7

5-10

5-11
5-12
5-13
5-14

Wi and Wy, Wy with a delay equal to 1s and Wy with a delay equal to 2s
corresponding to TDNN after training with the database 1. In all the images,
the black line correspond to the weights of the first class, the blue line to the
weights of the second class, the red line correspond to the weights of the third
class, the magenta line correspond to the weights of the class 4 and finally the
green one to the class 5. . . . . . ..o Lo 105
On the top left the desired trajectory and the TDNN output, on the top right
the integral of the LMS error from the TDNN. On the lower part the error of the
parallel TDNN when having as an input a class 5 signal. In the lower part the
black line belongs to the classl, the blue line the class 2, the red line the class 3,
the magenta line to class 4 and finally the green line to the class 5. . . . . . . .. 106
W1 and Wy corresponding to CVNN after training with the database 2. In both
top images the black line correspond to the weights of the first class, the blue
line to the weights of the second class, the red line correspond to the weights of
the third class. The images of the bottom are from left to right the trajectories
of the CVNN Xe and X during the training process the left image is the real part
and the right one the imaginary one. . . . . . . .. .. ... L oL 107
On the top integral of the LMS error from the real and imaginary part of the
CVNN. On the lower part the error of the parallel CVNN when having as an
input a class 5 signal. In the lower part the black line belongs to the classl, the
blue line the class 2, the red line the class 3, the magenta line to class 4 and
finally the green line toclass 5. . . . . . . . .. ... .. .. ... . ... ..., 108
On the top W; and Wy for the hardware implemented DfNN. On the bottom
left the desired trajectory on slashed black line and the hardware DfNN output
on solid black line. On the bottom right the integral of the LMS error obtained

from the left bottom image. . . . . . .. ... Lo Lo 110
VLSI final design of the DfNN on Cadence. . . . . . ... .. ... ........ 111
Activation fucntion of a DINN builded with Opam’s. . . . . . . ... .. ... .. 112
Wi builded with Opam’s. . . . . . . . ... 113
Wy builded with Opam’s. . . . . . . . . . . . . 114

17



5-15 DINN builded with Opam’s. . . . . . .. .. ... o . 114

5-16 On the top left Wy for the analog NN, on the top right it corresponding Ws, on the
bottom left the desired output (slashed line) and the analog NN approximation
(solid line). On the bottom left, the LMS error obtained from the signals depicted

in the right bottom image. . . . . . . .. .. L oo o 115

18



List of Tables

2.1

4.1

5.1
5.2

5.3
5.4

5.5
5.6
5.7
5.8
5.9

Comparisson between different classification techniques applied to the EEG Freiburg

University database. . . . . . . . . . .. 55
Emotiv technical characteristics. . . . . .. .. .. . L o oL 95
Results from the classification process per class for the RNN. . . . .. ... ... 99

DINN results from the 5-fold cross validation process, that determine the classi-
fication accuracy. . . . . . .. oL 99
Results from the classification process per class for the DINN. . . . .. ... ... 101

DINN results from the 5-fold cross validation process, that determine the classi-

fication accuracy. . . . . . .. oL 101
Results from the classification process per class for the DINN database II. . . . . 101
Results from the classification process per class for the TDNN. . . ... ... .. 104
Results from the classification process per class for the CVNN. . . . .. ... .. 109
DINN I/0O values for software and hardware. . . . . . ... ... .. ....... 109
Device utilization. . . . . . . .. Lo 109

19



Chapter 1

Preliminaries

1.1 Introduction

Emerging technologies that allow to generation of interfaces between the brain and machines
are rising up as a prolific field of research all over the world. The class of devices that allow to
decode the electrophysiological brain response have been theorized and developed since the XIX
century. Technologies such as the Positron Emission Tomography (PET), functional magnetic
resonance imaging or functional MRI (fMRI), Transcraneal Doppler (TCD) and the Electroen-
cephalography (EEG) records have been used as common techniques for measuring the brain
activity [67].

Among all of them, the most popular one is the EEG. Indeed, this technique is recognized
by physicians and nurseries as a technique that can be used clinically in order to detect aber-
rant activity in brain response including epilepsy and electrophysiological neuronal disorders.
From the point of view of researching field, this technique has been used to show the electro-
physiological brain activity in certain psychological states, such as alertness or drowsiness. A
really useful alternative technique associated to EEG measurement included evoked potentials
(EP), which averages the EEG activity time-locked to the presentation of a stimulus coming up
by a predefined sensorial source (visual, somatosensory, or auditory). Event-related potentials
(ERPs) refer to averaged EEG responses that are time-locked to more complex algorithms for
processing the sensorial stimuli. This technique has been used in cognitive science, cognitive

psychology, and psychophysiological research. The popularity of EEG in research is a con-
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sequence of its portability and low cost equipment. However, this technique has some relevant
limitations. The most important of these inconveniences is its poor spatial resolution specially
when working with the scalp EEG [49].

As a result of all recent technological advances, recording the electrophysiological brain
response does not represent a challenge. Nonetheless, the main problem when EEG signal is
analyzed has focused on decoding the brain response [85]. A lot of automatic algorithms have
been proposed to solve the EGG decoding problem.

These algorithms have used the main characteristics of many different methods that cover a
wide range of complexities, from the simple population vector algorithm, optimal linear estim-
ator, various versions of Bayesian decoders until different topologies of the so-called artificial
neural networks (NN). Nevertheless, until now EEG decoding techniques have attained limited
success when the decoded information must be used in specific applications, and no one has
achieved total successful results due to diverse factors [78]. First of all, the proposed algorithms
have to deal with great amounts of data. Besides, the information that is being processed have
lots of noise, along with the fact that these methods need to consider the interaction between
neurons yielding to analyze it as an interconnected group or system. Also, the brain responses
can change dramatically from one individual to another even under the same circumstances
and finally most of the proposed algorithms did not quantify all of the information available in
the EEG recordings. Indeed, majority of these techniques applied complicated pretreatments
on the signals to obtain better decoding results.

Among others limitations presented by the brain decoding algorithms, pretreatment al-
gorithms have been classified by many authors as the most relevant one [56], [64]. They have
established that there is a huge amount of information included in the raw EEG signal that can
be lose during the pretreatment algorithm. As a consequence, there exist some algorithms that
have tried to work with the raw signal. However, they are not capable of decoding different sig-
nals simultaneously. In practice, the standard EEG system is conformed by 21 simultaneously
signals. At this moment, most of the EEG automatic interpretation algorithms are framed
in the so-called pattern recognition theory [8]. This scientific discipline deals with methods
to produce object description and classification but in the case of EEG signals, they demand

the application of truly complicated schemes that may provide the classification itself with any
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further treatment. Therefore, a new kind of open question appeared here: what is the actual
contribution of EEG signal decoding method?

Automatic (machine) recognition, description, classification, and grouping of patterns are
important problems in a variety of engineering and scientific disciplines. Even thought there are
several electrophysiological signals that have been well described and where finding patterns
is considered more and more as an easier task to perform, the case of finding patterns in
EEG signals unequivocally is still considered a difficult task due to the complexity of the signal
structure in either time or frequency domain. In recent years, NN have been successfully applied
in diverse areas of pattern classification [15], [38], [93], [71]. For decoding the EEG signal
information, different kinds of the well-developed static NN have been used [98], [127]. Most
of them have been applied in finding single specific patterns that may help on the diagnostic
of brain conditions such as epilepsy, autism, Alzheimer’s, degeneration of brain tissue, sleep
disorders, among others. Just some years ago, recurrent algorithms (NN formed with activation
function having feedback connections) have started to be used to solve some of the EEG pattern
recognition problems. Despite the clear benefits offered by the introduction of NN with feedback,
the continuous nature of electrophysiological signal is deprecated.

In order to consider the continuous nature of the EEG signal, Dynamic Neural Networks
(DNNs) could be a reliable option. This type of NN is more advanced than static ones, because
data are stored and analyzed throughout the time. In DNN, inputs can be independent, but they
are interacting with the state of the DNN and influencing each other. Every input is analyzed
as function of time as well as the previous value of all DNN inputs; in other words, the network
remembers past inputs making the current output an integrated response depending on past
inputs and current response of the system. Although all the advantages of the DNN, to the
author knowledge there are few applications of this type of NN in pattern recognition theory
and none to EEG signal pattern classification.

The lack of applications of the DNNs to pattern recognitions is the result of the weights
adjustment algorithm complexity in comparison to the SNNs. There are many software imple-
mentations of DNNs, but in order to deal with great mount of data (as in the case of handling
EEG information) the computational cost increases dramatically. An affordable way to im-

plement a real time DNN is when its structure can be embedded in hardware devices such as
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Field Programmable Gate Arrays (FPGAs). These devices have proven to carry out the ad-
equate resources needed to implement algorithms required to complete the parallel information
processing at a very high operation frequency. There are other promising hardware imple-
mentations running at transistor level. All these implementations can work even faster than
an FPGA and their resources can be seen as unlimited (as it is usually referred, number of
transistors can be larger as needed). This may be the key factor to obtain a successfully real
time classification and interpretation of EEG signals.

This thesis deals with the continuous nature of the EEG signals by classifying them using
a NN that work in a continuous manner rather than the static ones. Two main structures
of NNs are proposed: the first one is a DNN that allows to analyze the raw EEG signal in
a continuous way and the second one is a Recurrent Neural Network (RNN) that analyze a
discretized version of EEG signals with a fixed sampling period. Three topologies of DNN are
developed. The first one is a Differential Neural Network (DfNN) that have a single layer and it
is applied for classifying two EEG signals obtained from different databases considered in this
thesis. The second one implements a Time Delay Neural Network (TDNN) which is tested with
the same databases of EEG signals, a TDNN is a kind of DNN that has the advantage of taking
in account previous information from the same electrophysiological signal. It is expected that
these NN posses a natural advantage reflected in a better pattern classification performance.
The third NN is a Complex Valued Neural Network (CVNN) that allows the classification
based on the frequency response of the EEG signals. The different NN were applied to test
their accuracy, time classification, efficiency, computational cost, and other parameters. Finally,
a suitable scheme for performing an implementation scheme of the different DNN from the PC

to Very-Large-Scale Integration (VLSI) and FPGA is detailed.

1.2 Justification

The correct decodification and the consequent interpretation of different evoked potentials have
many feasible and interesting applications from rehabilitation, systems security, entertainment
schemes, among others. These algorithms required to work in the detection of real-time evoked

potentials need to make emphasis on their capabilities to classify events in the signals received
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from the brain neurons. EEG signals are usually recorded in a complex shape with small
amplitudes. This natural and affordable complexity increases as neurons are stimulated. Since
the brain is always stimulated by a large variety of factors such as noise, light and other features
that are triggered by the different senses, it is difficult to find specific events. The development
of algorithms that are capable of classifying the desired events without being disturbed by noises
have become a challenge.

Currently, all the aforementioned algorithms require of a training phase in which an indi-
vidual have to repeat a task always under the same conditions, the people selected for these trials
are few, due to the robustness that the algorithms provide to different physiological character-
istics from the population under study. Within the developing of signal processing algorithms,
it is necessary to take into account the neuronal plasticity factor that is assume to be very
particular in each individual tested during the study. So far, several algorithms have shown a
degree of precision around 90% (to successfully identify patterns in the EEG signal trace) after
long periods of training and most of them have only been developed and tested for one person.
The idea of formulating an algorithm that increases the pattern classification performance, with
low computational cost and low implementation cost would mean several advantages (it is usual
that implementation of these algorithms demand great amount of memory and high processing
speeds).

Most of the literature refer that, when working with EEG signals, it is regular to perform
a preprocessing technique to improve the signal pattern classification quality. This procedure
supplies signals containing lower noise level to the pattern classification method. Even though
the preprocessing method makes easier the classification of the signals, most of the information
contained in the EEG raw signals got lost. This makes possible to divide this type of algorithms
into two phases: a pre-processing section and then a classification procedure. An algorithm that
work with the direct raw signals would represent less computational cost. Raw EEG signals
contain relevant information that may be lost when it is preprocessed. As a consequence,
working with the raw signal may require an algorithm that have the robustness based on the
continuous signals gotten from the EEG registers. This thesis presents an alternative to solve

this problem using the concept of continuous and recurrent NN.
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1.3 Contribution

In this thesis, various DNN and RNN topologies are applied in the pattern clas-
sification of EEG raw signals. Extraction and classification of patterns from EEG
raw signals is not an easy task and it has been tried by many researching groups
that have reported remarkable accuracy in their results (above 90%, when working
with clearly different signals). The learning scheme proposed in this work is applied
in two stages: the first consisted on the training of the NNs and then, the second
tests the efficiency of the proposed algorithms when classifying events coded in
continuous raw EEG signals. As a result, three different kinds of continuous NN
are tested and their accuracy were compared. This thesis intend to consider the
brain responses in a more natural way, it can be stated that the brain response
can be represented as a continuous and time-delayed system that is why a DNN
and a TDNN are proposed to perform the pattern classification. The third type
of NIN addressed the problem of identification concerning the frequency response
obtained from the EEG information. Then a CVNN was proposed to develop the
frequency analysis yielding to a more effective method to solve the classification
of patterns in the brain responses. The algorithms presented in this thesis have
the capability to classify events in raw EEG signals. Finally, this work presents
a suitable way to implement the DNNs in hardware embedded devices by using
the technical characteristics offered by either FPGAs, VLSI circuits or operational
amplifiers (OPAMs).

1.4 Objectives

1.4.1 Main

Develop computational algorithms to classify patterns in raw EEG signals by both DNNs and
RNNS.
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1.4.2 Particulars

e Design an algorithm based on RNNs to perform patterns recognition in raw EEG signals.

e Design an algorithm based on DNNs to perform patterns recognition in raw EEG signals

based on the application of the so-called Lyapunov stability theory.

e Design an algorithm based on DNNs to perform patterns recognition based on the win-

dowed response of raw EEG signals and time-delay theory.

e Design an algorithm based on DNNs to perform patterns recognition based on the fre-

quency response of raw EEG signals.
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Chapter 2

Theoretical background

Making sense of the brain’s mind-boggling complexity is not easy. What we do know is that
it is the organ that makes us human, giving people the capacity to create art, language, moral
judgments and rational thought. It is also responsible for each individual’s personality, memor-
ies, movements, and how we sense the world. It is one of the body’s biggest organs, consisting
of around 100 billion nerve cells that not only put together thoughts and highly coordinated
physical actions but regulate our unconscious body processes, such as digestion and breathing.

For centuries mankind has sought to understand its operation. By the first century A. D.
ancient medical practitioners had provided a general physical description of the brain. Over
time, a more detailed description of brain anatomy and physiology was possible. According
to the Human Brain Project [17], understanding the human brain is one of the greatest chal-
lenges facing 21st century science. If humanity can rise to the challenge, scientists can gain
profound insights into what makes us human, develop new treatments for brain disease and
build revolutionary new computing technologies.

Bioelectrical modern understanding of brain began with the discovery of the capability of
the human brain cortex to be electrically stimulated by G. Fritsch (1838 — 1927) and Julius
Eduard Hitzig (1838 — 1907) in a joint study in 1870. The response of the cortex to electrical
stimulation was originally measured with a galvanometer. After several studies, it became
obviously that spontaneous electrical phenomena could derive from other kind of non invasive
stimulus. Hans Berger is best known as the first person to record the human brain waves

in 1924, for which he invented the FEG. Since 1929, he stipulated the possibility of
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read thoughts through the EEG traces [122]. Following this idea, in the 70s, researchers
developed a primitive control systems based on electrical activity recorded from the brain.
Work developed by different research groups, proved that the brain waves could communicate

the user intend indeed [125].

2.1 Other technologies used to acquire brain response data

Even though that scalp EEG is the popular choice for developing brain studies, due to its
portability, high time resolution and low cost [49]. There are other technologies that allow
researching groups to acquire brain information, some of them are mentioned in the following

sections:

Functional Magnetic Resonance Imaging. Functional magnetic resonance imaging (Fig-
ure 2 — 1) is a technique for measuring brain activity. Within the past two decades, fMRI has
been developed tremendously, from initial descriptions of changes in blood oxygenation [121].
One of the most popular techniques for fMRI is the one based on the blood oxygenation level
dependent (BOLD) contrast, it has become the preferred tool for visualizing neural activity
in the human brain. This particular imaging technique is sensitive to changes in intracortical
veins, its spatial resolution is determined by the volume of tissue draining to each vein, which
is considered to be the volume of venous unit [108].

Brain decoding using fMRI includes classification, identification and reconstruction of brain
states. It is generally conducted using multi-voxel pattern analysis based on neuroscience
evidence that brain functions are mediated by distributed activation patterns. Brain decoding
techniques have been successful used in diverse applications such as Brain Computer Interfaces
(BCI), patient monitoring, and neurofeedback. However, fMRI is rarely recommended for

conventional BCI applications since it is very expensive and has no portability [24].

Transcranial Doppler The use of Doppler ultrasound was first described as early as 1959
for assessing blood velocity in the extracranial vessels [79]. The thickness of the skull bones
greatly attenuates the penetration of ultrasonic waves making difficult the noninvasive use of

the technique. Ultrasound was therefore limited to surgical procedures, or to be used in children
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Figure 2-1: fMRI cutaway [121].

with open fontanels. However, [2] demonstrated that the attenuation of sound by bone within
the frequency range of 1-2 MHz was far less than conventional frequencies of 3-12 MHz. Indeed,
insonation is possible through thinner regions of the skull, termed acoustic windows, making
it feasible to measure static and dynamic blood velocities within the major cerebral arteries.
For the first time, a non-invasive measure of beat-to-beat changes in blood velocity in the
vessels of the brain with superior temporal resolution than indicator-dilution techniques was
available. However, it is imperative to note that TCD cannot measure CBF per se. Rather,
TCD measures the velocity of red blood cells within the insonated vessel. Moreover, only the
larger basal arteries provide an adequate signal for measurement of cerebral blood velocity with
TCD. Because these arteries tend to deliver oxygenated blood to larger regional areas of the
brain, TCD gives an index of global, rather than local, stimulus-response relationship. The
principles of TCD are the same as extracranial Doppler ultrasound: the Doppler probe emits
sound waves that are reflected off moving red blood cells, which are subsequently detected by
the transducer. The resultant Doppler shift is proportional to the velocity of the blood [1], [22].

With all the previously mentioned characteristics of Doppler technique, it became factible
to think in the development of BCI employing Doppler technologies for the brain scanning. In
[83] a investigation of a transcranial Doppler (TCD) sonography was used as the foundation for

a new type of non-invasive BCI. TCD can be portable as the one shown in Figure (2 — 2), light-
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Figure 2-2: Portable TCD system [48].

weight, and robust to environmental conditions such as electrical artifacts. It is also relatively
inexpensive, particularly in comparison to alternatives such as fMRI. They demonstrated that
two types of mental activity can be classified with greater than 80% accuracy on the basis of
changes in cerebral blood flow velocity. The accuracy achieved was over 80%, in terms of clas-
sification task of word selection and mental rotation. In terms of other studies word selection

and mental rotation are well-know and not too difficult to classify.

Near-Infrared Spectroscopy. Near-Infrared Spectroscopy (NIRS). Figure (2 — 3) show the
NIRS device used in this spectroscopic method that employs the near-infrared region of the
electromagnetic spectrum (from about 800 nm to 2500 nm). NIRS is a noninvasive optical
technique used to measure concentration changes in oxyhemoglobin and deoxyhemoglobin in
cerebral vessels based on the characteristic absorption spectra of hemoglobin in the near-infrared
range [111], [52].

It has been suggested to be a promising signal acquisition tool for brain research because
of its handiness, portability, good spatial resolution, metabolic specificity, and suitability for
continuous measurement of brain activity changes with high time resolution [19], [137]. A
disadvantage, however, is that NIRS is slow to operate because of the intrinsic latency of the
brain hemodynamics [111], in contrast to other techniques. NIRS is based on molecular overtone
and combination vibrations. Such transitions are forbidden by the selection rules of quantum

mechanics. As a result, the molar absorptivity in the near infrared (IR) region is typically quite
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Figure 2-3: Near-Infrared Spectroscopy Device [111].

small. One advantage is that NIRS can typically penetrate much farther into a sample than
mid infrared radiation. NIRS is, therefore, not a particularly sensitive technique, but it can be

very useful in probing bulk material with little or no sample preparation [84].

Positron Emission Tomography. The potential of positron imaging and the value of elim-
inating the collimator (is a device that narrows a beam of particles or waves) was recognized
by the early developers of nuclear medicine instrumentation, long before the advent of recon-
struction algorithms which could allow the generation of transverse sections from data covering
a large number of angles. Nuclear medicine images provide a description of metabolic functions
in the body, but they contain poor information about patient anatomy and have limited spatial
accuracy. Nuclear medicine images tests differ from most other imaging modalities. In that
diagnostic tests primarily show the physiological function of the system being investigated as
opposed to traditional anatomical imaging such as computer tomography (CT) or magnetic
resonance imaging (MRI). Nuclear medicine imaging studies are generally more organ or tissue
specific (e.g.: lungs scan, heart scan, bone scan, brain scan, etc. As those shown in Figure
(2 —4) b) than those in conventional radiology imaging, which focus on a particular section of
the body (e.g.: chest X-ray, abdomen / pelvis CT scan, head CT scan, etc.).

Positron Emission Tomography (PET) imaging is not a new concept; it was first proposed
in the early 1950s and the first imaging devices were developed by Brownell and by Anger in the
1950s [110]. To generate the images, PET uses an emisor an a detector, this detector records

gamma rays. Clinical use of PET is now well-established in clinical oncology and it is therefore
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Figure 2-4: PET test; a) Pacient during the test, b) Images obtained from the test (a) [110].

becoming widely available in major hospitals. In addition to its use in research, brain PET
also provides diagnostically relevant information mainly in neurodegenerative disorders, focal

epilepsy and brain tumours [43].

Magnetoencephalography. Magnetoencephalography MEG technology is relativity young
compared with EEG. The responses and phenomena observed in MEG can simultaneously be
observed in EEG, so results from years of research in EEG can also be utilized in comparing
and interpreting MEG results.

From the functional point of view the main difference between MEG and EEG is: first,
MEG if recorded with planar gradiometers shows the response above the source area, while in

EEG, the strongest peak is shown further away from the brain source. This is why the results
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from MEG are more accurate. Secondly, the MEG is sensitive to tangential currents of large
neuronal arrays activated in concert close to surface of the head, while EEG both tangential
and radial direction of deep brain areas can be explored [103].

The extracranial magnetic field measured by MEG Figure (2 — 5) reflects postsynaptic in-
tracellular current flow within the apical dendrites of pyramidal cells oriented parallel to the
skull surface. The biomagnetometer is the device used to measure the neuromagnetic signal.
It is usually configured as an axial gradiometer, typically consisting of two interconnected in-
duction coils wound in opposition and separated by a few centimeters. The output device for
the biomagnetometer is a superconducting quantum interference device (SQUID). The SQUID
acts as a high gain, low noise, current to voltage converter that provides the output for the
sensor system. The voltage output of the SQUID can be made proportional to the magnetic
field sensed [115].

In order to localize the magnetic signals that are changing in space and time, multiple
sensors are needed. Sensor coils in a spherical cap are used to surround the head and thereby

enable the sampling of large volumes.

Figure 2-5: Basic Diagram of a MEG System [115].
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2.2 Electroencephalogram

The cellular basis of EEG recorded activity has been the topic of intensive studies of extracellular
current flow and voltage dependent intrinsic oscillation. The clinical electroencephalographer
correlates Central Nervous System (CNS) functions as well as dysfunctions and diseases with
certain patterns of the EEG traces on empirical basis [87].

In order to obtain the EEG, the electrodes position is standardized. This standardized
arrangement of electrodes over the scalp is known as the International 10/20 system [47] and

ensures ample coverage of all parts of the head as shown in Figure (2 — 6).
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Figure 2-6: EEG electrodes 10-20 system: A) Head Sagittal View. B) Head Axial view. Letters
refer to brain positions; 0 = occipital, P = parietal, C = central, F' = frontal, and T = temporal
[112].

Measuring the EEG requires the setting up of a closed loop passing current from its neuronal
source through the various intervening layers of tissue to the electronic amplifier and back again
through the head tissue to the neuronal source. Within this circuit, the coupling between skin
surface and amplifier input plays a critical role; in contrast to the brain tissue, the skin itself
usually exhibits a high resistance and therefore electrodes must be used in combination with a

wet electrolyte in order to bridge this junction.
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2.2.1 Technological basis of EEG

Technical block diagram of an EEG recorder is shown in Figure (2 — 7). As one can see in
the Figure (2 — 7) rather than spending separate analog to digital converters (ADC) for each
channel, some manufacturers provide just one ADC scanning all channels periodically by means
of an analog multiplexer located between the ADC and the low pass filters. During recording,
the actual EEG is displayed on the screen. For later evaluation, arbitrary multiple sets of EEG
signals can be fetched from the archive and displayed in separate windows. For the adequate

design of a EEG recorder device one must take into account:

Electrodes characteristics

Analog preamplifier; safety considerations

Analog to digital conversion velocity and sensibility

Digital signal processing algorithms

Signal display on screen and on paper

Long term data storage and retrieval

EEG Instrumentation Amplifier

There are several layers of tissue over the brain, these tissues make it difficult to read the
neural response, so the instrumental amplifier plays an important role in the design of any
feasible EEG recorder device. In order to make the EEG signal legible to the human eye,
standard low noise operational amplifiers with high input impedance (> 10 MW) are used to
amplify the voltage differences between all pairs of electrodes.

The amplifier is split into two modules, with the first stage providing a modest gain of
about 10. Before entering the second stage the signals pass a coupling capacitor that removes
potential residual high voltage DC potentials that might occur if electrode potentials are not
equal over the electrodes involved (which in practice usually cannot be avoided). The overall
gain in most EEG systems is on the order of 10,000 to 20,000, yielding an EEG amplitude
of about 1 volt at the amplifier’s output. Due to the DC-blocking capacitor between the two

modules, the amplifier has a high pass characteristic with a low frequency cutoff that is defined
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by the capacitor. Traditionally, the time constant of this circuit is specified, rather than the
lower cut-off frequency. Usual values are 0.03,0.1,0.3 (standard), 1, and 3 s, corresponding to
5,1.6,0.5,0.16, and 0.05 Hz. Short-time constants facilitate the interpretation of EEG signals
when there are large superimposed low frequency components, due either to artifacts or patho-
logical activity. However, if pathological activity at low frequencies needs to be evaluated with
high sensitivity, for instance, for brain death diagnosis, larger time constants are required. EEG
recorders therefore allow switching between different settings. On the amplifier side, this is ac-
complished by hardware switches that select between various capacitor values. An alternative
(in many available systems, additional) approach is to change the effective time constants by
modifying the coefficients of the digital filters during signal post-processing

Besides providing adequate signal transmission, the amplifiers must be designed to match
the safety demands specified by the IEC 60601 [18] standard as formulated by the International
Electrotechnical Commission, Geneva, Switzerland (1994). The main goal is to rule out the
possibility that the current flowing from the amplifier input through the tissue exceeds 100 mV,
even in the case of a failure of the electronics. Such protection can be achieved using appropriate
resistors between the electrode cable and amplifier’s input pins. In addition, modern EEG
amplifiers usually provide full electrical insulation (using optical transmitters) of the front-end
amplifier from subsequent electronics in order to prevent high voltages entering into the front
end. Such decoupling is known as floating input, because there is no stable relation between the
absolute signal amplitude within the preamplifier and the ground potential of the subsequent
stages.

For special applications DC recording units are available that transmit the input difference
signals without any frequency limitations, that is, without any DC-suppressing coupling capa-
citor. In order to avoid excessively large amplitudes that would exceed the amplifier’s dynamic
range, it is necessary to provide an individual DC voltage for each channel that is subtracted
from the difference signal, thus compensating for the residual DC component resulting from
the fluctuating electrode potentials. From time to time, these recorders need to be reseted in-
teractively in order to adapt the voltage of this DC compensation signal. Alternatively, a slow
voltage follower may track the fluctuating DC, adapting the compensation signal automatically.

However, in a strict sense, this is no longer a pure DC recorder.
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Modern EEG systems are designed as referential recorders, meaning that all electrodes
are measured with respect to one common reference electrode placed somewhere on the head.
Accordingly, this electrode is internally connected to the inverting input pins of all the different
amplifier channels. One important characteristic of these difference amplifiers is their common
mode rejection (CMR) characteristics. A large CMR is a prerequisite for efficient suppression
of noise components present at both input pins. Modern EEG amplifiers achieve a CMR. of 80
dB or even better, thereby reducing common noise components by at least 1 : 10, 000.

The intrinsic noise level of modern EEG amplifiers is about 0.5 mVeff at a bandwidth of
100 Hz before amplification Adding the noise originated at the electrodes, a total noise floor
up to 0.7 mVef f, corresponding to an approximate peak-to-peak level of 2 to 3 mV (Gaussian

amplitude distribution), is realistic.
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Figure 2-7: Technical block diagram of an EEG recorder [45].
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As mentioned before the EP conform a derivative of EEG technique, an EP can be obtained
from the EEG record. In Figure (2 —8) an EP recorder system is technically described. It
is important to remark its similarity to a conventional EEG amplifier. As the one seen in
the EEG recorder device, here also, standard low noise operational amplifiers with high input
impedance (in most cases> 10 MW) are used to amplify the voltage differences between pairs
of electrodes (i.e., differential amplifiers are used). The amplifier is split into two modules, with
the first stage providing a modest gain of about 10. Before entering the second stage, the signals
pass a coupling capacitor that removes potential residual high voltage DC potentials that might
occur if electrode potentials are not perfectly equal over the electrodes involved (e.g., due to
unclean surfaces). The overall gain in most EP systems is at least 10,000 yielding a signal
amplitude of a few volts at the amplifier’s output. Due to the DC blocking capacitor between
its two modules, the amplifier has a high pass characteristic with a low frequency cut-off that
is defined by the capacitor. If several different capacitors are provided, a switch allows several

cut-off frequencies to be selected.
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Figure 2-8: Technical block diagram of an EEG recorder [46].
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Traditionally as happened with EEG recorders, the time constant of this circuit is specified in
addition to the lower cut-off frequency. Typical values are 1, 0.3, 0.1, and 0.03 s, corresponding
to 0.16, 0.5, 1.6, and 5 Hz, respectively. Modern digitized EP recorders provide a better
flexibility than older ones with respect to these settings. This flexibility is accomplished by
providing just one high capacity coupling capacitor in the amplifier and defining the final cut-
off frequency using a digital filter (see below). The same approach is used to filter out higher
frequencies, according to the demands of the various EP modalities: The amplifier transmits
the signal with an upper cut-off frequency meeting the demands of all EP modalities. Then the
signal is converted from the analog to the digital domain, with the final bandwidth being defined
afterwards using digital filters. Because of the large amplitude range covered by the various
EP modalities, as well as the superimposed EEG, it is desirable to have different amplifier gain

factors (also known as sensitivity, specified in terms of microvolts per unit).

2.2.2 Electrodes

For recording of brain electrical activities, various types of electrodes are used [107]. The
electrode plays an important role in the acquisition of the brain information, The are many
types of electrodes, that vary in metal composition, shape and location. Some of them are

mentioned next:

e Reusable disks. These electrodes can be placed close to the scalp, even in a region with
hair because they are small. The electrodes are held by a washable elastic head band.

Disks are made of tin, silver, and gold are available.

e Adhesive Gel Electrodes. These are the same disposable silver/silver chloride elec-
trodes used to record ECGs and EMGs, and they can be used with the same snap leads

used for recording those signals.

e Subdermal Needles. These are sterilized, single-use needles that are placed under
the skin. Needles are available with permanently attached wire leads, where the whole

assembly is discarded, or sockets that are attached to lead wires with matching plugs.

e EEG Caps with disks. Different styles of caps are available with different numbers and
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types of electrodes. Some caps are available for use with replaceable disks and leads. Gel

is injected under each disk through a hole in the back of the disk.

It is important to remark that choosing of electrode kind depends on the location of the
electrodes and the behavioral situation in which the recording takes place. A basic property
of any type of electrode is that there exists a metal/liquid junction in the electrical connection

between tissue and the EEG recording apparatus.

2.2.3 Cerebral rhythms observed in the scalp EEG

The EEG is typically described in terms of rhythmic activity and transients. The rhythms of
the EEG are defined as regular recurring waveforms of similar shape and duration as seen in
Figure (2 —9). Most of the cerebral signal observed in the scalp EEG falls in the range of
1 —20Hz (activity below or above this range is likely to be artifactual, under standard clinical
recording techniques).

There are a plethora of signals, also referred to as components. These signals fall
into two major classes: spikes and field potentials [131]. Spikes reflect the action
potentials of individual neurons and thus acquired primarily through microelec-
trodes implanted by invasive techniques. And field potentials, that are measures
of combined synaptic, neuronal, and axonal activity of groups of neurons and can

be measured by EEG or implanted electrodes.

Delta. Oscillations within the frequency range of 1 to 4 Hz. There are two types of delta
activity. One is generated in the cortex, as it survives after thalamectomy (it have not yet been
investigated). The other signal is originated in the thalamus, even after decortication, and its

cellular mechanisms are quite well understood.

Tetha. This rhythm is usually considered within the frequency range of 4 to 7 Hz. The
cellular bases of these waves have been intensively investigated in rodents, but is less evident in

other mammals. The normal theta activity,is generally considered as poor or absent in primates.

Alpha. The alpha rhythm occurs in the frequency range of 8 to 13 Hz. Although this is

probably one of the most important graphoelements and its description dates back to Berger
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(1929) , there is no solid knowledge on its cellular mechanism. Alpha waves are usually described
as occurring during awakeness [86]. These signals can be detected in all age groups but are

most common in adults.

Beta. Beta rhythms frequency is normally greater than 13H z. These have been shown to be
localized to the occipital areas and are engaged in the visual discrimination task [117]. They

are observed in all age groups.

Gamma. These signals are usually having components within 20 —50 Hz. Oscillations under
30 Hz are related to the visual system. Also these oscillations display during cross-modal

sensory processing (perception that combines two different senses, such as sound and sight).

Mu. Shows rest state of motor neurons. Oscillations components are within 8 — 13 H z.

In the cortex fast rhythms (Beta and Gamma), both in the EEG and at the level of single
neuronal activity have been identified. These are usually called beta of gamma rhythms, de-
pending on the frequency rage. It has been found experimentally that fast frequency rhythms
(33-45 Hz) occur in the frontaparietal areas of the brain. A large number of studies have demon-
strated the existence of high-frequency rhythms activities in the human EEG under different

circumstances, particularly in relation with motor cognitive functions [28].

2.2.4 Evoked potentials

EP are the electrical signals generated by the nervous system in response to sensory stimuli. EP
can be extracted from the background EEG if subjects are exposed to repeated brief sensory
stimuli. For standard neurological applications, auditory, somatosensory, and visual stimuli are
the most important. The corresponding specific EP are called AEP, SEP, and VEP, respectively.
In contrast to the more or less random background EEG, EP are to a large extent reproducible
when peripheral stimuli are repeatedly presented. This is the reason why they can be measured,

despite the fact that their amplitude is much lower than the background EEG [46].
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Brain Waves Graph

Gamma Waves

31-120 cps

Hyper brain activity, which is
great for learning

Beta Waves

13-30 cps

Here we are busily engaged
in activities and conversation

Alpha Waves

8-12 cps

Very relaxed. Deepening into
meditation

Thetha Waves

4-7 cps

Drowsy and drifting down into
sleep and dreams

Delta Waves

0.5-3 cps

Deeply asleep and not
dreaming

Figure 2-9: Some of the most important brain waves as seen during an EEG test [117].

Visual Evoked Potentials (VEP).

The VEP is an evoked potential produced by sensory stimulation within the visual field [129]

as shown in Figure (2 — 10). In 1934, [3] noticed potential changes of the occipital EEG were

observed under stimulation of light. The VEP can be extracted, using signal averaging, from

the electroencephalographic activity recorded at the scalp [124]. In order to record VEP, there

are two major methods of stimulation.

e Luminance; uniform flash light.
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e Pattern; black and white checker board composed by the same number of white and black

square checks.

Gerebra.' Cortex)

Brain
Response

Stimuius

t

Figure 2-10: Visual stimulation produce a response in the cerebral cortex, this response is call
VEP [124].

2.2.5 Event related potentials

Event-related potentials (ERPs) are time-locked responses by the brain that occur at a fixed
time after a particular external or internal event. ERPs are measured from EEG signals. From

studies, there are two types of ERPs.

e Exogenous ERP components are obligatory responses as consequences of physical stimuli
and occur due to processing of the external event but independent of the role of the stimuli

in the information processing.

e Endogenous ERP components occur when an internal event is processed. It is dependent
on the role of the stimulus in the task and the relationship between the stimulus and the

context in which it occurred.
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P300. The P300 (P3) wave is an event related potential (ERP) elicited by infrequent, task-
relevant stimuli [23]. It is considered to be an endogenous potential as its occurrence links
not to the physical attributes of a stimulus but to a personal reaction to the stimulus [113].
This wave was firstly reported in the 60’s. The P300 component is measured by assessing its
amplitude and latency.

Amplitude (uV) is defined as the difference between the mean pre-stimulus baseline voltage
and the largest positive going peak of the ERP waveform within a time window.

Latency (ms) is defined as the time from stimulus onset to the point of maximum positive
amplitude within a time window. The P300 scalp distribution is defined as the amplitude
change over the midline electrodes (Fz, Cz, Pz), which typically increases in magnitude from
the frontal to parietal electrode sites. The origin of this wave have not yet been well defined, it
has been suggested that it is originated from task conditions involving working memory, and that
conscious awareness may be related to stimulus sequence effects. In addition, P300 amplitude
is sensitive to the amount of attentional resources engaged during dual-task performance. As
primary task difficulty is increased, P300 amplitude decreases regardless of the modality or
the motor requirements of the primary task that must be solved. Passive stimulus processing
generally produces smaller P300 amplitudes than active tasks, because stimulus and non-task

events engaged attentional resources to reduce amplitude [96].

2.2.6 Analysis and quantification of the EEG

Since the EEG invention, mathematical analysis techniques have played an important part
on its interpretation for clinical diagnosis of neural diseases, measuring neural function and
for monitoring neurological injury. Nowadays, EEG signals acquisition systems have improved
and so the quality of the registered information, also EEG action fields have diversified and
most of them require the management of great amounts of data. In order to do a quantitative
analysis, it is first necessary to convert the continuous analog EEG signal into a digital form,
which is accomplished by an analog to digital converter. Once the signal is represented as
individual numbers in time series, it can be manipulated mathematically. The EEG signal can
be described as a complicated example of electrophysiological response. This signal originates

in the intricate neural system. Traditionally, the spontaneous EEG is characterized as a linear
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stochastic process with great similarities to noise [118],[119].
e EEG Preprocessing

The main problem when dealing with the EEG is the signal size, the record of the brain
activity signals are small between 10 to 1004V. This small signal could easily get contaminated
with various sources of noise and artifacts. Artifacts are undesired electrical potentials which
come from sources other than the brain. Some of the artifacts that could affect this signal are;
patient movement (such as blinking), muscle artifacts and the heart beat [54]. Noises could
come from different sources such as the power line (50/60Hz), mobile phones, TV and radio
stations, cardiac pacemakers and medical equipment among others.

Most of the noises and artifacts can be easily removed by filtering, but others are difficult to
reject, in order to get rid of artifacts there are many things that can be done like improve the
electrodes and the placement of them. A more sophisticated way to remove noise is to apply

signal processing methods, such as Independent Component Analysis (ICA) [53].

Linear Methods

e Time Domain Methods

These methods, model time series of EEG signals. In EEG analysis two methods have been
classically employed.

Parametric modeling methods presumes that the EEG signals are created with equations,
with unknown coefficients to be approximated. It can be divided into Autoregressive model
and Sinusoidal model. The first one fits EEG with mathematical model. The second one
uses sinusoidal basis functions to represent the signal, the task of such modelling is to find
the optimal coefficient of each sinusoidal function. A classical sinusoidal model is the Fourier
transform (FT)

N-1

. (X, (k) sin (nQk) + 7 X; (k) cos (nok))
k=1

x(n) = %
(2.1)

2
QO:N
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where X (k) is the Fourier coefficient that indicate the strength of the signal frequency [5].
Nonparametric methods study the waveform directly. Factors such amplitude and energy
change are important for the analysis of the EEG signal. The amplitude of the signal can vary
between subjects, also the position of the electrodes can affect this measure. It is common
in this method to apply short time windows to the signal, this window facilitate the energy
measurement. The Teager Energy Operator (TEO) is a popular way to measure the energy

changes. TEQO is defined as

Yv(n)=2*n)—z(n—1)z(n+1) (2.2)
TEO depends on the frequency and high frequencies are emphasized [55].
e Frequency Analysis

The basic idea of frequency analysis is to study EEG in several classic non-overlapping
frequency bands. The clinical technician interprets the EEG by the features or magnitudes of
waves in each frequency band [20]. Spectral analysis has been used for decades as the most
important diagnostic tool. Even though the physicians do not calculate the spectrum, they
usually focus on some frequency components.

In this case, the most popular method is the Discrete Fourier Transform (DFT) which is

defined as [25]

N —j2mnk
z(n)=+Y X(n)e v (2.3)

The power spectrum is obtained with

1X (R)II* = P (k) (2.4)

DFT assumes that the signal is stationary and slowly varying.
Parametric model-based estimation [82] represent the EEG series with an autoregressive

model defined as

w(n)=xz(n)—azn—1)—ax(n—-2)—..—apz(n—p) (2.5)
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taking the Z-transform yields

W (Z)=A(Z) X (Z) (2.6)

X(Z2)=A"YZ)W (2) (2.7)

In the practice to approximate estimation of the spectrum X (w) of z(n) can be obtained

by setting z = e/¥
. W(w)T

X (w) = ‘1 S aie—jWT‘Q (2.8)

where T is the sampling frequency.

Spectral distance (SD) and cepstral distance (CD) have been deeply studied to detect quant-
itative changes in EEG signals. A good example SD is the autoregressive based spectral distance
(ARSD) measure [63], ARSD is defined with the help of the spectrum obtained through Equa-
tion (2.8) by measuring the difference between two autoregressive spectras, X; (w) and X, (w)

= b
ARSD (X, X)) = {LZ | X; () — X, (le)yp} (2.9)
1=0

where Qp = wl/L for [ =0,1,...L — 1.

CD measures the differences between two EEG signals, where one is a baseline. It is com-
monly used to determine a brain injury level.

Domain frequencies, the different peaks that compose a EEG signal are use for its analysis.

In order to accomplish this analysis, the equation (2.8) can be written as
W(w)T

p
[T (e - py)
k=1

? (2.10)

where {P;} are the complex poles of X (w). Therefore the frequencies satisfying e /«“+T =

Py, as a result the dominant frequencies can be obtain by
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F li
Faominant = % CWE (211)

CD method has proven to be useful to determine hypoxic-ischemic brain injury [34].
e Time Frequency Analysis

Time frequency methods have been successfully used to analyze the source of the epileptic
episodes and electrocorticograms [130]. The most common method uses a short time Fourier

transform (STFT) to increase time resolution

o0
STFT (w,t) = / z(7)g(r —t)e Tdr (2.12)
—0o0
where g¢(t) is the window function. STFT cannot achieve high resolution. A high time and

frequency resolution can be obtained through Wigner-Ville distribution (WVD)

Wz (w,t) = /:L‘ (t + g) x* (t — %) e ITdr (2.13)

Wz (w,t) is the FT of the autocorrelation function of signal x(t) with respect to the delay
variable [139]. Both methods STFT and WVD are useful when working with high frequency,
but when a slow waveform needs to be analyze, there are other techniques that improve results.
Such an analysis needs an adaptive time-frequency analysis method like wavelet transform

(WT), the WT is defined as

W (a,b) = |a] "3 7m(t)go(t_b) dt (2.14)

a
—o0

where a and b are the scaling and transiting parameters, respectively, and ¢ is the mother-

wavelet function.

Nonlinear Methods

e Information Theory-Based Theory

48



A series of statistical measures has been developed to evaluate the EEG signals in different
domains, including time, frequency, or time-frequency. One measure calculates the informa-
tion (entropy) of EEG signals in these three domains. Entropy is a method to quantify the
order/disorder of a time series. It is calculated from the distribution {p,} of one of the signal
parameters, such as amplitude, power, or time-frequency representation. By studying the mu-
tual information between different regions on the cortex, we can understand the interdependence
of different regions of the brain. Recently, various entropy measures, such as time-dependent
entropy [109], wavelet entropy [106], time-frequency complexity [120], and mutual information,
have been applied to EEG analysis.

Time-dependent entropy measure, calculate the entropy of the entropy of the EEG time
series. The amplitudes of the EEG segment are partitioned into M microstates; the raw sampled
signal is denoted as {z(k) : k = 1,..., N}. The amplitude range W is therefore divided into M
disjointed intervals {I; : i = 1, ..., M} such that [120]

w=|JI (2.15)

The probability distribution can be obtained by the ratio of the frequency of the samples

N; falling into each bin (/;) and the total sample number N

pi= (2.16)

Then, the entropy can be defined with the amplitude distribution across the M bins:

M
SE == piln(p;) (2.17)
=1

Wawvelet entropy and time-frequency complexity. The wavelet entropy evaluates the complex-

ity of the energy distribution in a different frequency band (subbands) [138]. Wavelet entropy
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is defined using the Shannon measure of entropy of the energy distribution:

SWE = - pilog (p;)

(2.18)

2
B > ekl
TN 2
S lleind
ik

Dbj

where p; actually is the ratio of the energy in j* scale and the total energy. [66] applied wavelet
entropy to the specific frequency bands (Delta, Theta, Alpha, and Beta) of the EEG following
hypoxic-ischemic injury, which is also called subband wavelet entropy (SWE).

Mutual information (MI) is a useful measure for studying the dependence or relation between
different regions of the brain. Mathematically, the MI between two cortical activity variables X
and Y is defined with their joint probability density function, p(x,y), and marginal probability
density functions, p(x) and p(y). The MI1(X;Y) is the relative entropy between p(x,y) and the
product distribution p(x)p(y) [21].

MI(X;Y) =Y p(z,y) log 2 EY)_ (2.19)

S5 p(z)p(y)

e High-Order Statistics

The high order statistics (HOS) analysis is a nonlinear method for describing the phase
coupling [81]. HOS is suitable for multivariable analysis of measuring the extent of statistical

dependence in the time series, mathematically, B (w1,w2) of a time series is defined as

B (w1,wz) = E{X (w1) X (w2) X* (w1 +w2)}, (2:20)

where X (w;) is the complex Fourier coefficient spectrum of the EEG and X* is the com-
plex conjugate. Two frequencies, wy and ws, are said to be the phase-coupled when a third
component exist at a frequency of wi + ws. To make the differences of EEG comparable, the

normalized bispectrum is extracted as bicoherence bic (w1, w3)

|B (w1, ws)|

e ) = e P en) P T on)
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where P (w;) = || X (w;)||* is the power spectrum at frequency w; and bic (wy,ws) varies
between 0 to 1 [88]. When P (w; + ws) is not zero bic (w1,w2) shows the degree of coupling

between the frequencies wi and wo.
e Chaotic Measures

The most commonly used descriptions are based on chaotic measures, such as; correla-
tion dimension, information dimension, capacity dimension, and multifractal spectrum. The
motivation for nonlinear dynamics analysis of the EEG is the high complexity and limited pre-
dictability of the neurological signals, which may make them essentially stochastic [68]. Hence,
various quantitative measures that help describe nonlinear and chaotic dynamics may be useful
in characterizing EEG after trauma or neurological disorders.

Approximate entropy estimation (ApEn) its being successfully used to calculate complexity
an irregularities from EEG short data sets, which is useful for real clinical and experimental
studies. It is defined with the correlation integer at each point in the embedded space C}" (r)

[94]. The average logarithm of the correlation integer is obtained by

o™ (1) = N:RHngcgn (r) . (2.21)

Then, the ApEn is
ApEn (m,r, N) (u) = O™ (1) — &7+ (1) ym = 1, (2:22)

2.3 Cerebral plasticity

Modern neuroanatomical, electrophysiological and imaging techniques allow scientists to reveal
the insights of brain function. As a consequence many algorithms capable of decipher the
brain behavior have been proposed. In the development of these algorithms brain plasticity
represent an important factor, as a parameter that drastically changes brain response and
learning capability according to the age, sex, neurological injury or disease among others [61],

[89].
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Cortical plasticity is the capability of the cerebral cortex to alter its functional organization
as a result of experience. One must recall that plasticity refers to the phenomenon of change, not
to the specific underlying mechanisms. Significant progress have been made in understanding
what factors drive cortical plasticity in normal and injured brains.

Plasticity is invoked for encoding information during perceptual learning, by internally rep-
resenting the regularities of the environment [32].

Physiological and anatomical changes are driven by natural sensory stimulation, skill ac-
quisition, peripheral injury, central injury, exogenous growth promoting agents, exogenous neur-
omodulating drugs and exogenous electrical / magnetic stimulation. These factors that seem
to drive cortical plasticity may be especially significant with regard to understanding ways to
promote recovery of normal brain response.

Neurorchabilitation face several variables that can contribute to the capacity for functional
improvement when treating neurological injuries or diseases [60]. While developing pattern
recognition algorithms for EEG signals, the capacity for functional improvement represents the
demanded training time for any algorithm trying to have a real impact on medical issues. These
include patient health status, age, lifestyle, and time after injury in addition to the nature
and locus/extent of the brain injury. All of these factors together create a brain that is very
different from the normal one even within the same injury domain [62]. This leads to further
heterogeneity in the way that the residual brain areas adapt to the injury and potentially
respond to therapy through neural recovery and compensation.

There are different neural strategies to recover brain normal response that can be identi-
fied. These strategies involve neural recovery and/or compensation and take advantage of the

inherent functional redundancy within the brain. The strategies are mentioned next:

Restoration Residual brain areas undergo profound neurobiological changes following brain
injury or disease resulting of dysfunction within structurally intact brain areas both proximal

and distal to the damaged area [90].

Recruitment Recruitment refers to enlisting motor areas that have the capacity to contrib-
ute to the lost motor function but may not normally have been making significant contributions

to that behavior prior to the injury. These areas are asked to play a larger role in the perform-
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ance of the impaired motor behavior compromised because of stroke but are not necessarily
acquiring new function (retraining). Within the motor cortex, it can be demonstrated through

the expansion of movement representations within areas outside of the original motor map [31].

Retraining In some cases,several areas of motor cortex may be asked to adapt existing func-
tion or take on additional functions to support functional improvement. Although this strategy
is integrally related to restoration and recruitment in that neural circuits do not simply use their
existing functions to contribute to behavior but begin to perform novel or additional functions
[7].

There are several researching groups working in improving pattern classifications methods
for acquired EEG signals, but the complexity of the brain function, interaction and the fact
that it can drastically change its response from one individual to other under similar conditions
demands of a robust algorithm and the implementation of it in embedded devices capable of

manage big sets of data in real time [122].

2.4 Pattern recognition in electrophysiological signals

Pattern Recognition (PR) plays an important role in medicine, in both treatment and diagnosis
of different illnesses. But, before explaining its application over classification of electrophysiolo-
gical signals, there are some important concepts that need to be explained.

PR is the scientific discipline dealing with methods for object description and classification
[75]. A fundamental notion in pattern recognition is the similarity. Similarity, consist in
comparing objects that share common valued attributes with a target. The PR task of assigning
an object to a class is said to be a classification task.

Electrophysiology is the study of the electrical properties in biological cells and tissues. It
involves measurements of voltage change or electric current on a wide variety of scales from single
ion channel proteins to whole organs like the heart. In neuroscience, it includes measurements
of the electrical activity of neurons, and particularly action potential activity [126].

There is a large number of PR implementations in electrophysiology including cardiac peace-
makers, life support devices, health monitoring on mobile devices, among others. Despite of the

great advances, most of these systems work with well known electrophysiological signals such
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as the heart beat. Electrophysiological signals such as the EEG, are still hard to process and
most of the existing processing methods do not achieve high accuracy[116].

Automatic (machine) recognition, description, classification and grouping of patterns are
important problems in a variety of engineering and scientific disciplines. In EEG signals, it
is difficult to find a pattern due to the complexity of the signals. Mostly of the pattern clas-
sification systems use the support of medical specialists which classify a certain number of
signals for training the PR systems. Once the system has a well-defined pattern, its recogni-
tion/classification may consist of one of the following tasks: 1) supervised classification in which
the input pattern is identified as a member of a predefined class, 2) unsupervised classification
in which the pattern is assigned to a hitherto unknown class [9].

The recognition problem here is being posed as a classification or categorization task, where
the classes are either defined by the system designer (in supervised classification) or learned
based on the similarity of patterns (in unsupervised classification). The design of a pattern

recognition system essentially involves the following three aspects:

1. Data acquisition and preprocessing.
2. Data representation.

3. Decision making.

The problem domain dictates the choice of sensor, preprocessing technique, representation
scheme, and the decision making model. It is generally accepted that a well-defined and suf-
ficiently constrained recognition problem (small intraclass variations and large interclass vari-
ations) yields to a compact pattern representation and a simple decision making strategy [70].
Learning from a set of examples (training set) is an important and desired attribute of most
pattern recognition systems.

Some examples of different classification techniques applied to EEG signals are shown in

the Table(2.1).
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Table 2.1: Comparisson between different classification techniques applied to the EEG Freiburg
University database.

Validati
Researches Method Dataset CfA atdation PA
method
Time & frequency
d in feat -
[114] Oty ACAtires A 99.6% NC Yes
recurrent neural
network
Entropy measures-
dapti -
[58] adaptive neuto RS 92.22%  NC Yes
fuzzy inference
system
Chaotic measures-
[57] surrogate data 7S ~90% NC Yes

analysis
Fast Fourier
k-fold
[95] transform- 7,5 98.72% O(S.Soss Vo
decision tree 1

Discrete wavelet

transform- 7.8 95% Cross validation Yos

[116] (sic)

mixture of expert
model

Discrete wavelet

t f -
[91] ransionm Z.S 96.65%  NC Yes
approximate entropy

(ApEn)

*Classification accuracy (CfA)

*Not Considered (NC)

*Preprocessing Apply (PA)

The dataset for all theses papers where taken from [92].

2.5 Recurrent and continuous NN in pattern recognition

The main characteristics of NNs are their ability to learn complex nonlinear input-output
relationships, application of sequential training procedures, and self-adaptation to the input
data. The increasing popularity of NN models in solving pattern recognition problems has
been primarily due to NN seemingly low dependence on domain-specific knowledge and due
to the availability of efficient learning algorithms that can be used by practitioners [9]. NNs
provide a new set of nonlinear algorithms for feature extraction and classification. In addition,

there are several feature extraction and classification algorithms which can also be mapped on
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NN architectures for efficient (hardware) implementation.

When analyzing a signal by NNs, the problem can be tackled in two different ways: the first
based on the application of the classical static NN (SNN) that do not take into account the
continuous nature of the signal or second, based on the application of DNN where the data are
stored and elaborated on time. Taking into account the time-varying characteristics of signal, it
is expected to obtain more information that allow a simpler classification algorithm with even
better results.

Automatic detection and classification of EEG recordings have become an important thrust
area of research for the development of BCI, security, games and medical diagnosis systems.
Although several automatic diagnostic schemes have been proposed over the years, SNN [128]
based pattern recognition classifiers have gained significant prominence with respect to some
others alternatives [35], [102], [73]. SNNs have been successfully employed to determine com-
plex, non- linear, multidimensional mathematical relationships between noisy uncertain sets of
data with very dissimilar natures.

Along the last couple of decades NNs based solutions have been successfully employed,
specially in the domain of function approximation, pattern recognition, automated medical
diagnostic systems, decision support systems, time series prediction, signal processing, image
processing, etc. [42], [13], [40]. Approximation problems can be solved by employing either
supervised learning, where the weights and biases of the SNIN are learned in presence of training
data set or by a SNN that can be employed with unsupervised learning, where inputs are
classified into different clusters in a multidimensional space, in absence of any training data. In
the case of EEG classification, several types of SNNs have been proposed. Most of these SNNs

have been usually employed in supervisory mode and require pretreatment of the EEG signal.
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Chapter 3

General scheme to perform the

signal classification

Despite the class of NN used to perform the signal classification, there is a general method that
must be applied including the stages of training, validation and testing. The first stage on the
EEG signal classification requires to define a set of targets associated to the specific class of
EEG. Therefore, if the EEG signal is considered as the input u to the NN, then the output
namely x corresponds to the specific class where the signal belongs among the L available classes
doe the whole set of N EEG signals. This « corresponds with the concept of target. For this

thesis, this target was represented as a sigmoid function described by:

al

l _
T (v) = 14 e

(3.1)
where the variable z! represents target that belongs to class [ (I = 1,...,L). The positive
constant a' was modified accordingly to the class where the particular EEG signal belongs.
These constants served to modify the amplitude of the sigmoid function and then to characterize
each class. The positive constant ¢ was elected in order to regulate the slope of changing in
the sigmoid function. The training process consisted of comparing the output of the NN with
the target 2'(v) when they both are affected by the same EEG signal. The training process
consisted of executing the evaluation of the NN with a percentage of all EGG signals u!.(v) that
represents the r — th (r € [1,N)], i, N; = N) signal in the class [. Then when the EEG
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signal u!. 41(v) is executed, the set of weights produced by this training step Wl*ﬁ and W;i is
used a part of NN in this training stage.

Therefore, when the whole set of N signals selected to perform the training process has been
tested, L different sets of weights WI*JZVZ and Wz*zlvl have been produced. If the training process
has been correctly executed, the aforementioned weights are recovered as part of a set of L non-
adjustable NN with the same structure to the one used during the training. This part of the
process is named the validation stage. Based on the well-known generalization-regularization
method [50], a percentage of the whole set of EEG signals u!.(v) is used to evaluate the output
of the set of L. NN with the corresponding set of Wl*]lvl and W;]lvl At this part of the validation,
all the L NN are evaluated in parallel. The output of each NN named NN' is compared with

I_ .

the corresponding value a!. The mean square error a' — x;. is calculated over the period of time

corresponding to the length of EEG signal, that is

T
3" (o' —ak(k))® if NNisaRNN
k=1

gl —

T

/ at — 2l %t if NN is a DNN
t=0
One must notice that the length of all the testing signals was kept constant. The minimum
value of this set of mean square errors was the indicator of the class where the EEG signal
tested at that moment belongs. The validation state considered that all EEG signals used in
this part of the analysis were previously used in the training stage.

Finally, the testing stage was executed in the same way that the validation stage did.
However, the set of EEG signals used in this part of the analysis never was used in either the
training or the validation stages. This methodology is one of the major contributions of this
thesis. The parallel scheme of NN proposed in the validation stage appears as a contribution
to the state of art regarding the signal classification by NN. Figure 3-2 describes in graphical
form the signal classification procedure proposed in this thesis.

In the next subsections, an introduction to the different types of NN that have been proposed

to deal with the EEG signals classification is given. First a RNN is presented to analyze the
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EEG signal with fixed number of discrete measures as inputs, then three types of CNN are
propose: DENN, TDNN and CVNN. Each subsection explain the advantages of using this type
of topology in comparison to another possibilities. The corresponding training algorithm for
each type of DINN is presented in a separated section to highlight the differences between all

the classifiers considered in this thesis.

3.0.1 Recurrent neural networks

RNN as the one shown in Figure (3-1) is a class of artificial NN where connections between
units form a direct discrete time delay structure. This case creates an internal state of the
network which allows it to exhibit dynamic temporal behavior. Unlike feedforward NN, RNNs
can use their internal memory to process arbitrary sequences of inputs. The basic architecture

of this type of NN was developed in the 1980s.

The concept of signal classifier as a recurrent algorithm

The EEG signals can be seen as an input signal described by the sequence u, (k). In the case
of RNN, the target is represented by x, Therefore, it is possible to represent the relationship
between the EEG signal and the class. Therefore, the following RNN structure represents the

actual form of the signal classifier

2 (k4 1) = £ (@, (k) k) + g (@ () (k) + € (2 (k) ) (3.2)

Here the function f € R"T! — R” (we considered that the class can be characterized even by
a vector of n components) represents the brain response obtained after the internal processing
enforced by the input signal u,, € R™ that represents EEG signal that is filtered by an internal
structure in the network represented by g € R® — R™ ™, The term & : R — R” symbolizes
the noises and the uncertainties produced by the EEG signals on the classifier structure. Both
functions f and ¢ are considered smooth enough. This fact is paramount to propose the

approximation of the recurrent structure presented in (3.2) as a RNN.
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Figure 3-1: RNN topology. On the top in black the RNN classifier structure. In purple the Wy
and in blue the W5 adjustment structures.
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Neural network approximation of the recurrent signal classifier

Based on the approximation theory supported on the Stone-Weiwrstrass Lemma, the system

described in (3.2) can be represented as a RNN described by

zy (k+1) = Apxy (k) + Weaoy (2 (B)) + Wraep, (2 (k) ur(k)+
(3.3)

f (@ (k) up(k), k) + € (@ (K) )

In the RNN structure, the matrix A, € R™*" is a Hurwitz matrix in the discrete sense (all its
eigenvalues are in side the unitary circle). The set of matrices W;.; € R™*P1 and W, 2 € Rn 2
are the weights that best fit the uncertain recurrent target signal to the EEG signal considered
as the input. These weights are considered unknown but bounded. The vectorial functions
op : R" — RP1 and ¢, : R" — RPL*™ represent the set of activation sigmoid functions used to
construct the RNN structure. Each element of these vector functions satisfy a similar structure
to the one presented in (3.1). The unknown function f : R**7#+1 — R represents the modelling
error produced by the finite number of activation functions considered in the NN structure.

One may notice that null knowledge on the actual values of both W, 1, W, > motivates the

design of non-parametric identifier that can reproduce the relationship between x, and w,

Identifier structure to approximate the recurrent signal classifier

The identifier based on RNN is proposed accordingly the classical strategy used within the
adaptive parameter identification framework [99].

Er (k+1) = Adr (k) + Wra (k) or (2, (K)) + Wr,Q(k)Qor (Zr (k) ur(k) (3.4)

)

The identifier state is defined as &, € R™ that must reproduce the target represented by x,.
The matrix A, € R™ ™ is used to enforce a degree of stability on the network evolution and
the vector functions o, ¢, have components named the activation functions that have been
proposed in the approximation given by the RNN. The time varying weights W, ; € R"*P1 and
an € R™2 are used to adjust the adaptive identifier in order to reproduce the mentioned

relationship between Z, and w,. This is the main tool to construct the general form for the
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recurrent numerical approximation. The specific method proposed in this thesis to adjust the

weights W,.1 and ng are described in the section denoted training of this manuscript.

3.0.2 Differential neural networks

DINN have emerged as a powerful tool to extent the classification capacities of NN as a class
of adaptive systems. The DfNN is a new type of NN described by a set of ordinary differential
equations (ODEs). These ODEs may be used to represent the set of signals monitored by the
EEG amplifier. To the author’s knowledge, DINN (Figure 3-2) have never been used as pattern
classifiers. Generally, the NN require a training procedure, which plays an important part in
its successful application as classifier. In instance, in conventional gradient-descendent-type
weight adaptation, sensitivity of unknown system are required during the so-called training
process [49]. By virtue of its parallel distribution, a NN is generally robust, tolerant under the
presence of faults and external noise, able to generalize signal examples and they are capable

of solving nonlinear approximation problems [11].

The concept of signal classifier as a differential algorithm

The signal classifier information obtained from the EEG signals collected during trails can be
interpreted as an absolute continuous signal namely x(¢). Therefore, it is possible to represent

the brain classification response as a solution of an ordinary differential equation as follows

d
SO =f (), u)+E(@(t).1) (3.5)
Here f(-,-) represents the brain’s response obtained after the internal processing enforced by
an input u (¢) € R™ that may represent the EEG signal. The term & (x (¢),t¢) symbolizes the
noises and the uncertainties produced by the EEG signals measured at the same time when the

input is presented as stimulus to the subject.
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Figure 3-2: Full implementation of the DfNN. On the top the training description and below
the classification procedure.

Neural network approximation of the continuous signal classifier

The system can be represented as follows

d .

% (8) = Az (t) + Wil (2(t)) + W32 (2(8)) + f (2 (8) , u(t), ) + £ (2 (1) (3.6)
Here the matrix A € R™ * " is used to provide a degree of linear approximation for the class
of DINN proposed in this section. The set of matrices W7 € R"*P* and Wy € R"*P? represent

the unknown set of weights used to provide the approximation capacity of this kind of CNN.

The vector functions ¥y : R™ — RPL, ¥, : R™ — RP1*™ have components named the activation
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Figure 3-3: DINN topology. On the top in black the DINN classifier structure. In purple the
W1 and in blue the W5 adjustment structures.
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functions that have been proposed in the approximation given by the RNN. Despite they are
considered unknown, there is an important assumption on they boundeness property. The
unknown function f : R"*+1 — R™ represents the modelling error produced by the finite

number of activation functions considered in the NN structure.

Identifier structure to approximate the signal classifier

The classifier based on NN Figure (3-3) is proposed following the classical strategy used in the

adaptive parameter identification algorithms [100]. Then

S () = Ad (1) + W1 (6) 01 (2 (1)) + Walt) 2 (2(0) u(?) (3.7)

Where W7 € R™Pt and Wy € R™ P2 are the weights that best fit the uncertain differential
form of the target signal corresponding to the EEG signal considered as the input. The vector
labeled = € R"™ represents the identifier state. The set of weights W7 and W5 define the set of
adaptive parameters that should be adjusted the eventual classification of the EEG signals in

different classes.

3.0.3 Time delay neural networks

Time-delays are common in biological and chemical systems. Some processes in biological and
chemical systems [134], [140], such as the gene expression [16], course of an infection [36],
biosignal response to an stimulus and feedback control in signal transduction networks involve
time-delays [51].

A time delay in input signal appears in models of real systems due to different reasons.
Usually its presence is forced by the physical nature of the system [39]. Transport delays
(like in chemical or pneumatic systems) or computational delay (e.g. in digital controllers or
communication networks [65]) are regular sources of delayed input signal. Input delay can
also be introduced artificially to include the sampling effect in mathematical models (see, for
example, [29], [30] and [97]). Ignoring the time-delays in biological and chemical models yield
to conclusions that do not contain the complete information of the system [76].

To obtain a better approach for the class of biological and chemical systems that contain
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delays, the topology of the NN should also considered delays. The existence of time-delays on
the NN may cause oscillations and instability [136]. By this reason, the stability of TDNN has
long been investigated [141], [27].
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Figure 3-4: Full implementation of the TDNN. On the top the training description and below
the classification procedure.
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Designing the class of TDNN considered in this study (Figure 3 —4) demanded not only the
global stability of the identifier but also the incorporation of some structural properties coming
from the uncertain system to be identified. Also, it is often desirable to have a TDNN that
converges fast enough to the trajectories of the uncertain system. The exponential stability
analysis problem for TDNN can provide such behavior. Indeed, there is a big number of results

on this topic [6], [72], [74], [135].
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The concept of signal classifier as a time delay differential algorithm

The class of stable time-delay system considered is formally described as follows:
Tq (t) = f (xd (t) aud(t)7 ud(t - h)7 ey Ud (t - ph)) + 6 (‘T (t) at)

400 (0) =24 (to +0) = ¢ (0)
V0 € [-ph,0] pe Z*

The continuous signal x4(t) € R™ is the state of the time-delay system with ||z4(¢)] < oo,
YVt > 0. One must notice that the source of delay is coming from the input signal wug(t) €
R™ which now represents the EEG signal at the current time as well as some of the delayed
information. The function f; represents the uncertain nonlinear function connecting the state
of the plant with the delayed input signal ug (t —ih), i = 0,...,p. The delay value h is known
and constant, h € R.Vt > 0.

System uncertainties and noises are described by the nonlinear unknown function & (z(t),t) :

R™tl 5 R™ and satisfies

1€ (&), t)[1* < T (3.9)

where T € RT.

Neural network approximation for the time-delay signal classifier

The system can be represented as next

B4 (t) = Agza (t) + Wi g, (za () + Wi bg, (za(t)) ua(t)+
STWE (%, (wa(t)) uay (t — ih)+ (3.10)
1=1

[ (@a(t), wa(t), ua(t — h),...;uq (t — ph)) + &(z (1))

The set of matrices W) are unknown but they are bounded.
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Figure 3-5: TDNN topology. On the top in black the TDNN classifier structure. In purple the Wy
and in blue the W5 adjustment structures.
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Classifier structure

The classifier based on NN Figure (3-5) is proposed following the classical strategy used for
proposing adaptive parameter identification algorithms [100]; that is, considering a copy of the
structural approximation for uncertain nonlinear systems with time-delays defined in (3.10).
Consequently, the classifier based on NN has the following structure.

g3 % (t) = AaZa (t) + Way () Vg, (Za (1) + Way ()%a, (2a(t)) ua(t)+

ZWd2 )i, (£a(t)) ua(t — ih)
(3.11)

id(t) = :idtoa vt e [7ph70] pe z*

.’ffdto eC [—ph,O]

Where A; € R* X" Wy, € R" * %« W, € R"* % and Wéz € R™ * si, Here T4 defines the
identifier state Wy, (-), Wa, (-) and W), (-) are adaptive parameters that should be adjusted
to approximate the uncertain nonlinear time-delay system (3.8). The matrix A, and functions

g, (+), g, (-) and WQQ () have the same meaning to the one introduced in the previous section.

3.0.4 Complex valued neural networks

The complex numbers (CN) concept was not accepted as a valid idea within mathematics field
for a long time [123]. Even when their mathematical characteristics and properties were success-
fully described, its applicability in real life was not understood completely before the middle of
19th century. Actually, during the industrial revolution mathematicians finally recognized the
importance of CN not only in pure theoretical problems but also in engineering issues. Today,
CN have been actively used in different areas such as physics, circuit theory, fluid analysis, etc.

Once the CN concept was accepted, dynamic systems including states defined within the
complex domain were proposed and analyzed. This class of particular systems was used to de-
scribe a large set of real plants where waves and related phenomena appear. Among all systems

based on CN, those described in terms of the so-called frequency response are particularly in-
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teresting. Collecting all magnitude and phase dynamics through consecutive windows produces
a set of nonlinear uncertain dynamics for each frequency described in terms of CN.

The presence of uncertainty in the previous system arises because the formal description of
the aforementioned magnitude/phase variation with respect to time is difficult to be obtained
accurately. Signal classification based on time variation of continuous signal may seem not be
adequate even using CNN. One possible solution to overcome this problem is coming from the
application of NN in the complex domain. Indeed, this class of network is the so-called complex

valued neural networks (CVNN).




Complex-valued neurons are those whose input and output signals are represented as com-
plex numbers. Validation and recognition of this class of NN was achieved easily because the
large number of applications that can be handled by this kind of CNN. Actually, several studies
have focused on the engineering usefulness of CVNN [4],[44], [80], [141], [105]. For example,
in the human brain, an action potential may have different pulse patterns, and the distance
between pulses may be different. This suggests that it is appropriate to introduce CNN repres-
enting phase and amplitude into NNs. Pattern recognition in EEG signals using CVNNs as the

one propose in Figure (3 — 6) may become also in active field within the area of so-called BCIs.

The class of complex-valued nonlinear systems

The class of nonlinear dynamics with complex-valued state considered in this part of thesis is

characterized by the following complex-valued differential equation

e (t) = fc (.Q?C(t), uc(t)) + g (t)
z (0) fixed and bounded (3.12)

Je ('7 ) = fe, ('7 ) +jf0i (7)

where z. € C", z, := [Z¢y, ..., T, |" defines the system state composed by its corresponding
real z., € R" and imaginary x., € R" parts , that is z. = z., + jz.,. The function v, € R™
represents an exogenous input represented as a vector of complex numbers. Anyway, this signal
is assumed to be measurable and bounded. In this thesis, the state is also assumed to be

measurable. Measurability of the state is understood in the following sense: the magnitude

|z,| and phase of each component arg {z.,}, i = 1,n are available by different mechanisms in
the whole period of time when the system evolves. This is not a strong assumption because
it is usual to obtain such components in real applications where the frequency analysis gives
characteristic information for the system beyond the time evolution one. For example, in
acoustic engineering, impedance analysis, image and signal processing, etc. The nonlinear CV
function f.(-,-) : C"*™ — C" is composed by two real-valued sections f., (-,-) and fe, (-, ).
These nonlinear functions f., (z¢, u.) and f., (z¢, u.) should satisfy a number of conditions such

that the complex uncertain nonlinear system given by (3.12) has a solution.
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Figure 3-7: CVNN topology. On the top in black the CVNN classifier structure. In purple the
W1 and in blue the Wy adjustment structures.

72



Neural network approximation for nonlinear complex-valued systems

The non-parametric mathematical model was obtained using a particular type of nonlinear least
mean square algorithm. Using this method demands a very important assumption: the couple of
nonlinear structures f., (., u.) and fe, (., u.) should admit a numerical reconstruction based
on NN. Actually, they should be CVNN. This pair of CVNN are represented by fe, o (2, uc)
and f, (2, uc) , respectively. This assumption is paramount to admit the existence of solution
for the adaptive modeling problem. A number of possible approximations can be used here.
Among others, the classical least mean square based on polynomials, sinusoids functions, wavelet
nonlinear functions and NN can be used here. No matter what selection is adopted to obtain
the approximation, the following construction for representing the uncertain complex-valued

nonlinear system is proposed

e (1) = Acwe(t) + Weitbe, (@e(t)) + Wi, (ze(t)) uc(t)+

1 2

(3.13)
Me (ze(t)) + € (1)

where Ac = Ac, + jAe, Wo =W¢  +jW,  (k=1,2) and 1, (zc) := 1., (@) +jne; (zc). The

Ck

set of matrices WC*] are unknown but they are bounded.

Classifier structure

The classifier based on NN Figure (3-7) is proposed following the classical strategy used within
the adaptive parameter identification framework [99]. This construction uses a structural copy
of the approximation for uncertain system based on NN defined in (3.13). Therefore, the

identifier based on NN has the following structure

— e (t) = Ace (8) + Wey (8) the, (Ze(t)) + Wey (1) Yy, (Ze(t)) uelt)
(3.14)

%0 (0) fixed and bounded

Where the time varying weights W, (t) := W,

Cr,s

(t) + jWe,, (t) (s = 1,2) are used to adjust

the adaptive identifier. This is the main method to construct a general form for this numerical
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approximation. The identifier state is defined as 2. (t) € C". Matrix A. and functions ¢, (-),

1., (-) are the activation functions.

3.1 Neural networks implemented in embedded systems

Several methods have been proposed over the years to implement NN. These methods can be
implemented in personal computers or embedded hardware. Software implementation offers the
flexibility and full precision of powerful microprocessors with complex architecture algorithms
as well as limited memory conditions. However, they have the disadvantage of being slower and
with higher computational costs associated to operative system operations [59].

Hardware implementations are ideal for signal processing which demand high volume ad-
aptive real time processing and learning of large data-sets in reasonable time and need the use
of energy-efficient hardware, but it is limited in flexibility and usually offers lower precision,
but has the advantage of processing data in parallel (as in FPGA or in VLSI), making possible

the implementation of complex algorithms in soft real time.

Digital Analog

N

FPGA VLS Opam's drouit

Figure 3-8: Digital and analog NNs implementation.

FPGAs are semiconductor devices that are based around a matrix of configurable logic
blocks (CLBs) connected via programmable interconnections. FPGAs can be reprogrammed

to desired application or functionality requirements after manufacturing. This feature dis-
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tinguishes FPGAs from Application Specific Integrated Circuits (ASICs), which are custom
manufactured for specific design tasks. Although one-time programmable (OTP) FPGAs are
available, the dominant types are SRAM based which can be reprogrammed as the design
evolves [133].

Nowadays, the capacity and performance of FPGAs have increased. Factors such as speed
and circuit density make them suitable for signal processing in parallel. Digital signal processing
is one of the primary design applications for FPGAs, they have been gaining considerable at-
traction in high performance applications because of their versatility and speed over traditional
processors like microcontrollers [132]. Since 1990 there is a constant development of NNs ap-
plications in FPGAs [143], [41], [33] but the great majority of them work in a static way and
do not take into account the continuous nature of the signal.

Hardware implementation can be also done by using VLSI and analog circuits. The VLSI is
the process of creating an integrated circuit (IC) by combining thousands of transistors into a
single chip, an advantage of VLSI over FPGA is that the design is not limited to fixed maximum
of memory and speed [10]. It is possible to generate a VLSI design from VHDL code. Since the
1980s there are reports of implementation of NN in VLSI [10], [104].

In the analog implementation of NNs a coding method is used in which signals are repres-
ented by currents or voltages. This allows us to think of these systems as operating with real
numbers during the NN simulation. Even thought the analog implementation is the fastest one,

it also represents a challenge in the characterization of the algorithms in analog circuits.

3.2 Off-line adjustment of weights in the classifiers

For each type of DNN presented on this work, the classifier development follows the same
structure. The first part is the training process. By using a part of each database, we are able
to set the weights for each class. Next, a validation of this training procedure was developed
using a simple strategy of substituting the weights produced by the training and then, testing
the on-line learning system. This is a key aspect that reveals the differences between the classical

SNN and the DNN.
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3.2.1 Training

The identifier structures previously propose demand the knowledge of W7, j = 1,2 that
are actually unknown. Therefore, the learning laws cannot be used as they were presented
previously. Nevertheless, a training algorithm can be used to overcome this problem. In this
thesis, the training follows the method proposed in [14]. The training method will produce a
set of values W;’i that must be near to W in some sense. The following procedure will show

how the values of VVJ“ are obtained.

1. Collect a few sets X/™ (k = 1,...,r) of discrete state’s measurements X" := {z!"(t;), s a
positive integer or zero with ts—¢s_1 > 0} or continuous trajectories X" := {:c’,fgm(t), t > 0}
obtained from the uncertain system that will be identified by the NN. Evidently the in-

formation gotten from these sets is affected by measurements noises.

2. Propose a parameter identification algorithm to obtain a suitable value of W* using the
available information collected in the previous step. In this step, just a function of all
information sets collected here is used to perform the training. In this case, we have used
the 60% of all the sets on the Database I and Database II from each class to perform the
training. The remainder sets from each database were used to validate and CNN off-line

training.
3. Set the weights W* on the identifier structure proposed above.

The key step to perform the training is the second one. Several methods have been proposed
to solve this issue. Among others, matrix least mean square with several modifications have

been used to solve that training algorithm.

3.2.2 On-line training scheme using the continuous version of least mean

square method for RNN

In order to probe the evolution of the weights for each class the following theorem is used
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gri ERT,P=PT >0

Here the matrices Wni € R™! represent the weights values that are evolving and will be
fixed in the second stage of the classification process that is called the validation process.

The time varying A, € R™ function is the identification error. Evidently, the accuracy of
these values depends on the number of weights adopted to represent the identifier dynamics.
The matrix P is the positive definite solutions for the Riccati equations and ¥, ; and ¥, o are

the activation functions previously described.

3.2.3 On-line training scheme using the continuous version of least mean

square method for DfNN

The nonlinear weight updating (learning) law to adjust the identifier is described by the fol-

lowing matrix differential equations
Wj (t) = —/CjPA (t) \IJJT + 271k‘jo (t)

Matrices Wl,t e R™*! and Wg,t € R™** represent the distance between the current values
of Wi and Wy, to fixed fitted values Wﬂt and Wgt that is Wjﬂf = W;: — Wjo. The matrices
Wﬂt and WQOJ are fixed after training procedure. The learning laws selected above are used
to obtain the so-called best-fitted weights values that will be fixed in the second stage of the
classification process that is called the validation process.

The time varying A, € R" function is the identification error. Evidently, the accuracy of
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these values depends on the number of weights adopted to represent the identifier dynamics.
The variables kj, 7 = 1,2 are the learning rates. The matrix P is the positive definite solutions

for the Riccati equations given by

Ric(P):= PA+A"P+ PRP+Q
R=W? (M) WP + WP (M) (W] T + Ay + Ag

Q - AInax ((2A2> Il) [nazn + QO

Here A € R™" k = 1,4 are positive definite matrices too. In fact, they must be selected
(over a large set of possible values) just to ensure the existence of the solution for the previous

equations.

3.2.4 On-line training scheme using the continuous version of least mean

square method for TDNN

The following theorem is used to prove the evolution of the weights for the TDNN. Let consider
the time-delay uncertain system (3.8) with a known number of delays as well as the value of this
delay. Suppose that perturbations and non-modeled system &(x () ,t) affecting the uncertain

system fulfills (3.9). If there exist positive definite matrices Ag, > 0, Ag, = A;lrk, Ag, € R,
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kg = 1,2 such that the following matrix Riccati equation Wy(h, P,Q, R, a) = 0 with

Wy(h, P,Q,R,a) = PAy+ A] P+ PRP + Q

AdZAd-i-(l—l-%)I

p
R=V{"+ ) V™" + A1+ Ay (3.15)
=1

Q= ()\max (Al_l) Ly + pu+)\max (Ag_l) L2) Txn,

a>0

has at least one positive definite solution P > 0, P = P, P € R"*" used within the learning

laws by

Wa, (t) = =k e PAy () ¥, (2q (1) — aWiT () = (I + Awa,) Wi (1) (3.16)
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and WéQ (t) associated to the inputs are described by

t—(i—1)h
Wi ()= — / RO (1) T (7)dr—

T=t—1h
onNVZ»i (t) +2e2a PAT () % (2a(t)) ua(t — ih))—
IR % 7228 . =i = T
QWa" (b) (Pt Ty, (tin) [Wh, (tin)] —

it () (W, ()]~ (14 Aw, ) Wi (1) (3.17)
-1

t;

Qi: 2kd2]n><n + / ezkd(’r)\i!;’i (7’) dr

W () = W, () [#, ()]

Wy, (t) = v, (24 (1) ua (1)

(t; = t—(i — 1) h) governing the dynamic behavior of the time-delay neural network identifier

(3.11).

3.2.5 On-line training scheme using the continuous version of least mean

square method for CVINN

The discrete version of the algorithm presented in the previous sections can be easily reproduced

following a similar procedure. Moreover, nonlinear least mean square method based on a class
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of NN also has been introduced in (3.14), the following equation is valid

e (t) 2l () = Acwe(t)wd (t) + WiV (ze(t), ue(t) 2k (t) + X, () wd(t)

we=[wz wy |

Ve, (2e(t))
Yoy (e(t)) ue(t)
Xe (1) = [ne (2c(t)) + € (1]

(3.18)
e (zc(t), uc(t)) =

The direct integral operation from 0 to 7" on both sides of the previous equation yields to

T
T(r)dr = / Ae(7)3E (7)dr+

\’ﬂ

8.

o

—~

\‘

N—

&

o

=0 = (3.19)
W:/‘Ifc (xe(T), ue(T)) zd (7)dT + /Xc (1) xl(7)dT
=0 7=0

Because the upper limit in the integral operation described in the last equation is finite, the
weights produced after training never will be the true ones. This is one of the reasons to
introduce an on-line learning procedure that already has been detailed. The left hand side on

the previous equation can be estimated as (using a simple integration by parts)

T T
/ bo (1) 2T ()dr = 20 (T) 21 (T) — 20 (0) 27 (0) — / bo (7) 2T (7)dr (3.20)

(3.21)
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T

The term / X. (7) 2L (7)dT is not available to solve the previous equation. Here one can obtain
7=0 ]
an approximation for W, namely W, 4 that actually is the solution of the training algorithm.

This solution is based on well known results on matrix least mean square algorithms. In this
thesis, we omitted to discuss details on the solvability of this problem because there is a lot of

information on that ([101] and the reference therein). The formal expression for this term is

T T -
Wc*’id = [Q— A, / ze(T)xl(T)dT | * /\ch (@e(T), ue(T)) wé(1)dT
=0 =0 (3.22)
Q= % [ee (T) &X(T) — @ (0) 1 (0)]

When the available information for training process is substantial (7" — o0), the following

expression can be also used to obtain the value of We i,

T T -1
Wc*,id - Tlim O — A, / xe(T)zI(T)dT | * / Ve (2e(T), ue(r)) 2l (T)dT (3.23)
— 00
=0 =0
, 2
No matter which one is consulted, the following property has been discovered H Wi id _ Wrl <

T where T is bounded and positive constant. Last equation is only valid when T — co. How-
ever, if T if finite, a small deviation of the real W/ 4 value is obtained. Therefore, instead
of Wi ’id, a value named W/ yid (obtained with a finite time 7" in the previous equation) is
introduced in the adjustment laws.

Therefore, the learning laws defined previously are transformed into
i — 2, 1/id
Wcj- (t) T _ij PCAC(t)’l/]Z] (xc(t)) + aCWCj (324)

This change is used to evaluate how the training process can affect the quality of identification
based on DNN for the complex-valued uncertain system. The utilization of this process is
obligatory because no knowledge on W/} is assumed. Therefore, the identifier state is also

bounded by the assumption presented in this subsection. Using the conditions established
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in this part, changing We  instead of W7 produces a bigger but bounded deviation of the
identifier state compared to the trajectories of the uncertain system. Therefore, the quality of

the identification process is reduced but the decrement is measurable and bounded.
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Chapter 4

Experimental development

This chapter describes the databases that were employed to test the different proposed NNs and
how their data were processed. The first database, downloaded from [92] was chosen because it
is one of the most referenced databases, there is a lot of literature on classification algorithms
that were tested and validated. The second database was self-generated in the facilities of the
National Polytechnic Institute the protocol used to produce this database is also described. It
is important to remark that the second database is the first step for future migration of the
proposed NNs based classification processes from the PC to an embedded system.

Database I is employed to measure the different NN classification accuracy as shown in
Figure (4-1), due to the fact that the particular database have been employed for classification
with different NN based techniques. The data processing is the next:

First, one of the four NN is selected. This NN is used during the whole process for the
training and also for the construction of the parallel NN.

Second, each class that make up database I is divided in three sets in order to perform the

validation by employing a generalization-regularization method:

e Set one is compound of 60% of the samples of each class. With this data the training is
perform, during the training the weights evolve at the end they concentrate information

that characterize the each class.

e Set two is used for the validation and is 30% of each class. The 30% can be make up

from samples used for the training and data that have not been known to the NN. At this
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Figure 4-1: Experimental development followed, where the different implemented NNs classify

the two databases. Generalization (G). Independent Test (IT).

point the parallel NN is build.
e Set three is the compare or test section, the remaining 10% of each set is employ. The

data that make up set three is data have never been presented to the NN.

The next process depicted in Figure (4-1) with a blue color solid line is a 5-fold cross
validation method apply to the RNN and DfNN in order to measure their classification accuracy,
this method consists in the following steps:

e The database class in divided in 5, 1 of this parts is used to validate the other to develop

the weights (training).

e This process is repeat for the 5 classes that make up database I.
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4.1 Database I

Database I was downloaded from the Freiburg University web-site, a more complete description
can be found in their web page and also in several papers that are listed there.

Database I contains invasive EEG recordings of 21 patients suffering from medically intract-
able focal epilepsy. The data were recorded during an invasive pre-surgical epilepsy monitoring
at the Epilepsy Center of the University Hospital of Freiburg, Germany.

The records come from the epileptic focus, 100 samples taken from 11 patients where the
EEG record was located in neocortical brain structures, other 100 where from eight patients
in the hippocampus. Two patients were analyzed by both methods. It is important to remark
that even when the signals correspond to invasive or non invase EEG trails, the signals looks

pretty alike, so their classification became difficult even for the trained eye.

In order to obtain a high signal-to-noise ratio, fewer artifacts, and to record directly from
focal areas, intracranial grid-, strip-, and depth-electrodes were utilized. The EEG data were
acquired using a Neurofile NT digital video EEG system with 128 channels, 256 Hz sampling
rate, and a 16 bit analogue-to-digital converter.

Notch or band pass filters have not been applied. So the signal is considered to be raw.
Much of the work consulted for this thesis present classification of EEG signals using pre
processed signals. For each patients, there are datasets called ictal and interictal, the former
containing files with epileptic seizures and at least 50 min pre-ictal data, the latter containing
approximately 24 hours of EEG recordings without seizure activity.

At least 24 h of continuous interictal recordings are available for 13 patients. For the
remaining patients interictal invasive EEG data consisting of less than 24 h were joined together,
to end up with at least 24 h per patient. For each patient, the recordings of three focal and
three extra-focal electrode contacts are available.

Finally, the database is divided in 5 classes. Each class contain 100 samples, the first
one extracranial data taken form the neocortical structures Figure (4 — 2), the second class is
formed by 100 samples of the hippocampus EEG signals Figure (4 — 2), the third set of 100
samples were taken intracranial from neocortical structures Figure (4 — 2), quarter 100 samples

intracranial hippocampus Figure (4 — 2) and 100 samples taken during a seizure episode Figure
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Figure 4-2: Examples of the signal taken from [92], class 1 signals correspond to extracranial
data taken form the neocortical structures. Class 2 signals correspond to extracranial data taken
from the hippocampus, class 3 signals correspond to intracranial data taken from neocortical
structures, class 4 signals correspond to intracranial data taken from hippocampus and finally

class b signals correspond to intracranial data taken during seizure episode.
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Figure 4-3: Example of the different trajectories employed for the training of the different NNs
topologies, the amplitude of the trajectories could vary according to the network needs. Also
the number of trajectories depends in the number of classes that the NN is classifying.
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(4 — 2). Unfortunately, the Database I is discontinued and not further available for download
since it is superseded by the new European Epilepsy Database. An example of the trajectories

employed to train the NNs for this database can be seen in Figure (4 — 3).

4.2 Database 11

The goal in building the Database II is to create a program that acquires data from the EEG
device. The information contained in the Database 11, represent the recordings of a EEG device
produced by the EMOTIV® device produced by the Emotive company. All the presented data

are waveforms resulting of VEP generated by visual stimulation.

Figure 4-4: Different patterns (A, B and C) used for the building of the Database II.

The type of stimuli used to generate Database II is known in neurosciences as single graphics

stimuli, where simple shapes such as rectangles, squares, or arrows, among others are rendered
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on a computer screen and appear from and disappear into a background/ whiteground at a
specified rate [142]. The stimulation rate is reported as the number of full cycles per second,
normally simply referred to as the frequency of the stimulus. All repetitive visual stimuli have
various properties such as frequency, color, and contrast. Both the type and properties of
stimuli affect the elicited VEP response.

The patterns used for Database II are shown in Figure (4 —4), A was taken from regular
VEP studies, B and C patterns were proposed according to well-known visual patterns used
in neurological studies. Each pattern showed in Figure (4 —4) is part of a 40 seconds long
video. During this time the pattern blinks with a certain rhythm that is the same for all the
stimulation sequences. Each sequence was applied three times to the same volunteer, a break
of 1 to 2 minutes was taken between trials so the eyes of the volunteers could rest. The hardest
thing to implement was the EEG recording system, because the stimulation and the recording

have to start and finish at the same time for each trial.

h ] v
Emotiv libraries Run PP presentation
Verify system connection

Plot Data

Figure 4-5: Flowchart; Emotiv connection with MATLAB

Even though, the EMOTIV® provides an interface that allow the recording of the VEP
data, it was not suitable to perform the visual stimulation tests. The main problem with the
EMOTIV software is the fact that you are not able to control the process remotely, so it was
not possible to start the stimulation and the recording of the EEG signals at the same time. In

order to fulfill this requirement, a program controlled the recording and the stimulation (Figure
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Figure 4-6: Volunteer during trial.

4 —5).

The program has the ability to control other Windows environment applications, including
the ones that reproduce the sequence of stimulation patterns. Parallel to this, the libraries that
control the EMOTIV drivers are loaded, giving the user the advantage of controlling parameters
such as; recording time, start of stimulation, quality of the EEG electrode contact and the file
format of signals recorded.

Once the software was proven to work properly, the trials conditions were detailed. The
EEG signals are susceptible to the environment and factors such as noise, light and even the
mood of the volunteer may be reflected on them. The trials took place in a confined room
as shown in Figure (4-6), avoiding noises, with low light level, taking in account a break time
during the different stimulation patterns, asking the volunteers to be as focused as possible
on the information coming up on the screen. During the trials, it was important to provide a
relaxing environment for volunteers.

Then a second step of the program take the file produced during the EEG evaluation and

evaluated in automatic run within any of the proposed NNs. It is important to remark that
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Figure 4-7: Fourteen evoked potentials recorded with the EMOTIV and plotted using MATLAB

the information is not submitted to any kind of prelimnary treatment during this process, so
the EEG signals obtained by the EMOTIV are raw (Figure 4-7).

Database II is divided in 3 classes. Each one correspond to one of the visual patterns used
to produce the visual stimulus. Each volunteer produces a set of 5 trails. A total of 6 volunteers
helped in developing this database. The volunteers were healthy adults between 25 and 35 years

old. Finally, a total of 90 records integrated the database.

4.3 Material and EEG system

As mentioned in the previous section the device used to acquire the information of the Database
II was an EMOTIV EEG Neuroheadset. This is a high resolution, multi-channel, portable
system which has been designed for practical research applications [26]. Some of the EMOTIV
EEG Neuroheadset characteristics are mentioned next.

The EMOTIV also provides a research software development kit (Figure (4-8) that allow the
user to obtain real-time display of the EMOTIV headset data stream, including EEG, contact

quality, FFT, gyro (if fitted — custom option), wireless packet acquisition / loss display, marker
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Figure 4-8: Emotiv Research Edition SDK interface window [26].

events, headset battery level, etc. Some characteristics include: recording and replaying EEG
files in binary EEGLAB format, command line file converter that produce .csv format files,
define and insert timed markers into the data stream, including on-screen buttons and defining
serial port events, markers are stored in EEG data files, marker definitions can be saved and

reloaded, markers are displayed in real time and playback modes.

EEG display

e 5 second rolling time window (chart recorder mode)

All or some selected channels can be displayed

e Automatic or manual scaling (individual channel display mode)

Adjustable channel offset (multi-channel display mode)

Synchronized marker window
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FFT display
e Selected channel only
e All or selected channels can be displayed
e Adjustable sampling window size (in samples)
e Adjustable update rate (in samples)
e dB mode — power or amplitude calculations
e dB scale
e FFT window methods: Hanning, Hamming, Hann, Blackman, Rectangle

e Predefined and custom sub-band histogram display — Delta, Theta, Alpha, Beta, custom
bands

Gyro display
e 5 second rolling time window (chart recorder mode)

e X and Y deflection

Data Packet display

e 5 second rolling graph of Packet Counter output
e Packet loss — integrated count of missing data packets

e Verify data integrity for wireless transmission link

Data Recording and Playback

e Fully adjustable slider, play/pause/exit controls

e Subject and record ID, date, start time recorded in file naming convention

Most of the EMOTIV® technical characteristics are mentioned in the Table (4.1).
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Table 4.1: Emotiv technical characteristics.
Technical characteristics Description

14 (plus CMS/DRL references,
P3/P4 locations)

Number of channels

Channel names (International AF3, F7, F3, FC5, T7, P7, O1,
10-20 locations) 02, P8, T8, FC6, F4, F8, AF4
. Sequential sampling. Single
Sampling method ADC
Sampling rate 128 SPS (2048 Hz internal)
14 bits 1 LSB = 0.514V (16 bit
Resolution ADC, 2 bits instrumental noise

floor discarded)
0.2 — 45 Hz, digital notch filters

B idth
ancwidt at 50 Hz and 60Hz
o Built in digital 5th order Sinc
Filtering
filter
Dynamic range (input referred) 8400 pV (pp)
Coupling mode AC coupled
. Proprietary wireless, 2.4 GHz
Connectivity
band
Power LiPoly
Battery life (typical) 12 hours

4.4 Embedded instrumentation of DfNN classifiers

The original DINN was employed for the generation of the hardware NNs presented in this
work. There are two digital implementation and one analog. For the digital development first
the VHDL code that describe the DfNN algorithm was firstly programmed in a FPGA and
after verifying that it work properly, the same code was used to develop a VLSI design. For the
analog section, operational amplifiers were used to recreate the DfNN algorithm, continuous
voltages are employed as constants.

Nowadays, FPGAs have increase their speed and memory. This conditions allow them to
process great amount of data in parallel making them ideal for NN implementation. For the
FPGA-NN a Zedboard development board was chosen. This board was selected because of it
hardware characteristic and because of the easy implementation of AXI-4 interfaces between
Matlab and the board. Using Matlab 2014 and Xilinx 14.4 the VHDL code that describe the
DINN was generated. Then the VHDL code was programmed in the FPGA. After Simulink

generates an interface that was directly placed on the board. From Simulink, the signals were
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sent, they were processed by the DfNN inside the FPGA and the DfNN output was sent to the

Simulink interface where signals were display.

Software NN

I'_l—l

Xilinx | 4] Matlab |—| FPGA

1 ] ] I

VHDL NN

Interface

Hardware Neural Network

Figure 4-9: Implementation of the DfNN from the PC to the FPGA. Here Matlab and Xilinx are
employed to develop the VHDL code that will run in the FPGA. Matlab also help to generate
and interface between the FPGA and the PC.

For the VLSI-NN the basic structure of the VHDL code was employed, the parts of the
code that implemented the AXI-4 interface was dismiss. Cadence system design tools the VLSI
design allow the verification of the VLSI design also to move the position of the transistors in
order to avoid holes or left space in the design (make it as compact as possible). The software

also have tools that allow the user to see the VLSI design digital response.
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Chapter 5

Results

Four NNs were tested in this thesis. The first one was a RNN that make a non-continuous
classification of EEG signals. Then, the classification problem is addressed based on three
different continuous NN. The brain response to an stimulus is by nature continuous and it can
be infer that the more natural way to address its classification is by a NN that can learn in
continuous time like a CNN. The consulted literature [12], [77], [69] made reference to the brain
response as a plant with time delays, so a TDNN for classification was also tested. Finally, a
CVNN was used for classification, by making a frequency analysis of the brain response. All the
changes presented on the signal are more evident, this is reflected in the quality of information

that is used for the learning laws of the CVNN.

5.1 Recurrent neural network

The RNN used the database I and two validation method (generalization-regularization and 5-
fold cross validation) for measuring its classification accuracy. In the first method, 100 samples
from each one of the 5 classes were taken. Considering these 100 samples per class, 60 samples
were used for the training process, 30 for the generalization and the 10 for the independent test.

Figure (5-1) depicts the weights obtained after the training from the 60 samples for each
class. It is clear that weights W; are separated accordingly to the class of signals used to
train the RNN. The separation of the weights gotten at this point is important because Wi

characterized the information from each class of the EEG signal. In the bottom, right hand-side
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in the image, the type of output that was used for the training and the RNN approximation

is also depicted. On the left, the mean square error obtained after the training procedure

demonstrates the RNN approximation capabilities.
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Figure 5-1: W and Wy corresponding to the RNN after training with the database 1. In both
top images the black line correspond to the weights of the first class, the blue line to the weights
of the second class, the red line correspond to the weights of the third class, the magenta line
correspond to the weights of the class 4 and finally the green one to the class 5. The images
of the bottom are from left to right the trajectories of the RNN Xe and X during the training
process for a signal of class 5 and the integral of the LMS error obtained.

Table (5.1) contains the details on the results gotten from the generalization-regularization
process in each class. A classification accuracy percentage of 94.21% was achieved.

Table (5.2) contains the results achieved from the 5-fold cross validation method applied to

database I, a total classification accuracy of 97.48% was achieved.
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Table 5.1: Results from the classification process per class for the RNN.

C1 C2 C3 C4 C5
Samples 100 100 100 100 100
Training 100% 100% 100% 100% 100%
Generalization 93.33% 93.33% 90% 100% 96.6%
Independent Test 70% 100% 100% 70% 100%
CfA 87.77% 97.77% 96.66% 90% 98.86%

*CfA Correct Accuracy, according to the number of samples per section.

Table 5.2: DfNN results from the 5-fold cross validation process, that determine the classifica-
tion accuracy.

C1 C2 C3 C4 C5
Samples 100 100 100 100 100
1°S. CfA 94% 100% 90% 100% 100%
2°S. CfA 100% 94% 100% 92% 100%
3°S. CfA 100% 100% 100% 95% 100%
4°S. CfA 92% 100% 100% 100% 94%
5°S. CfA 100% 100% 92% 94% 100%
Total CfA 97.2% 98.8% 96.4% 96.2% 98.8%

*CfA Classification Accuracy.

*S. Segment.

5.2 Differential neural network

Employing the database downloaded from [92], the full DINN validations scheme was performed
using two validation methods methods. For the first method the training process employed a
universe of 60 signals of the complete set of 100 that make up each class. As mentioned before,
during the training process, we assigned a desired output value per class that was used to enforce
the identifier trajectory. This value was unique for each class, specifically for this database, each
class trajectory increased in 50 units of amplitude. Interestingly, after the training the same
tendency can be seen in Wj. Figure (5 — 2) shows how the weights evolved after the training
process.

Once the training was finished, the weights were fixed by using the resulting W; and Wy
values for each class. The DINN classifier works in the following way; the weights are fixed for
each class and a parallel DfNN is built. For database I, the parallel DfNN is compound of 5
parallel DfNN. Each DfNN was designed to find exclusively one type of class as the one shown

in Figure (5-3). To determine if a signal belongs to a class, the least mean square error of the
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Figure 5-2: W) and Wy corresponding to DfNN after training with the database 1. In both top
images the black line correspond to the weights of the first class, the blue line to the weights
of the second class, the red line correspond to the weights of the third class, the magenta line
correspond to the weights of the class 4 and finally the green one to the class 5. The images
of the bottom are from left to right the trajectories of the DfNN Xe and X during the training
process for a signal of class 5 and the LMS error obtained.

5 neurons output was used.

The validation methods applied are generalization-regularization and a 5-fold cross valida-
tion. In the first one a generalization-regularization validation process, here only 30% of the
signals that were used during the training part where employed for the generalization, and the
remaining 10% is used for the independent test and validation of the DINN. The results of this
validation method are depicted in Table (5.3) . A classification accuracy of 94.88% was achieved
from the parallel DINN. All the results presented in this thesis work with the raw EEG signals.

The second validation process employed to measure the accuracy of this NN was a 5-fold

cross validation method. The results of this process can be consulted in Table(5.4) .This method
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Table 5.3: Results from the classification process per class for the DfNN.

C1 C2 C3 C4 C5
Samples 100 100 100 100 100
Training 100% 100% 100% 100% 100%
Generalization 100% 53.33% 100% 100% 100%
Independent Test 100% 70% 100% 100% 100%
CfA 100% 74.44% 100% 100% 100%

*CfA Correct Accuracy, according to the number of samples per section.

Table 5.4: DfNN results from the 5-fold cross validation process, that determine the classifica-
tion accuracy.

C1 C2 C3 C4 C5
Samples 100 100 100 100 100
1°S. CfA 100% 100% 90% 85% 100%
2°S. CfA 100% 100% 95% 80% 100%
3°S. CfA 100% 100% 95% 90% 100%
4°S. CfA 100% 100% 100% 100% 100%
5°S. CfA 100% 100% 100% 100% 100%
Total CfA 100% 100% 96% 91% 100%

*CfA Classification Accuracy.

*S. Segment.

demonstrated a total classification accuracy of 97.4%.
The DfNN was also tested with the database II. The weights obtained after the training
performed for the generalization - regularization process are depicted in Figure (5-4). Also a

desired trajectory employed for the validation process and the DfNN obtained output.

Table 5.5: Results from the classification process per class for the DINN database I1.

C1 C2 C3
Samples 30 30 30
Training 100% 100% 100%
Generalization 100% 100% 88.88%
Independent Test 100% 66.66% 66.66%
CfA 100% 88.88% 84.66%

*CfA Correct Accuracy, according to the number of samples per section.

The next step was to test the DINN with the database II. The same three stages described
above for the generalization-regularization validation method were also implemented in this
case. Therefore, training, validation and testing procedures were executed with the same distri-

bution of EEG signals. The results achieved by the DfNN in this part are interesting due to the
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Figure 5-3: Integral of the error per class obtained from the DfNN when the input is a signal
of class b, the black line correspond to class 1, the blue line to class2, the red line to class 3,
the magenta line to class 4 and finally the green one is class 5.

fact that the signals that make up this database II were obtained from an EMOTIV® device.
Even though the signals quality was not as good as the one observed in the first database, the
classification task was possible with remarkable results. The classification efficiency of DfNN
for this database can be consulted in Table (5.5).

A problem when dealing with database II is the quality of the signal, due to the tech-
nology employed for the acquisition of the EEG signals their quality could be considered as
poor. Nonetheless, well separated weights could be obtained for the three classes that make
up this database as show in Figure (5 — 4). This separation in weights values yields to a total
classification accuracy of 91.24%.

Finally Figure (5 — 5) describes the integral of the mean square error for a signal of class
2 when running in the parallel DINN. It is clear that the DfNN is working correctly when the

error of class 2 is the smaller of the three depicted in the above mentioned Figure.
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Figure 5-4: W; and Wy corresponding to DfNN after training with the database 2. In both top
images the black line correspond to the weights of the first class, the blue line to the weights of
the second class, the red line correspond to the weights of the third class. The images of the
bottom are from left to right the trajectories of the DfNN Xe and X during the training process
for a signal of class 2 and the LMS error obtained.

5.3 Time delay neural networks

In order to test the classification capabilities of the proposed TDNN, 50 EEG signals of each
class were taken from the database I. The classification procedure was executed following the
generalization-regularization presented for the DINN. The complete validation scheme was eval-
uated. In this particular case, 10 EEG signals from each class make up the validation set. The
results achieved by this NN can be consulted in Table (5.6) .

The weights for W1 and Wy with its two delays obtained after the training process can be
seen in Figure (5-6), the separation of the weights can be seen in Wa, Ws with a delay equal to

1s and W5 with a delay equal to 2s. Also the delay can be seen in the beginning of each Wh.
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Figure 5-5: Integral of the error per class obtained from the DfNN when the input is a signal
of class 2, the black line correspond to class 1, the blue line to class2, the red line to class 3.

Table 5.6: Results from the classification process per class for the TDNN.

C1 C2 C3 C4 C5
Samples 50 50 50 50 50
Training 100% 100% 100% 100% 100%
Generalization 100% 100% 86.66% 100% 93.33%
Independent Test 80% 80% 100% 100% 100%
CfA 93.33% 93.33% 95.55% 100% 97.77%

*CfA Classification Accuracy, according to the number of samples per section.

To perform the training and validation procedures, the signals used to evaluate the TDNN
classification properties were artificially fixed to 1000c where ¢ is the number of class. This
process is regular in signal processing algorithms in order to enforce an enchaced classification
process as shown in Figure (5-7).

The final classification accuracy percentage achieved for this NN was 95.99%.

5.4 Complex valued differential neural network

The CVNN employed the half of samples included in database I. A set of 30 signals of each

class was used for the training section, 15 signals of each class for the training and 5 signals of
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Figure 5-6: W7 and Wy, Wy with a delay equal to 1s and W5 with a delay equal to 2s correspond-
ing to TDNN after training with the database 1. In all the images, the black line correspond
to the weights of the first class, the blue line to the weights of the second class, the red line
correspond to the weights of the third class, the magenta line correspond to the weights of the
class 4 and finally the green one to the class 5.

each class for the testing part. This NN proved to have the most complex topology from all
the NN presented in this work. This complexity was reflected in the processing time needed to
complete the evaluation of each stage in the classification method proposed in this thesis. Each
sample took around 5 times more than the ones obtained with another NNs.

The weights W7 and Wy for this NN can be seen on the top of Figure (5-8). It is clear
the separation of the weights in W;. On the bottom left-hand side of the image, the compar-
ison between desired trajectory for the real part and the CVNN real part approximation is
detailed. On the right-hand side, the imaginary part of EEG signal transformed by FFT and
the corresponding CVNN imaginary part approximation is also described.

For each part (real and imaginary), the integral LMS error was obtained as shown on the
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Figure 5-7: On the top left the desired trajectory and the TDNN output, on the top right the
integral of the LMS error from the TDNN. On the lower part the error of the parallel TDNN
when having as an input a class 5 signal. In the lower part the black line belongs to the classl,
the blue line the class 2, the red line the class 3, the magenta line to class 4 and finally the
green line to the class 5.

top of Figure (5-9). On the bottom of figure, the response of parallel CVNN is depicted. In
this case, it is used a signal of class 5 as an input of the parallel NN. It can be seen that CVNN
is classifying correctly this signal because the green line showed in figure that corresponds to
the evaluation error is the one with less value. This NN achieved a total correct classification
percentage of 92.43%.

The results achieved by CVNN can be consulted in Table (5.7). The table presents the
scores obtained by the CVNN on each section of the generalization-regularization validation

method.
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of the second class, the red line correspond to the weights of the third class. The images of
the bottom are from left to right the trajectories of the CVNN Xe and X during the training
process the left image is the real part and the right one the imaginary one.

5.5 Neural networks in real time

This section present a summary of the results achieved during a visiting scholar period that
took place at Johns Hopkins University from July 2014 to April 2015. At the Computational
Sensory-Motor Systems Lab under the supervision of Dr. Ralph Etienne - Cummings. The
purpose of this visiting was to develop a hardware approximation of the NNs that have been

previously study in this thesis.
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Figure 5-9: On the top integral of the LMS error from the real and imaginary part of the
CVNN. On the lower part the error of the parallel CVNN when having as an input a class 5
signal. In the lower part the black line belongs to the classl, the blue line the class 2, the red
line the class 3, the magenta line to class 4 and finally the green line to class 5.

5.5.1 FPGASs differential neural networks

The first approach to implement an embedded NN used the particular topology of the DINN
and described in the embedded FPGA system. Fixed point representation of both the identifier
state as well as the identification error were developed. Table (5.8) shows the values employed
to implement the low precision representation of the identifier.

The DfNN identifier was implemented on a Zedboard development board. This board
is based on the Zynq?™-7000 AP SoC xc7z020-CLG484-1 processor. Memory resources of
this development board are 512M B DDR3, 256 M b Quad-SPI Flash, 4GB external SD card.
Communication systems of this board are USB-JTAG programming, 10/100/1000 Ethernet,
USB OTG 2.0 and USB-UART.
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Table 5.7: Results from the classification process per class for the CVNN.

C1 C2 C3 C4 C5
Samples 50 50 50 50 50
Training 100% 100% 100% 100% 100%
Generalization 86.66% 86.66% 86.66% 100% 86.66%
Independent Test 100% 80% 80% 80% 100%
CfA 95.55% 88.88% 88.88% 93.33% 95.55%

*CfA Classification Accuracy, according to the number of samples per section.

Table 5.8: DINN I/O values for software and hardware.

I/0 Floating P Fixed P

Sample double <4,16.11>
W1 double <+,16.8>
W2 double <4,16.8>
X double <+.,16.12>
Xe double <4,16.12>

Delta double <4,16.12>

The programming language to implement the 16 bits fixed point representation of DfNN
was VHDL. The corresponding code was generated using the Matlab HDL Coder 3.5 and ISE
Xilinx 14.4. An auxiliary AXI-4 interface was used to perform the Ethernet communication
between the computer and the development board. This method was implemented to follow
the time evolution on-line of the DINN based classifier. Table (5.9) shows the number of total
registers used to implement the identifier.

Figure (5-10) shows the performance of the DINN when working on the Zedboard, even
thought working with the low resolution provided by the 16 bits the DINN is able to estimate
the desired output. The obtained weights W7 and Wa for this DINN can be observed in Figure
(5-10).

Table 5.9: Device utilization.

Type of register Used Total
Slice Registers 471 106400

Slice LUTS 50284 53200

Slice LUT-Flip Flop pairs 50291 53200
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Figure 5-10: On the top Wi and Wy for the hardware implemented DfNN. On the bottom left
the desired trajectory on slashed black line and the hardware DfNN output on solid black line.
On the bottom right the integral of the LMS error obtained from the left bottom image.

5.5.2 VLSI differential neural networks

For the designing of the VLSI circuit, the VHDL code generated for the DfNN was firstly tested
in order to check time issues in Cadence by generating a test-bench file and then synthesis in
the design compiler called Sinopsys. Then, the corresponding compiled file was imported to
Cadence Encounter to perform the Place and Routing procedures of this design. As a result,
the DfNN VLSI design occupied an estimated area of 4.5x4.5 mm (9 tinychips). Figure (5 — 11)
depicts the full design of the DINN. The final design was sent to MOSIS, a private company
that produces final integrated devices. The IBM fabrication process was chosen for the design,
the estimated time for fabrication is about 2 months according to the evaluation performed by

MOSIS.
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Figure 5-11: VLSI final design of the DINN on Cadence.

5.5.3 Analog differential neural networks

This section describes the implementation of the DfNN identifier for a EKG signal in analog
circuits. The EKG signal was artificially generated with a microcontroler and later converted to
analog by using a digital to analog converter IC. In order to replicate the NN algorithms with
analog circuits, the segments that make up the NN (activation functions, weights, constants,
NN structure) were build in parts.

The first part to built were the NN activation functions (o, ¥). The equations S1,Se and
Ss are the three slopes that make up the sigmoid like signal, this sigmoid generator design was
taken from [37], for simulation purpose the values employed for o were Ry = 1M, Ry = TMSQ,
R3 = 1.5MQ and Rp = 2009Q,and in the case of ¥ were Ry = 1M, Ry = TMSQ, R3 = 1.5MQ
and Rp = 1962. The circuit shown in Figure (5-12) is the sigmoid generator circuit with

operational amplifiers.
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Figure 5-12: Activation fucntion of a DINN builded with Opam’s.

The circuit that describes Wj as the following equation

Wi(t) = —kiPA(t)o" + 27k W (1)

can be seen in Figure (5-13), in this circuit DC signals of value ST = 3v,K; = 1.2v
and P = 5v, the operational amplifier section of the circuit is the integrator with values of
Ry =85KQ, Ry = 10K, C1 = 22uf and finally a high input impedance buffer with values of
Ry =1KQ and Ry = 1KQ.

The W5 is described as

W2 (t) = —ko PA (t) u(t)\IJT + 2_1/€2W2 (t)

where ST and P have the same value as in W7 and K is a DC signal of valued 1.8v, u is
the EKG signal. The next part of the circuit is the integrator with Ry = 7.5KQ), Ry = 10K,
and C1 = 22uf, the last section is the high input impedance buffer with values of Rg = 1K)
and R4 = 1KQ. The circuit is depicted in Figure (5-14).
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Figure 5-13: W; builded with Opam’s.

The identifier based on NN employed is described by

D) = Ad (1) + Wi (1) 01 (& (1)) + Walt) o (2(0) u(t) (5.2)

The circuit that describe the equation (5.2) is shown in Figure (5-15), where A = —1.2v,the
integrator values are Ry = 8K, Ry = 10K, and C7 = 33uf, finally a high input impedance
buffer with values of R3 = 1K and Ry = 1KQ.

On the top left section of Figure (5-16) the resulting W for this NN is depicted on the top
right side is the resulting Ws. On the bottom left is an analog EKG simulated signal and the
hardware NN approximation, a full beat takes around 1s, so it is clear the time that takes the
HNN to approximate to the desired output, this time can be seen two in Wy and Ws. On the
left is the LMS error from the desired output and HNN approximation.
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Figure 5-15: DINN builded with Opam’s.
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the bottom left, the LMS error obtained from the signals depicted in the right bottom image.
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Chapter 6

Published results & scholar activities

6.1

6.2

Articles published in journal included in the JCR

M. Alfaro-Ponce, A. Argiielles and 1. Chairez, "Adaptive Identifier for Uncertain Complex
Nonlinear Systems Based on Continuous Neural Networks", IEEE Transactions on Neural

Networks and Learning Systems, vol. 25, no. 3, pp. 483 - 494, 2013.

M. Alfaro-Ponce, A. Argiielles and 1. Chairez, "Continuous neural identifier for uncertain
nonlinear systems with time delays in the input signal", Neural Networks, vol. 60, pp.53

-63, 2014.

M. Alfaro-Ponce, 1. Salgado, A. Argiielles and I. Chairez, "Adaptive identifier for uncer-
tain complex-valued discrete-time nonlinear systems based on recurrent neural networks",

Neural Processing Letters, Published online February 2015.

Articles published as extended manuscript in international

conferences

Alfaro M., Argiielles A.,Yanez C. and Chairez 1., Continuous Neural Networks for Electro-
encephalography Waveform Classification, ANDESCON 2012, Cuenca, Ecuador, Novem-
ber 2012.
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6.3

6.4

Alfaro M., Argiielles A. and Chairez 1., Continuous neural identifier for uncertain non-
linear systems with time delays in the input signal, IJCNN 2013, Dallas, USA, August
2013.

Workshops

2014 Telluride Workshop of Neuromorphic Cognition Engineering, 29 June 2014 to 19
July 2014.Telluride, Colorado, USA.

Visiting Scholar

Johns Hopkins University, Computational Sensory-Motor Systems Lab., from 1 June 2014
to 28 April 2015, MD., USA.
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Chapter 7

Conclusions & further work

In this thesis four topologies of NNs in software were addressed; RNN, DfNN, TDNN and a
CVNN. All these different topologies of NNs showed classification capabilities over 91% when
working with the raw EEG signal.

The first NN topology to be approach was the one based on RNNs to perform patterns
recognition in raw EEG signals, the proposed algorithm classification accuracy was measured by
two validation techniques employing the database I. The generalization-regularization method
achieve a total classification accuracy of 94.21% on the other hand the 5-fold cross validation
obtained a total classification accuracy of 97.48%.

The second topology to be addressed was a DfNN also the adjusting laws for the weight were
develop to perform pattern recognition in raw EEG signals. For this algorithm two databases
were employed. With the database I two validation process were applied, the generalization-
regularization method accomplish a total classification accuracy of 94.89%, and the second val-
idation was 5-fold cross validation with a total classification accuracy of 97.4%. Next, database
II was validated only by the generalization-regularization method scoring a total classification
accuracy of 91.24%.

Also a NN to perform patterns recognition based on the windowed response of raw EEG
signals and time-delay theory was developed. This NN was only validated with half of the total
EEG signals that make up database I and with the generalization-regularization method. From
this NN a total classification accuracy of 95.99 was achieved.

The final NN topology software to be approach on this thesis was a DNN to perform patterns
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recognition based on the frequency response of raw EEG signals. Database I was employed to
validate this topology, achieving a total classification accuracy of 91.43%. In Table (2.1) different
classification methods where applied to the database I employing preprocessing techniques to
raw EEG signals achieving results between 90 to 99% of classification accuracy. The difference
between these results and those presented in this theses is that they only work with two classes
of the whole database and the results contained in this work were achieve from the 5 classes
when working with the raw EEG signal.

The further work for the software NN will be to test the TDNN and CVNN with the full
database I, this to verify if the correct classification scores keeps over 90%. In the particular
case of database 11, the idea is to achieve a 100 EEG signals per class in order to make it more
reliable for the NN training and test. Until now the EEG signal that is employed as a NN
input is just one, in database I is already described that is a just one electrode EEG, but for
database II there are 14 possible electrodes however it is only use the one corresponding to the
VEPs part of the brain. The next step would be to generate the four NN topologies that take
into account the 14 EEG channels as an input.

All the software NNs that are deal in this works take a lot of software resources around 60%
of the computer ram and the time to run a single EEG signal from database I that are 23.6
s signals, the RNN timing was about 5:25, the DfNN took around 10 min, the TDNN 30-40
min and the CVNN between 2-3 hours. All these times for the training which demands more
computer resources, then when the weights are fixed the times get reduced.

Even whit this time reduction it is not possible to say that the NNs are able to classify the
signal as soon at they end. There are two ways to deal whit this, first would be to work the
software NN in a computer with more resources., the second to implement the hardware NN.
The hardware implementation results that are present in this thesis are not applicable to the
classification task, even thought the NN were implemented in hardware and demonstrated to
work in soft real time.

The only topology that was put on hardware was the DfNN, but it was not tested with
any of the two EEG databases. For the FPGA and the VLSI implementation, it was only to
test the NN as a identifier, employing a EEG or EKG signal as an input and a desired output
trajectory. In the FPGA the system show to work and being able to reproduce the desired
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output trajectory also the interface that was generated allow the comparison between the same
software NN and the hardware NN, it is remarkable the fact that even with low resolutions
that have the FPGA signals the performance from both NN was almost the same, on the other
hand the VLSI was only test in simulation due to time of fabrication of the IC.

For the analog implementation of the NN it did not work with EEG signals instead it work
with an EKG signal, due to the limitation in time this section was just a simulation, in order
demonstrated that the analog NN work correctly as a identifier for this signal. The work to do
will be to implement the full classifier for EEG first in the FPGA, but this is still limited due
to the size of the FPGA. Next the VLSI design of the full classifier scheme for EEG, finally
to design the analog classifier in transistor level for its circuit fabrication. It would be ideal to

also implement the other topologies in order to measure their correct classification.
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