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Resumen

La optimización multi-objetivo tiene como fin, el encontrar una aproximación del frente
de Pareto de problemas de optimización multi-objetivo dado con la mayor precisión
posible. Puesto que el frente de Pareto no puede ser, en general, encontrado com-
pletamente, es aceptado entonces que los algoritmos evolutivos de optimización multi-
objetivo (EMOAs) sólo proporcionen una representación de tamaño finito del conjunto
de intereses. En general, se requiere que la aproximación obtenida simultáneamente
ofrezca una buena convergencia al frente de Pareto y una buena distribución de las
soluciones a lo largo del frente de Pareto, dichas caracteŕısticas pueden funcionar como
indicadores de desempeño.

En esta tesis, el indicador promedio de Hausdorff (∆p), recientemente desarrollado
y que cumple con ambos criterios de desempeño (convergencia y distribución), se utiliza
para resolver el problema de encontrar aproximaciones Hausdorff de tamaño finito del
frente de Pareto de problemas de optimización multi-objetivo (MOP) por medio del
uso del cómputo evolutivo.

Dado que muchas aplicaciones requieren una aproximación uniformemente dis-
tribuida a lo largo del frente de Pareto y, aproximaciones que son buenas en términos
de Hausdorff normalmente distribuyen las soluciones de forma uniforme a lo largo del
frente de Pareto, hemos propuesto dos algoritmos basados en el indicador ∆p con el
objetivo de obtener este tipo de aproximaciones.

En primer lugar proponemos el algoritmo evolutivo de partición y selección (PSE-
MOA), que se basa en el algoritmo de partición y selección (PSA) presentado reciente-
mente. Su técnica de partición permite la selección de un conjunto finito de soluciones
bien diversificado a partir de un conjunto arbitrario dado, con un bajo costo computa-
cional independiente del número de objetivos del problema dado.

Cuando se integra el PSA dentro de un EMOA, esta estrategia mejora significativa-
mente la explotación de la diversidad en las aproximaciones del frente de Pareto. Esta
propuesta explora el uso del PSA como el mecanismo de selección de las mejores solu-
ciones, dirigido a mejorar el valor del indicador ∆p entre la aproximación encontrada
y el frente de Pareto.

En segundo lugar, se presenta el algoritmo evolutivo ∆p (∆p-EA), un nuevo algo-
ritmo para encontrar aproximaciones Hausdorff del frente de Pareto. La idea subya-
cente es utilizar directamente el problema de optimización escalar que es inducido por
el indicador ∆p. Este enfoque puede ser visto como la transformación de la información
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de un conjunto de soluciones a un escalar y se puede abordar tanto con técnicas de
programación matemática como con algoritmos evolutivos.

En este trabajo de tesis demuestra la capacidad de los nuevos enfoques propuestos
en la solución de un conjunto de MOPs de prueba con dos, tres y cuatro objetivos y
diferentes formas de sus frentes de Pareto.



Abstract

Evolutionary multi-objective optimization aims at approximating the Pareto front of
a given multi-objective optimization problem as accurately as possible. As the exact
Pareto front can in general not be computed, evolutionary multi-objective optimization
algorithms (EMOAs) can only provide a finite size representation of the set of interest.
In general, closeness to the Pareto front and a sufficient spread of the solutions are
simultaneously required and function as performance indicators. In this thesis, the
recently developed averaged Hausdorff ∆p indicator, which explicitly aims at fulfill-
ing both performance criteria, is used to solve the problem of computing finite size
Hausdorff approximations of the Pareto front of multi-objective optimization problems
(MOPs) by means of evolutionary computing.

Since many applications desire an approximation evenly spread along the Pareto
front and approximations that are good in the Hausdorff sense are typically evenly
spread along the Pareto front, we proposed two algorithms based on the ∆p indicator
to obtain this kind of approximations.

First we propose the part and selection evolutionary algorithm (PSEMOA), which
is based on the recently presented part and selection algorithm (PSA). Its partitioning
technique allows the selection of a well-diversified set out of an arbitrary given set,
while maintaining low computational cost regardless of the number of objectives of the
given problem. When PSA is embedded into an EMOA, this strategy has significantly
enhanced the exploitation of diversity in the approximations of the Pareto front. This
proposal explores the use of the PSA as an archiving selection mechanism, to improve
the averaged Hausdorff distance of the found approximation of the Pareto front.

Second, we present the ∆p evolutionary algorithm (∆p-EA), a novel method to com-
pute averaged Hausdorff approximations of the Pareto front of MOPs. The underlying
idea is to directly utilize the scalar optimization problem that is induced by the indi-
cator ∆p. This approach can be viewed as a certain set based scalarization and can be
addressed both by mathematical programming techniques and evolutionary algorithms.

We demonstrate the strength of the novel approaches on some benchmark MOPs
with two up to four objectives and with different shapes of their Pareto fronts.
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CHIM: Convex hull of individual minima.
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Chapter 1

Introduction

In many real-world applications, it is required to consider several conflicting objectives
concurrently leading to a multi-objective optimization problem (MOP). One important
characteristic of MOPs is that the solution set, the so-called Pareto front, is typically
not given by a singleton as for scalar optimization problems but forms a (d − 1)-
dimensional object, where d is the number of objectives involved in the problem. Since
these sets can apart from trivial examples not be computed analytically, numerical
methods are required that compute suitable finite size approximations. Evolutionary
multi-objective algorithms (EMOAs) have caught the interest of many researchers in
the recent past since they accomplish this task outstandingly (e.g., [1, 2, 3, 4, 5]). Due
to their population based and global approach, EMOAs are capable of computing an
entire set of candidate solutions A within one run of the algorithm such that the image
of A (denoted by F (A)) is well-distributed and sufficiently close to the Pareto front
which is the image of the Pareto set X∗.

One problem that remains is to measure the performance of these algorithms, i.e.,
the relation of F (A) to the Pareto front. For this, several performance indicators
have been proposed such as the Hypervolume indicator [6] and the R-indicators [7].
The indicator used within this work is ∆p [8] which can be viewed as the averaged
Hausdorff distance between F (A) and the Pareto front. Optimal ∆p approximations
prefer, roughly speaking, candidate solutions whose images are evenly spread along the
Pareto front (Figure 1.1 shows the best ten points approximations to three different
Pareto fronts according to ∆p in two dimensions). Thus, ∆p aims to avoid gaps in the
representation of the solution set providing the decision maker a suitable overview of the
given optimal possibilities. The ∆p value is thus a direct measure for the approximation
quality of F (A).

A particular example where (averaged) Hausdorff approximations are advantageous
is the following approach to the the online-optimization of mechatronical systems: in
a first step, the (conflicting) objectives of the underlying system are identified and an
approximation A of the Pareto front of the resulting MOP is computed offline. This set
A is further on used as the basis for upcoming online control by providing a repository
of reference operating points: the “optimal” point p(λ) ∈ X∗ is determined online,
i.e., while running the system, according to the current situation or demand λ of the

27
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Figure 1.1: Pareto fronts and optimal ∆1 approximations for three different MOPs
with two objectives.
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Pareto 

front

F1

F2

Feasible region

Figure 1.2: Feasible region of a bi-objective problem and its Pareto front.

system and is used as the actual operating point. Since λ = λ(t) varies with time, this
‘optimal’ point has to be updated over and over again, according to the sensitivity of
the system. See [9, 10] for an operating point assignment strategy of a linear drive,
and [11] for an online-adjustment of an active suspension system.

Crucial for the stability of the system is that the switch from one point or system
setting p(λ1) to the next one p(λ2) can not be done arbitrarily, but has to be carried
out as smoothly as possible. That is, large and abrupt qualitative changes (amongst
others) in terms of the changes in the influential objective values, have to be avoided.
Thus, gap free representations of the Pareto front are desired. Since the values of
λi are not known a priori, evenly spread solutions around the Pareto front seem to
be most appealing which is provided by ∆p approximations. Such approximations are
particularly interesting for certain problems related to multi-objective control where the
approximation of the Pareto front serves as a basis for the online control by providing
a repository of reference operating points (see [12, 13, 14] for such examples).

1.1 Research Problem Area

The Pareto front of a MOP typically forms a (d − 1)-dimensional entity, where d
is the number of objectives, and these objectives are defined by the set of functions
F = (F1, F2, ..., Fd)

T involved in the problem. Figure 1.2 shows an example of a feasible
region of a bi-objective (i.e., d = 2) problem and its Pareto front. The shape of the
Pareto fronts depends of the definition of the problem and can take many different
forms as it is shown in Figure 1.3 for bi-objective problems.

EMOAs generate a finite size approximation of the Pareto front, but which is the
best distribution of points? Figure 1.4 shows some possible final solutions or final
approximations of the Pareto front with different characteristics: approximation (b)
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F2

F1

F2

F1

F2

F1
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F1

Figure 1.3: Different shapes of Pareto fronts (convex, concave, convex-concave, discon-
nected).

has a good proximity to the Pareto front but it does not cover it completely, meanwhile
(c) has a better coverage but a very bad proximity. Approximation (d) has a very good
proximity and good distribution among its points but it does not cover all the Pareto
front. In this case the desirable approximation according to proximity, coverage and
distribution would be approximation (a).

Since neither X∗ nor the Pareto front can typically be computed analytically, the
most important task is to numerically detect a finite size approximation of the Pareto
front. In this thesis we are particularly interested in a small distance between the final
solution A and the Pareto front and a sufficiently good spread.

For the numerical treatment of MOPs specialized EMOAs have been used in the
recent past (e.g., [1, 2, 3, 4, 5]). One main reason (among others) is that algorithms
of that kind are capable of delivering reliably a finite size approximation A of the
Pareto front in one single run of the algorithm, and a desired candidate to guide the
search during the evolution of the algorithm is the ∆p indicator. Reasons for this
are that approximations that are good in the ∆p sense are, roughly speaking, ones
those elements are evenly spread along the Pareto front, which is closely related to the
terms spread and convergence. Further, a low ∆p value gives a clear statement on the
approximation quality of A to the Pareto front, see e.g. [8].

The optimal distribution of the elements of A to get a “suitable” approximation
of the Pareto front is, however, not completely clear and certainly problem dependent
which is e.g. reflected by the numerous performance indicators that exist in the evolu-
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Figure 1.4: Example of final approximations of the Pareto front, represented by the
dots.

tionary multi-objective optimization (EMO) community (see, e.g., [15, 16, 6, 7, 17, 18]).

In this thesis, we focus on MOPs with d = 2, 3 and 4 objectives since (so far) for
every number of objectives involved in the problem a new strategy has to be found to
obtain satisfying results.This is due to the fact that the distance of a current point or
set to the Pareto front is of course not known but has to be approximated. Since further
the dimension of the Pareto front depends on d, the strategies for this approximation
change accordingly, at least up to now. Former studies have addressed the problem
at hand for d = 2 and 3, see [19, 20, 21]. For more than three objectives, these
methods can either not be applied (e.g., the polygon approximation of the Pareto front
[19] that is restricted to bi-objective problems) or lose their efficiency (such as the
multidimensional scaling approach [20]). Here we present two new EMOAs capable of
selecting a well-spread subset out of a given data set and will be used for selection in
the candidate population set. This together with a mechanism to get a pressure toward
the Pareto front will be the basis for the proposed algorithms that aim for both spread
and convergence.

1.2 Motivation

In several applications (e.g., in engineering and finance) it is desired that several ob-
jectives have to be optimized concurrently leading to a MOP. One important charac-
teristic of a MOP is that its solution set typically forms a (d− 1)-dimensional object.
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Since these sets can in general not be computed analytically the question arises how to
compute suitable finite size approximations of them that have to be presented to the
decision maker (e.g., [22, 23, 24, 25, 6]).

On the other hand many applications desire an approximation evenly spread along
the Pareto front, and when selection takes place for the sake of exploiting convergence
and spread, proper selection criteria must be formulated, in order to achieve a balance
among these two objectives. Such a balance is not easy to achieve because normally
these motivations are contradicting each other. Approximations that are good in the
Hausdorff sense are typically evenly spread along the Pareto front, and this is the
reason that using the ∆p indicator as guide during the search is desire to reach such
approximations.

To accomplish this task, specialized EAs have caught the interest of many re-
searchers in the recent past (e.g, [1, 5]). Reasons for this include the global approach
of these methods, their relatively low assumptions on the model, their high robustness,
and that they are capable of delivering a finite size approximation of the entire set of
interest in one run of the algorithm.

The PSA selects a diverse subset from a given set of points. This mechanism has
a low computational complexity no matter the number of dimensions of the problem
is, and it is capable to select a well-spread subset, of any size, even if the original set
is poorly distributed. These properties make PSA suitable as a selection mechanism
within EMOAs. We proposed the PSEMOA that integrate the PSA into an EA in
order to improve its ability to find a well-spread approximation of the Pareto front.

Another form to make a better selection during the evolution is using a performance
indicator to do it. Among these methods, indicator based evolutionary algorithms
(IBEAs, e.g., [26, 4, 19, 27]) are commonly accepted due to their high performances
and since the use of an indicator allows to include user preferences into the computation
of the approximation. Since an indicator assigns to each archive (or population) A a
value I(A) ∈ R an IBEA hence transforms the given MOP (implicitly) into a scalar
optimization problem.

One major drawback of IBEAs is that they need quite a few function evaluations
to obtain good approximations of the Pareto front. Moreover, it is accepted that these
methods, in their current implementations, do not have to converge to the optimal
approximation. For instance, for the hypervolumen indicator ([6]) it is known that
if only µ children from µ parents (where |A| = µ) and λ < µ offspring are chosen
to update the archive in each generation (as e.g. done in [4] with the SMSEMOA
for λ = 1) there is no guarantee for convergence ([28]). Other studies (e.g., [29, 30])
indicate similar results for further performance indicators since the consideration of
less than µ elements in one iteration is equivalent to a cyclic search.

Based on this insight, we propose here the selection of λ = µ offspring in each
generation which means that the SOP induced by the indicator is used directly. The
challenge here is that the problem is lifted into a higher dimensional search space
compared to the given MOP. If the problem is addressed via evolutionary strategies,
however, the transformation from MOP to SOP comes with the potential that the used
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EA may converge, ideally even linearly, to the best solution ([31]).

We present a novel method to compute averaged Hausdorff (∆p) approximations of
the Pareto fronts for bi-objective problems. It directly utilizes the scalar optimization
problem that is induced by the performance indicator ∆p. This method can be viewed
as a certain set based scalarization approach and can be addressed both by mathe-
matical programming techniques and EAs. In this method, we focus on the latter and
propose a first single objective EA (∆p-EA) for such ∆p approximations.

1.3 Objectives

The goals of this thesis are as follows:

To design EMOAs capable to efficiently find “good” Hausdorff approximations of
the Pareto front for MOPs with 2, 3 and 4 objectives.

1. To analyze the suitability of using PSA as tool to select a well-distributed set of
points during the evolution.

2. To compare the new proposal against other state-of-the-art algorithms.

3. To define possible realizations tailored to ∆p that can be addressed both by
mathematical programming techniques as well as evolutionary algorithms.

4. To expand the latter approaches into a first single objective evolutionary algo-
rithm aiming for good ∆p approximations of the Pareto front for bi-objective
problems with different shapes of the Pareto front.

5. To analyze the suitability of this proposal for three-objective problems.

6. To apply the proposed algorithms to a real application.

1.4 Demarcations of scope and key assumptions

In this thesis, we aim for ∆p approximations since the ∆p indicator, which measures
the averaged Hausdorff distance between the image of the archive and the Pareto front,
prefers evenly spread solutions along the Pareto front which comes closest to the terms
spread and convergence as used EMO community. This indicator has the potential
drawback that the Pareto front is not known a priori which is needed to compute the
indicator value during the run of the algorithm. The latter is a very important issue
to solve since ∆p needs a reference set to be computed. However, if this reference is
not “good enough”, i.e. the reference is not a “good” approximation of the Pareto
front, then we cannot expect good results by using this indicator. If, on the other
side, this reference set is defined “good”, i.e. the reference is a “good” approximation
of the Pareto front, then we can expect very good results. The complexity to define
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the reference during the evolution of the algorithm increases when the dimensionality
of the problem increases, and then the reference set needs different strategies to be
generated.

1.5 Contributions

The contributions of this thesis are as follows:

• We present a novel method to compute averaged Hausdorff (∆p) approximations
of the Pareto fronts of MOPs, utilizing directly the scalar optimization problem
that is induced by the performance indicator ∆p. This method can be viewed as
a certain set based scalarization approach and can be addressed both by mathe-
matical programming techniques and EAs.

• It is proposed a first single objective EA (∆p-EA) guided directly by the ∆p

indicator, which uses a novel strategy to generate the reference set needed by
this indicator for two and three-objective optimization problems.

• We define an EMOA called PSEMOA, which can be used to solve two, three, and
four-objective optimization problems, and it is guided by ∆p and uses the PSA as
tool to generate the reference set needed. This algorithm has a low computational
complexity even when the number of objectives is increased.

• We applied the PSEMOA to an application which arises in the design of proportional-
integral-derivative (PID) controllers.
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Within this thesis project the following papers where published:

O. Schütze, C. Domı́nguez-Medina, N. Cruz Cortés, L. G. de la Fraga, J. Q. Sun,
G. Toscano-Pulido, R. Landa, “A Scalar Optimization Approach for Hausdorff
Approximations of the Pareto Front”, in Engineering Optimization, 2015, to
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G. Rudolph, O. Schütze, C. Grimme, C. Domı́nguez-Medina, H. Trautmann, “Find-
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tational Optimization and Applications, 2015, to appear.

S. Salomon, C. Domı́nguez-Medina, G. Avigad, A. Freitas, A. Goldvard, O. Schütze,
and H. Trautmann, “PSA Based Multi Objective Evolutionary Algorithms”, in
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolution- ary
Computation III, Eds. Springer International Publishing, 2014, vol. 500, pp. 233-259.

C. Dominguez-Medina, G. Rudolph, O. Schütze, and H. Trautmann. “Evenly
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1.7 Content

Including this introduction, the thesis consists of six chapters. Chapter 2 presents basic
definitions and concepts as a background for the following chapters of this document.
Chapter 3 is dedicated to the presentation of the state-of-the-art related to understand
the rest of the thesis. Next, in Chapter 4, we present the PSEMOA which instead of an
approximation of the reference front, the PSA has been used on the candidate popula-
tion set. The PSA is capable of quickly selecting a “well-spread” subset out of a given
data set and serves thus as an alternative to determine the reference set, in particular
for problems with more than two objectives, mainly because its computational require-
ment does not increase significantly when the number of objectives increases. Chapter
5 presents a novel method to compute ∆p approximations of the Pareto front, which
directly utilizes the scalar optimization problem that is induced by the performance
indicator ∆p. This method can be viewed as a certain set based scalarization approach
and can be addressed both by mathematical programming techniques and EAs. Here
we focus on the latter and propose the ∆p-EA for such ∆p approximations. In Chap-
ter 6, we present numerical results of the PSEMOA on a three objective optimization
problem related to the design of proportional-integral-derivative (PID) controllers, and
results of the ∆p-EA on the bi-objective optimization problem taking into account only
two objectives of the related design of PID controllers optimization problem, and we
give our conclusions and possible paths for future research in Chapter 7.
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Chapter 2

Background

This chapter introduces a number of background concepts related to the content of this
thesis.

2.1 Single-Objective Optimization

A single-objective optimization problem (SOP) represents the minimization or maxi-
mization of a real function by searching input values from within an allowed set and
computing the value of the function. More generally, optimization includes finding
“best available” values of some objective function given a defined domain (and/or a
set of constraints). The general mathematical problem is how to choose some variables
collected in a vector x = (x1, x2, x3, ..., xn)T to minimize or maximize an objective
function F (x), often subject to some equation constraints for the type g(x) ≤ 0 and/or
some equality constraints h(x) = 0, where g : Rm → R and h : Rp → R ([5]).

Definition 1 (General SOP). A general SOP is defining as minimizing (or maxi-
mizing) F (x) subject to gi(x) ≤ 0 , i = {1, ...,m}, gi : Rm → R, and hj(x) = 0,
j = {1, ..., p}, hi : Rp → R, x ∈ Ω. A solution minimizes (or maximizes) the scalar
F (x) where x is a n-dimensional decision variable vector x = (x1, x2, x3, ..., xn)T from
some domain Ω.

The set Ω contains all possible decision variables x that can be used to satisfy an
evaluation of F (x) and its constraints. Of course, x can be a vector of continuous or
discrete variables as well as F being continuous or discrete.

An optimization method tries to find the global optimum (may not be unique) of
F subject to Ω. Figure 2.1 shows graph and the global minimum of a hypothetical
one-dimensional unconstrained SOP.

37
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Figure 2.1: Hypothetical SOP.

2.2 Multi-Objective Optimization

Optimization problems with more than one objective are known as multi-objective op-
timization problems. Normally, these objectives are in conflict each other leading to
uncountably many solutions in the solution set, the Pareto set. These solutions repre-
sent vectors whose components define a trade-off in the objective functions. A decision
maker (DM) has the responsibility to select the “best” solution among this set accord-
ing to what is desired (i.e., cheaper production, stronger engine, faster performance,
etc.).

More generally, a MOP is a problem of finding a set of decision variables x =
(x1, x2, ..., xn)T which satisfies constraints and optimizes a set of objective functions
F = (F1, F2, ..., Fd)

T .

Continuous MOPs, as we consider here, can be stated as

min
x∈Ω
{F (x)}, (2.1)

where Ω ⊂ Rn is the domain and F : Ω→ Rd is defined as the vector of the objective
functions F (x) = (F1(x), . . . , Fd(x))T . For simplicity we assume that each objective
Fi : Ω→ R is sufficiently smooth.

In the same way as far SOP, it is possible that a MOP has constraints which are
imposed by the particular characteristics of the environment or available resources (e.g.,
physical limitations, time restrictions, economic founding, etc.). These restrictions
must be satisfied in order to consider a certain solution acceptable under the real
conditions. In general these constraints describe dependencies among decision variables
and constants (or parameters) involved in the problem. These constraints are known
as inequalities:
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gi(x) ≤ 0 i = 1, ...,m, gi : Rm → R, (2.2)

or equalities:

hj(x) = 0 j = 1, ..., p, hi : Rp → R. (2.3)

The set of objective functions F gives a value of how “good” a solution x is. In
real-world problems, some functions are in conflict with others, and some must be
minimized while others must be maximized. These functions may be measured in the
same units or not. The multiple objectives being optimized almost always conflict,
leading to a partial, rather than a total, ordering on the search space [32].

2.3 Basic Concepts of Multi-Objective Optimiza-

tion

For this kind of problems it is not a trivial task to define which solutions are the “best”
or “optimal”, because we can have only a partial order between solutions. In order
to solve this problem a comparison strategy between solutions has to be defined. The
most common way to compare two different solutions into a MOP is using the concept
of Pareto dominance [33]. It allows us to define which are the optimal solutions within
the domain Ω. The Pareto dominance is defined as follows:

(a) Let v, w ∈ Rd. Then the vector v is less than w (v <p w), if vi < wi for all
i ∈ {1, . . . , d}. The relation ≤p is defined analogously.

(b) A vector y ∈ Ω is dominated by a vector x ∈ Ω (x ≺ y) with respect to (2.1) if
F (x) ≤p F (y) and F (x) 6= F (y), else y is called non-dominated by x.

(c) A point x ∈ Ω is called (Pareto) optimal or a Pareto point if there is no y ∈ Ω
which dominates x.

(d) The set X∗ of all Pareto optimal solutions is called the Pareto set and its image
F ∗ = F ∗(X∗) the Pareto front. Figure 2.2 shows the Pareto fronts of a continuous
and a discrete MOP.

Table 2.1 shows the different dominance relations between two solutions (F (x1),
and F (x2)) in the objective space and between two approximation sets of the Pareto
front (A and B).

Figure 2.3 shows the comparison between several vectors for a bi-objective problem
(assuming minimization). In this example, in the objective space, point u dominates
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Table 2.1: Dominance relations between solutions and approximation sets of the Pareto
front.

Relation Objective Solutions

Strict dominance F (x1) ≺≺ F (x2) ∀i∈F , Fi(x1) is better
than Fi(x2)

Dominance F (x1) ≺ F (x2) F (x1) is not worse
than F (x2) in all ob-
jectives and better in
at least one objective

Weakly Dominates F (x1) � F (x2) F (x1) is not worse
than F (x2) in all ob-
jectives

Incomparability F (x1)||F (x2) neither F (x1) weakly
dominates F (x2) nor
F (x2) weakly domi-
nates F (x1)

Indifference F (x1) ∼ F (x2) F (x1) has the same
value F (x2) in each
objective

Relation Approximation Sets

Strictly Dominates A ≺≺ B Every b ∈ B is strictly
dominated by at least
one a ∈ A

Dominates A ≺ B Every b ∈ B is domi-
nated by at least one a
∈ A

Weakly Dominates A � B Every b ∈ B is weakly
dominated by at least
one a ∈ A

Incomparable A || B neither A weakly dom-
inates B nor B weakly
dominates A

Indifferent A ∼ B A weakly dominates B
and B weakly domi-
nates A
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Figure 2.2: Continuous (left) and discrete (right) Pareto fronts (F ∗) of hypothetical
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Figure 2.3: Pareto dominance.

v (u ≺ v) because its both objective values are smaller than the values of v. If we
compare points u and s we have that u is better according to F1 but it is worst for
F2 then u ⊀ s. In case u ⊀ s and s ⊀ u then both solutions u and s are called
incomparable between each other.

Since the complete Pareto front cannot be computed analytically (except for trivial
examples), it is common to accept a finite size approximation to the Pareto front in
order to select the “best” solution. The question arises how to compute a suitable
finite size approximation of the Pareto front.
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2.4 Evolutionary Multi-Objective Optimization Al-

gorithms

In order to solve MOPs it is necessary to define numerical methods that compute suit-
able finite size approximations of the Pareto front. EMOAs have caught the interest of
many researchers in the recent past since they accomplish this task outstandingly (e.g.,
[1, 2, 3, 4, 5]) and which are capable of computing an entire set of candidate solutions
within one run of the algorithm. The EMOAs are the multi-objective approach of the
evolutionary algorithms which are described as follows.

2.4.1 Evolutionary Algorithms (EAs)

EAs provide an alternative to traditional optimization techniques by using directed
random searches to locate optimal solutions in complex landscapes [34].

In nature, the best individuals suited to competition for limited resources survive.
Adapting to environment changes is essential for the survival of individuals of each
species. While the various features that uniquely characterize an individual determine
its survival capacity. the features in turn are determined by the individuals genetic
content, specifically, each feature is controlled by a basic unit called a gene. The set of
genes controlling features form the chromosomes, which are the “keys” to the survival
of the individual in a competitive environment.

Evolution represents a succession of changes in features of the species, it is the
changes in the species genetic material that form the essence of evolution. Specifically,
evolution drives the joint action of natural selection and the recombination of genetic
material that occurs during reproduction.

In nature the competition among individuals for limited resources such as food
and/or space results in the fittest individuals dominating over weaker ones. Only the
fittest individuals survive and reproduce, a natural phenomenon called “the survival
of the fittest”. Hence, the genes of the fittest survive to the next generation, while
the genes of weaker individuals die out. Natural selection leads to the survival of the
fittest individuals, but it also implicitly leads to the survival of the fittest genes.

The reproduction process generates diversity in the “gene pool”. Evolution starts
when the genetic material (chromosomes) from two parents recombines during repro-
duction. New combinations of genes are generated from previous ones and then a new
gene pool is created. The exchange of genetic material among chromosomes is called
crossover. Segments of the two parent chromosomes are exchanged during crossover,
creating the possibility of a “better” combination of genes for the next individuals.
Repeated selection and crossover cause the continuous evolution of the gene pool and
the generation of individuals that survive better in a competitive environment.

In the early 1970s [35] an evolutionary algorithm was proposed as a computer
program that mimics the evolutionary process in nature. This algorithm manipulates
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a population of potential solutions to an optimization (or search) problem. It operates
on encoded representations of the solutions, which are equivalent to the genetic material
of individuals in nature, and not directly on the solutions themselves. This algorithm
encodes the solutions as strings of bits from a binary alphabet. As in nature, selection
provides the necessary driving mechanism for better solutions to survive. Each solution
is associated with a fitness value that reflects how good it is, compared with other
solutions in the population. The higher the fitness value of an individual, the higher its
chances of survival and reproduction and the larger its representation in the subsequent
generation. Recombination of genetic material in evolutionary algorithms is simulated
through a crossover mechanism that exchanges portions between strings. Another
operation, called mutation, causes sporadic and random alteration of the bits of strings.
Mutation too has a direct analogy from nature and plays the role of regenerating lost
genetic material.

2.4.2 Simple Evolutionary Algorithm Structure

The simplest EA evolves a population of binary strings (solutions). Each string of
0s and 1s is the encoded version of a solution to the optimization problem. Using
genetic operators crossover and mutation the algorithm creates the subsequent gener-
ation from the solutions of the current population. This generational cycle is repeated
until a desired termination criterion is reached (for example. a predefined number of
generations are processed).

Algorithm 1 summarizes the process of a simple EA which has the following com-
ponents:

• A population of binary strings,

• control parameters,

• a fitness function,

• genetic operators (crossover and mutation),

• a selection mechanism, and

• an encoding mechanism to encode the solutions as a defined representation.

Algorithm 1 Simple EA Structure.

1: Initialize population P .
2: Evaluate all solutions p ∈ P according to the objective function F .
3: while Stop criterion is fulfilled do
4: Select best solutions for the next population.
5: Perform crossover and mutation operators.
6: Evaluate new solutions according to the objective function F .
7: end while
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Encoding mechanism. Fundamental to the EA structure is the encoding mech-
anism for representing the optimization problem variables. The encoding mechanism
depends on the nature of the problem variables. For example, when we are solving
the optimal flows in a transportation problem, the variables (flows in different routes)
assume continuous values, while the variables in a traveling sales man problem are
binary quantities representing the inclusion or exclusion of an edge in the circuit.

Fitness function. The objective function, the function to be optimized, provides
the mechanism to evaluate each solution. The value of the objective function is the
fitness of the solution, which the selection mechanism used to evaluate the solutions
of the population. In case of constrained optimization problems, the most common
method is to use penalty functions that penalize infeasible solutions by reducing their
fitness values in proportion to their quality or number of constraint violations ([36]).

Selection. Selection models from nature, survival of the fittest individual. Fitter
solutions survive while weaker ones perish. A fitter solution receives a higher number
of offspring and thus has a higher chance of surviving in the subsequent generation.
In a proportionate selection scheme, a solution with a fitness value higher than the
average is allocated more than one offspring, while a string with a fitness value less
than the average is allocated less than one offspring. Sometimes is commonly used a
random selection of parents in order to generate new offspring.

Crossover. After selection comes the crossover operation. Pairs of solutions are
picked at random from the population to be subjected to crossover. A simple EA uses
the simplest approach single-point crossover. Assuming that l is the solution length, it
randomly chooses a crossover point that can assume values in the range 1 to l - 1. The
portions of the two solutions beyond this crossover point are exchanged to form two
new strings. The crossover point may assume any of the l - 1 possible values with equal
probability. Further, crossover is not always effected. After choosing a pair of strings,
the algorithm invokes crossover only if a randomly generated number in the range 0
to 1 is greater than a value called the crossover probability. Otherwise the solutions
remain unaltered.

One example of crossover is the simulated binary crossover (SBX) operator ([1]).
It has search power similar to that of a single-point binary-coded crossover operator.
The search power was defined as the ability to create any arbitrary child solution from
two parent solutions. Based on a derived probability distribution of creating a child
solution in the single-point crossover operator, a similar probability distribution was
used directly to choose a child solution in SBX. The difference in the implementations
of the real-coded GAs wit SBX and binary-coded GAs with single-point crossover is
that in SBX the coding of variables is eliminated and a child string is created from a
probability distribution that depends on the location of the parent strings.

The SBX uses a spread factor property, it is the probability of occurrence of spread
factor β ≈ 1 is more likely than any other β value. If β < 1 we have a contracting
crossover (i.e., the offspring points are enclosed by the parents points) as in a) in Figure
2.4, if β > 1 we have a expanding crossover (i.e., the offspring points enclose by the
parent points) as in b), and if β = 1 there is a stationary crossover (i.e., the offspring
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Figure 2.4: Spread factor β.

points are the same as parent points) as it is shown in c).

Mutation. After crossover the solutions are subjected to mutation. Mutation of
a bit involves flipping it: changing a 0 to 1 or a 1 to 0. Just as we have a crossover
probability, we need another parameter, the mutation probability. It gives the proba-
bility that a bit will be flipped. The bits of a solution are independently mutated (the
mutation of a bit does not affect the probability of mutation of other bits). A simple
EA treats mutation only as a secondary operator with the role of restoring lost genetic
material. For example, suppose all the solutions in a population have converged to a 0
at a given position and the optimal solution has a 1 at that position. Then crossover
cannot regenerate a 1 at that position. while a mutation could.

One example is the polynomial mutation operator ([37, 38]) with a user-defined
index parameter (ηm). ηm induces an effect of a perturbation of O((b − a)/ηm) in a
variable, where a and b are lower and upper bounds of the variable xi. ηm ∈ [20, 100]
is adequate in most problems. In this operator, a polynomial probability distribution
is used to perturb a solution in a parents vicinity. The probability distribution in both
left and right of a variable value is adjusted so that no value outside the specified range
[a, b] is created by the mutation operator. For a given parent solution p ∈ [a, b], the
mutated solution p′ for a particular variable is created for a random number u created
within [0, 1], as follows:

p′ =

{
p+ δL(p− x(L)

i ), for u ≤ 0.5,

p+ δR(x
(U)
i − p), for u > 0.5.

(2.4)

Then, either of the two parameters (δL or δR) is calculated, as follows:

δL = (2u)1/(1+ηm) − 1, for u ≤ 0.5, (2.5)

δR = 1− (2(1− u))1/(1+ηm), for u > 0.5. (2.6)
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Figure 2.5: Probability density function of creating a mutated child solution using
polynomial mutation operator.

Figure 2.5 shows the probability density of creating a mutated child point from a
parent point p = 3.0 in a bounded range of [1, 8] with ηm = 20.

There have been three main independent implementation instances of EAs: Genetic
algorithms (GA), developed by Holland in [35] and thoroughly reviewed by Goldberg
in [39], evolution strategies (ESs), developed in Germany by Rechenberg in [40] and
Schwefel in [41] and evolutionary programming (EP), originally developed by Fogel
et al. in [42]. Each of these three algorithms has been proved capable of yielding
approximately optimal solutions given complex, multi-modal, non-differential, and dis-
continuous search spaces. Success has also been achieved for noisy and time-dependent
landscapes.

2.4.3 Genetic Algorithms

Algorithm 2 shows the GA as developed by Holland. The GA encodes the problem
within binary string individuals. Evolutionary pressure is applied in Line 3, where
the stochastic technique of roulette wheel parent selection is used to pick parents for
the new population. The concept is illustrated in Figure 2.6, using a trivial example
with a population of four individuals. Each individual is assigned a sector of a roulette
wheel that is proportional to its fitness and the wheel is spun to select a parent. While
selection is random and any individual has the capacity to become a parent, selection
is clearly biassed towards fitter individuals. Parents are not required to be unique and,
in each iteration, fit individuals may produce many offspring.

From a population of size µ, µ/2 pairs of parents are chosen. These parents form
a new population. With probability Pc each pair is recombined using the crossover
operator to produce a pair of children. This cut and splice operator is illustrated
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Algorithm 2 Simple GA Structure.

1: A population of µ random individuals is initialized.
2: Fitness scores are assigned to each individual.
3: Using roulette wheel parent selection µ/2 pairs of parents are chosen from the

current population to form a new population.
4: With probability Pc, children are formed by performing crossover on the µ/2 pairs

of parents. The children replace the parents in the new population.
5: With probability Pm, mutation is performed on the new population.
6: The new population becomes the current population.
7: If the termination conditions are satisfied exit, otherwise go to Line 3.

A

B

C

D
Population size = 4

A has fitness 3

B 6

C 2

D 1

Figure 2.6: Roulette wheel parent selection.
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Figure 2.7: GA crossover operator.

in Figure 2.7. A cross point is selected at random. Each child is identical to one
parent before the cross point and identical to the other after the cross point. The child
individuals then replace their parents in the new population. Following crossover,
mutation is applied to all individuals in the new population. With probability Pm,
each bit on every string is inverted. The new population then becomes the current
population and the cycle is repeated until some termination criteria are satisfied. The
algorithm typically runs for some fixed number of iterations, or until convergence is
detected within the population. The probabilities of mutation and crossover, Pm and
Pc are parameters of the algorithm and must be set by the user.

Many GAs applied to real world problems bear only a passing resemblance to the
GA, and GAs are best viewed as a branch for evolutionary search, rather than a specific
algorithm. The binary encoding is often inappropriate for many problems and may be
extended to nonbinary representations (i.e., integer string individuals or even more
general representations such as tree and matrix structures).

2.4.4 Evolutionary Strategies

Algorithm 3 shows the basic structure of the ES, they were designed for parameter
optimization problems. The encoding used in an individual is therefore a list of real
numbers. These are called the object variables of the problem. Additionally, each
individual contains a number of strategy parameters, and they are normally used to
control the behavior of the mutation operator and are not required when decoding an
individual.

In each iteration λ offspring are generated from a population of size µ. The recom-
bination operator produces one child and requires two parents for each object variable
and strategy parameter in the child. Historically, the same parents are used to generate
all object variables in the child, then the parents are re-selected for each strategy pa-
rameter. The parents are selected randomly from the current population (i.e., there is
no selection pressure at this point). A number of alternative recombination techniques
are available, but the best results have been observed by setting each object variable
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Algorithm 3 Simple ES Structure.

1: A population of µ random individuals is initialized.
2: Fitness scores are assigned to each individual.
3: λ new offspring are generated by recombination from the current population.
4: The λ new offspring are mutated.
5: Fitness scores are assigned to the λ new offspring.
6: A new population of µ individuals is selected, using either (µ, λ) or (µ+λ) selection.
7: The new population becomes the current population.
8: If the termination conditions are satisfied exit, otherwise go to Line 3.

in the child to be the same as the object variable in one of the parents and setting each
strategy parameter in the child to be the mean of the parameters values in the parents.
Mutation is the main operator in the ES and acts upon strategy parameters as well as
object variables. The mutation operator first perturbs the strategy parameters. The
object variables are then mutated using the resulting probability distribution defined
by the modified strategy parameters. This special mutation operator allows the ES to
evolve good strategy parameters for the problem and has been termed self-adaptation.
Selection in ESs is deterministic: the best µ individuals are taken from the λ new
offspring ((µ, λ) selection) or from the union of µ parents and λ offspring ((µ + λ)
selection). The preferred method is (µ, λ) selection, since (µ+ λ) selection can disrupt
the self-adaptation mechanism ([43]).

2.4.5 Evolutionary Programming

Algorithm 4 illustrates the form of an EP scheme. EP was originally developed for the
evolution of finite state machines using a limited symbolic alphabet encoding. Subse-
quently the EP was extended to encode real numbers, thus providing a tool for variable
optimization. Individuals in the EP comprise a string of real numbers, as in ESs. EP
differs from GAs and ESs in that there is no recombination operator. Evolution is
totally dependent on the mutation operator, which uses a Gaussian probability dis-
tribution to perturb each variable. The standard deviations correspond to the square
root of a linear transform of the parents fitness value.

Algorithm 4 Simple EP Structure.

1: A population of µ random individuals is initialized.
2: Fitness scores are assigned to each individual.
3: The mutation operator is applied to each of the µ individuals in the current pop-

ulation to produce µ offspring.
4: Fitness scores are assigned to the µ new offspring.
5: A new population of size µ is created from the µ parents and the µ offspring using

tournament selection.
6: If the termination conditions are satisfied exit, otherwise go to Line 3.

Selection pressure is applied in the EP when forming a new population from parents
and offspring of the mutation operator, using a mechanism called tournament selection.
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Stochastic q-tournament selection is employed, where q is a parameter of the algorithm.
Let U be the union of all parents and offspring. For each member m ∈ U , q opponents
are selected from U at random. A count is then made of the number of opponents
that have worse fitness values than m. The µ individuals with the highest tournament
counts go on to form the new population. Note that as q increases the selection pressure
in the algorithm increases and the selection process becomes increasingly deterministic.
One side-effect of this selection process is that the best individual is always present in
the new population.

2.4.6 Evolutionary Algorithm with a Multi-Objective Approach

EMOAs seem suitable to solve MOPs, because they evolve at the same time a set of
possible solutions. This allows to find several members of the Pareto optimal set in
a single run of the algorithm, instead of having to perform a series of separate runs
as in the case of the traditional mathematical programming techniques [44, 1, 5, 32].
Additionally, EAs are less susceptible to the shape or continuity of the Pareto front
(e.g., they can easily deal with discontinuous or concave Pareto fronts), whereas these
two issues are serious concerns for mathematical programming techniques. EMOAs are
then very attractive MOP solution techniques because they address both search and
multi-objective decision making.

The first implementation of what it is now called an EMOA is credited to David
Schaffer, who proposed the Vector Evaluation Genetic Algorithm (VEGA), in 1984.
VEGA was mainly aimed for solving problems in machine learning [45, 46].

When we are solving a MOP we can also use a kind of modified GAs, from the
EMOAs. EMOAs are based on GAs and their structure is very similar with some
critical differences. An EMOAs main characteristic is the set of multiple objectives
being simultaneously optimized (F = (F1(x), F2(x), ..., Fd(x))T ). If this multi-objective
fitness function F is substituted for the fitness function in Algorithm 1 then this new
approach is a multi-objective evolutionary algorithm.

The task decompositions of the algorithms depicted in Figure 2.8 and Figure 2.9
show a little structural difference between the EMOA and its single-objective EA coun-
terparts. The major differences are noted as follows. By definition, the objective func-
tion evaluation task in the EMOA case computes d (where d ≥ 2) function evaluations.
In addition, because EMOAs expect a single fitness value with which to perform selec-
tion, additional processing is required to transform EMOA solutions objective vectors
into a scalar (“objective transformation” task). Although the various transformation
techniques vary in their algorithmic impact. The remainder of the EMOA is struc-
turally identical to its single-objective counterpart. However, this does not imply the
differences are insignificant.

In some cases it is possible to use an external archive which improves the selection
of the better individuals (normally based on an indicator). These methods work with
a normal internal population and add an external archive. This external archive uses
a different strategy to select the new individuals and it could be used for evolving the
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Figure 2.8: General EA task decomposition.
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Figure 2.9: General EMOA task decomposition.
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internal population too. Information extracted from the external archive could be used
to decide which search regions should be searched at each generation as in [47] or to
generate a feasible reference set used by itself to select the new points as in [48, 49]. In
such a way, the external archive strategy and the current population of the evolution
can complement each other.

We have a set of tools to solve MOPs, in other words we are able to get finite
size approximations of the Pareto front, but how “good” are the approximations we
obtain? Several quality indicators exist into this field, which try to determine the
approximation quality with one single value.

2.5 Quality Indicators

We already know a way to compare solutions between each other, the Pareto domi-
nance, but what about the final approximations quality obtained when solving a MOP?

While visual comparisons were common in the infancy of evolutionary multi-objective
optimization, quantitative performance assessment is now becoming more standard.
However, no guidelines are available on how to compare the quality of the outcomes
generated by several multi-objective optimizers, over several runs, to obtain quantita-
tive and statistically sound inferences. As a consequence, most comparative studies are
based on different methodologies ans assumptions and therefore the results are difficult
to relate to one other.

To compare the complete set of solutions of two different approximations of the
Pareto front is not straightforward. There are some studies like those of Zitzler et al.
[50], Knowles et al. [51] or more recently by Schütze et al. [52], which are examples
of the effort being carried out in order to provide the necessary tools for a better
evaluation and comparison of multi-objective algorithms [53].

The main goal of testing is usually to compare EMOAs effectiveness over vari-
ous chosen MOPs by measuring solution quality. The indicators usually fall into two
performance categories [5]: 1) Efficiency (measuring computational effort to obtain
solutions, e.g., CPU time, number of function evaluations/iterations - use of spatial and
temporal resources), and 2) Effectiveness (measuring the accuracy and convergence
of obtained approximations), which is the scope of this thesis.

A more formal definition of a quality indicator follows:

Definition 2 (Indicator). A quality indicator is a function I : ΩN ·n → R which assigns
to an approximation A a real value I(A). N is the cardinality of A and n is the
dimension of the MOP.

Definition 3 (Pareto Compliant Indicator). An indicator I : Ω → R is Pareto com-
pliant if for all A,B ∈ Ω : A � B ⇒ I(A) ≥ I(B), assuming that greater indicator
values correspond to higher quality (otherwise A � B ⇒ I(A) ≤ I(B)).

Using quality indicators does not intent to indicate that one EMOA is better or
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more robust than another one, but to describe their general experimental results. In
fact, different EMOA performances are directly associated with the specific operators
each EMOA employs. Some quality indicators are presented in the following.

2.5.1 Hypervolume

Since the solution of a multi-objective problem is a set of incomparable elements instead
of a single value from a totally ordered set there is no straightforward approach for a
comparison of solutions. A commonly accepted measure [26] for assessing the quality
of an approximation is the so-called dominated hypervolume of a population. In case
of two dimensions it is defined as follows:

Definition 4 (Dominated Hypervolume). Let v(1), v(2), ..., v(µ) ∈ R2 be an antichain in
lexicographical order and r ∈ R2 such that v(i) ≺ r for all i = 1, ..., µ. The value

H(v(1), ..., v(µ); r) =
[
r1 − v(1)

1

]
·
[
r2 − v(1)

2

]
+

µ∑
i=2

[
r1 − v(i)

1

]
·
[
v

(i−1)
2 − v(i)

2

]
(2.7)

is termed the dominated hypervolume with respect to r.

This indicator has a number of appealing properties [54] so that there exist some
EAs which accept offspring only if the dominated hypervolume is increased by including
the offspring ans discarding another individual from the population [55]. Evidently,
these EMOAs are aiming at generating a population whose objective vectors maximize
the dominated hypervolume.

The hypervolume looks at the multidimensional “volume” created by each set, rela-
tive to a reference point. Such volume is illustrated by the red space on Figure 2.10. it
cannot really capture good hypervolume unless you have almost every point, across the
full spread of objective function performance. One drawback is that the hypervolume
is computationally intensive (when the number of objective increases the computation-
ally effort increases too). Figure 2.10 shows an example of the hypervolume of a set A
of points respect to the reference point r.

2.5.2 Generational Distance

The generational distance indicator [17] gives a good first approximation of the quality
of an approximation set to another reference set, i.e., how “close” is the approximation
set to this reference set. It is computed as follows:

GD(A,R) =
1

|A|

(∑
a∈A

d(a,R)p

)1/p

, (2.8)
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Figure 2.10: Hypervolume of a set of points A respect to the reference point r.

where d(a,R) = inf{‖a− r‖ : r ∈ R}, i.e., the minimum distance between a and R.

One problem with this indicator is that if A contains only one point a such as
a ∈ R, then it gets almost perfect generational distance performance, forgetting the
distribution and coverage of the final solution. The red lines in Figure 2.11 show
a calculation of distances. For each of the red points, find the closest point in the
reference approximation R. The indicator is then the “average” of these distances.

2.5.3 Inverted Generational Distance

The inverted generational distance [18] is the “average” distance from each reference
point to its nearest solution from an approximation A.

IGD(A,R) =
1

|R|

(∑
r∈R

d(r, A)p

)1/p

, (2.9)

where d(r, A) = inf{‖r− a‖ : a ∈ A}, i.e., the minimum distance between r and A.

When a set of well-distributed reference points over the entire reference set R is
used, a small value of this indicator suggests the convergence of solutions of A. This
indicator has the same problem than the generational distance indicator, because if
R contains only one point r such as r ∈ A, then it gets almost perfect generational
distance performance, forgetting the distribution and coverage of A. Figure 2.12 shows
how now the points from the reference set R are thoses used to compute the minimum
distances between A and R.
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Figure 2.11: Generational distance indicator between two sets.

R = 

A = 

F1

F2

Figure 2.12: Inverted generational distance indicator between two sets.
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Figure 2.13: a) and b) illustrate how the functions of R2 and R3 are rendered. a)
illustrates how the vectors are evenly spread out from the worst reference point to the
best reference point. b) illustrates how the difference is calculated with respect to each
vector.

2.5.4 RR

The function u(λ,A) is the minimum distance of the points in the set A to the reference
point λ. The R2 and R3 indicators are mathematically defined as follows.

R2 =

∑
λ∈A

u(λ,B)− u(λ,A)

|λ|
(2.10)

R3 =

∑
λ∈A

[
u(λ,B)− u(λ,A)

]
/u(λ,B)

|λ|
(2.11)

Figure 2.13 illustrates the R2 and R3 indicators. These functions u require a refer-
ence point and a user-specified number of scalarizing vectors, λ. Vectors are uniformly
distributed across the objective space. The distance of the point (in each set) that
is closest to the reference point is measured and the differences in these distances are
added up. In order to obtain an indicator from these two indicators, the set, B, is re-
placed with a reference set containing the true Pareto front points, R. These indicator
functions then effectively measure the difference in the mean distance of the attainment
sets A and R from a user-defined reference point.

2.5.5 The Hausdorff Distance

To measure the distance of two sets the Hausdorff distance dH is widely used in many
fields. It is computed as follows:

dH(A,R) = max
[
d(A,R), d(R,A)

]
, (2.12)
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Figure 2.14: Hausdorff distance indicator between two sets.

where d(R,A) = sup
{

d(r, A) : r ∈ R
}

, and d(r, A) = inf
{
‖r − a‖ : a ∈ A

}
.

Figure 2.14 shows the distances between two points a ∈ A and r ∈ R, and the other
way around.

It is, however, of limited practical use when measuring the distance of the outcome
of an EMOA to the Pareto front since outliers generated by EMOAs, i.e., points far
away from the remaining ones and the Pareto front, are punished too strongly by dH .
As a remedy, the averaged Hausdorff distance has been proposed in [8] which we use
in this thesis and it is presented in detail in the following.

2.5.6 Averaged Hausdorff Distance (∆p)

Recently, it has been proposed to use the averaged Hausdorff distance ∆p as an alter-
native performance indicator. Using ∆p, the decision maker can get a clear information
about the approximation quality in terms of the distance from an approximation A to
a reference set R (which is typically termed as convergence in the EMO literature) as
well as the distance from R to A (which is closely related to what is termed as spread
in EMO literature in terms of the maximal gap in the approximation). Ideal approxi-
mations in the sense of ∆p are non-dominated fronts which are evenly distributed along
the Pareto front.

Definition 5 ([8]). Let A,R ⊂ Rn be finite sets. The value

∆p(A,R) = max(GDp(A,R), IGDp(A,R)), (2.13)

where

GDp(A,R) =

(
1

|A|
∑
a∈A

d(a,R)p

)1/p

and IGDp(A,R) =

(
1

|R|
∑
r∈R

d(r, A)p

)1/p

,

(2.14)
and

d(a,R) = inf
r∈R

(max|ai
i=1,2,...,n

− ri|), (2.15)
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and p ∈ N, is called the averaged Hausdorff distance between A and R.

The indicator ∆p can be viewed as a composition of slight variations of the gener-
ational distance and the inverted generational distance. It is ∆∞ = dH , but for finite
values of p the indicator ∆p averages the distances considered in dH . Hence, as opposed
to dH , ∆p does in particular not punish single (or few) outliers in a candidate set.

The principal challenge when we use ∆p as guide to solve MOPs is that the Pareto
front is not known a priori, i.e., it is necessary to generate a substitute reference set R
for the Pareto front in order to be able to use ∆p.



Chapter 3

State-of-the-Art

For the computation of the Pareto set/front of a given MOP there exist so far sev-
eral EMOAs such as NSGA-II ([2]), NSGA-III ([56]), SPEA2 ([57]), and MOEA/D
([58]). Next to these “general purpose” EMOAs (i.e., they do not use an explicit rule
for the search as a particular performance indicator) that aim to compute a set of
converged points along the Pareto front, there exist indicator based evolutionary al-
gorithms (IBEA) that aim to achieve good approximations with respect to a given
performance indicator. There are, for instance, the SMSEMOA ([59]) and NDS-HV
([60]) that aim for hypervolume approximations of the Pareto front and DDE ([61])
and ∆p-EMOA ([24], [20], [49]) that aim for respective ∆p approximations.

Finally, in [62], [63] the hypervolume gradient is presented for complete archives
which gives rise to set based mathematical programming techniques (as e.g. done in
[64]).

In the following, NSGA-II, and the SMSEMOA are discussed in more detail. NSGA-
II and SMSEMOA have been selected for more detailed discussion since they have been
ones of the most popular state-of-the-art EMOAs for a long time. For this reason they
have been chosen for comparison in this thesis work.

3.1 General Purpose EMOA

Some general purpose EMOAs are presented next.

3.1.1 Non-Dominated Sorting Genetic Algorithm II (NSGA-
II)

The elitist non-dominated sorting genetic algorithm (NSGA-II) [2, 65] has been one of
the most referenced multi-objective optimization method in the EMO literature. The
working principle of NSGA-II is as follows: at each generation, a new child population
is created, and it has an equal size compared to the parent population. After each

59
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generation, the parent and child populations are combined together. If the population
size is NP , then the combined population has size 2NP . This combined population
is sorted using non-dominated sorting defined in [2, 65], and the best NP individuals
are selected based on non-dominance ranking. The individuals from the best non-
dominated class are selected first for the next generation, then from the second best
non-dominated class, and so on, until the number of selected individuals is NP . If
the last non-dominated class of solutions is too big to fit completely in the set of NP
individuals, then this non-dominated set is reduced based on a crowding estimation
among the individuals of the class. The idea is to remove the most crowded individuals
until the remaining individuals fit into the selected set of NP individuals.

Crowding estimation in NSGA-II is based on a distance metric called the crowding
distance. The crowding distance for a member of a non-dominated set tries to approx-
imate the perimeter of a cuboid formed by using the nearest neighbors of the member.
The cuboid in the case of two objectives is shown in Figure 3.1. For a member of a
non-dominated set, the crowding distance is calculated by finding the objective value
difference between the two nearest solutions on either side of the member along each of
the objectives (distances di1 and di2 in Figure 3.1). Then the differences are normalized
by dividing them by the difference between the maximum and minimum values of the
corresponding objectives. Finally, these normalized distances are summed, giving a
crowding distance for the corresponding member. For those members which have a
maximum or minimum value for any objective, the crowding distance is assigned to
have an infinite value, i.e., those members are considered as the least crowded. Finally,
the members of the non-dominated set are sorted according to their crowding distances
and a desired number of members having the smallest crowding distance are removed
[65].

The above described selection process of individuals for the next generation is illus-
trated in Figure 3.2. It should be noted that pruning based on diversity is done only
among the members of the last non-dominated class of solutions that is selected for
the next generation.

In [66], it is claimed that with early generations there exist several different non-
dominated sets/classes and the diversity preservation has little effect on the selection
process. When the population starts to converge to the Pareto front, the non-dominated
classes become larger and eventually it is likely that the best non-dominated class is
larger than NP . Thus, only little diversity preservation is performed at the early
generations but more during the late generations. This kind of strategy provides a
way to balance between convergence and diversity, but unfortunately, it works only
with two objectives, because the crowding distance metric used in NSGA-II does not
estimate crowding well when the number of objectives is more than two. Even if
there were a working diversity preservation technique, the balance between convergence
and diversity changes when the number of objectives increases. When the number of
objectives increases, the number of non-dominated individuals increases and diversity
preservation becomes a dominating operation in the survival selection only. In the light
of this behavior, it becomes evident that, NSGA-II in its original form performs well
only with problems having two objectives [67].
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Figure 3.1: Example of the cuboid of a solution in the case of two objectives.
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Figure 3.2: Selection of individuals for the next generation in NSGA-II.
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3.1.2 Non-Dominated Sorting Genetic Algorithm III (NSGA-
III)

A potential EMOA for solving many objective optimization problems (having four or
more objectives) is NSGA-III, which is a reference-point-based many objective evo-
lutionary algorithm following the NSGA-II framework, and it emphasizes population
members that are non-dominated, yet close to a set of supplied reference points.

The basic framework of the proposed many objective NSGA-III very similar to
the original NSGA-II algorithm with significant changes in its selection operator. But,
unlike in NSGA-II, the maintenance of diversity among population members in NSGA-
III is aided by supplying and adaptively updating a number of well spread reference
points.

Let us consider the t−th generation of NSGA-II algorithm. Suppose the parent
population at this generation is Pt and its size is N , while the offspring population
created from Pt is Qt having N members. The first step is to choose the best N
members from the combined parent and offspring population Rt = Pt ⊂ Qt (of size
2N), preserving elite members of the parent population. To achieve this, first the
combined population Rt is sorted according to different non-dominated classes (F1, F2,
and so on). Then, each non-dominated class is selected one at a time to construct
a new population St , starting from F1, until the size of St is equal to N or for the
first time exceeds N . Let us say the last class included is the lth class. Thus, all
solutions from class (l + 1) onward are rejected from the combined population Rt. In
most situations, the last accepted level (lth level) is only accepted partially. In such
a case, only those solutions that will maximize the diversity of the lth front are cho-
sen. In NSGA-II, this is achieved through a computationally efficient, yet approximate,
niche-preservation operator that computes the crowding distance for every last class
member as the summation of objective-wise normalized distance between two neigh-
boring solutions. Thereafter, the solutions that have larger crowding distance values
are chosen.

The above procedure of identifying non-dominated classes/fronts using the usual
domination principle is also used in NSGA-III. All population members from the non-
dominated front level 1 to level l are first included in St. If |St| = N no further
operations are needed and the next generation is started with Pt+1 = St. For |St| > N ,
members from one to (l − 1) fronts are already selected, i.e., Pt+1 = ∪l−1

i=1Fi, and the
remaining (K = N − |Pt+1|) population members are chosen from the last front Fl.

NSGA-III uses a predefined set of reference points to ensure diversity in obtained
solutions. The chosen reference points can either be predefined in a structured manner
or supplied preferentially by the user.

For example, in a three-objective problem, the reference points are created on a
triangle with the apex at (1, 0, 0), (0, 1, 0), and (0, 0, 1). If 15 reference points
will be created (Figure 3.3). In the proposed NSGA-III, in addition to emphasizing
non-dominated solutions, it emphasizes population members that are in some sense
associated with each of these reference points. Since the above created reference points
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Figure 3.3: Fifteen structured reference points are shown on a normalized reference
plane for a three-objective problem.

are widely distributed on the entire normalized hyperplane, the obtained solutions are
also likely to be widely distributed on or near the Pareto front. In the case of a user
supplied set of preferred reference points, ideally the user can mark H points on the
normalized hyper-plane. The proposed algorithm is likely to find near Pareto-optimal
solutions corresponding to the supplied reference points.

After normalizing the reference set according to each objective adaptively based on
the extent of members of St in the objective space, the way to associate each population
member with a reference point is defined as follows: a reference line corresponding to
each reference point on the hyper-plane is defined by joining the reference point with
the origin. Then, the perpendicular distance of each population member of St from
each of the reference lines is calculated. The reference point whose reference line is
closest to a population member in the normalized objective space is considered to be
associated with the population member, and it is used to select the best individuals
for the next generations. This is illustrated in Figure 3.4.

3.1.3 Improved Strength Pareto Evolutionary Algorithm (SPEA2)

The improved version of the strength Pareto evolutionary algorithm (SPEA2) [57] is
another commonly used EMOA. The fitness assignment of SPEA2 is based on calcu-
lating strength values for individuals. The strength value of an individual x measures
how many individuals x dominates. A raw fitness value for an individual y is calculated
as a sum of the strength values of those individuals that dominate y. This raw fitness
value is smaller for the better individuals.

Diversity preservation in SPEA2 is managed by calculating the distance of individ-
uals to the nearest neighbor in the objective space. This distance value is transformed
to a crowding measure; A small value means low crowding, and a large value means
high crowding. The crowding measure is scaled between [0, 1] and added to the fitness
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Figure 3.4: Association of population members with reference points.

value of each individual. Therefore, individuals are primarily ranked using the raw
fitness values and in the case of identical raw fitness values, the less crowded individual
will be preferred.

In addition to the population, SPEA2 uses an extra archive for solutions. This
archive has a fixed size and is mainly reserved for non-dominated solutions. However, if
there are not enough non-dominated individuals, the space in the archive is filled based
on the fitness value of the individuals. If the number of non-dominated individuals is
larger than the archive size, then redundant individuals are removed based on the
fitness values.

SPEA2 provides a well distributed set of solutions also when the number of objec-
tives is more than two. However, when the number of objectives increases, the search
will slow down because fewer solutions dominate each other.

3.1.4 Multi-Objective Evolutionary Algorithm Based on De-
composition (MOEA/D)

Multi-objective evolutionary algorithm based on decomposition (MOEA/D) [58] de-
composes a MOP into N different scalar optimization problems using the weighted
Tchebycheff approach and solves these simultaneously using an evolutionary algorithm.
This algorithm is restricted to performing reproduction using only vectors close to each
other in the weight vector space. Neighboring solutions are replaced with the new so-
lution, if the new one has a better scalarized value.

MOEA/D represents a return to classical multi-objective optimization methods.
However, MOEA/D is a recent method with good results and it might be usable also in
cases when the number of objectives is large and the search based on Pareto dominance
stagnates.

In [68], MOEA/D with weighted sum was favorably evaluated on many objective
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problems with convex Pareto fronts; however, MOEA/D using the weighted Tcheby-
cheff method [69] takes advantage in non-convex Pareto Fronts, thus, since the choice
of the appropriate scalarization function to use in MOEA/D depends on the shape of
the Pareto front it was proposed in [68] to automatically alternate between weighted
sum and weighted Tchebycheff.

3.2 Indicator Based Evolutionary Algorithms

Some indicator based EMOAs are presented next.

3.2.1 S-Metric Selection Evolutionary Multi-Objective Opti-
mization Algorithm (SMSEMOA)

The SMSEMOA [4] is known as a powerful state-of-the-art EMOA with particular mer-
its in case of more than three objectives [70]. The method uses two selection methods
sequentially: firstly, the population is partitioned in a hierarchy of antichains (termed
non-dominated sorting) which represents a ranking of individuals w.r.t. their degree of
non-dominance. Secondly, the element with the least hypervolume contribution from
the worst ranked subset is discarded.

An approximation set A can be partitioned into h disjunct antichains R1, ..., Rh,
where h is the length of the longest chain in this set: R1 = Mf (A,�) and

Rk = Mf

(
P\

k−1⋃
i=1

Ri,�
)

for k = 2, ..., h if h ≥ 2,

where Mf (A,�) is the set of non-dominated points from A.

Evidently, every element from Rj is dominated by some individual in Ri if i < j.

The hypervolume is defined as the area (volume in more than two objectives) of
coverage with in the objective space [5, 26] for a bi-objective optimization problem.
This equates to the summation of all the rectangular areas, bounded by some reference
point r and the non-dominated points an approximation A. Mathematically, this is
described as follows:

HV (A, r) =
{⋃

i

volai |r : a ∈ A
}

.

The hypervolume contribution of some element x ∈ Rk is simply the difference
HV (Rk, r)−HV (Rk\x, r) between the dominated hypervolume of set Rk and the dom-
inated hypervolume of set Rk without element x. The description of the SMSEMOA
is depicted in Algorithm 5.
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Algorithm 5 Pseudo code of SMSEMOA.

Require: draw multiset P with µ elements ∈ Rn at random
1: while Stop criterion is not met do
2: generate offspring x ∈ Rn from P by variation
3: P = P ∪ {x}
4: build ranking R1, ..., Rh from P
5: ∀i = 1, ..., d : ri = max{Fi(x) : x ∈ Rh}+ 1
6: ∀x ∈ Rh : h(x) = HV (Rh, r)−HV (Rh\{x}, r)
7: x∗ = argmin{h(x) : x ∈ Rh}
8: P = P\{x∗}
9: end while

3.2.2 R2 Evolutionary Multi-Objective Algorithm (R2-EMOA)

An IBEA is introduced in [71] which incorporates the contribution to the unary R2-
indicator as the secondary selection criterion. It is based on a set of utility functions.
In total, three different variants were proposed which differ in the way the utilities are
evaluated and combined, the ratio of one set being better than the other (R1), the
mean difference in utilities (R2), or the mean relative difference in utilities (R3).

The proposed R2-EMOA implements a steady state strategy based on the contri-
bution to the R2-indicator (see Algorithm 6).

Algorithm 6 Pseudo code of the R2-EMOA.

Require: draw multiset P with µ elements ∈ Rn at random
1: while Stop criterion is not met do
2: generate offspring z ∈ Rn from P by variation
3: P = P ∪ {z}
4: build ranking R1, ..., Rh from P
5: ∀x ∈ Rh : r(x) = R2(P\{x}, λ, i)
6: x∗ = argmin{r(x) : x ∈ Rh}
7: P = P\{x∗}
8: end while

3.2.3 ∆p-EMOA

The first EMOA designed for the computation of Hausdorff approximations of the
Pareto front was proposed in [19] for bi-objective problems. The challenge for all such
algorithms is that the Pareto front is not known a priori. In [19] this was solved by
creating a piecewise linear front out of the non-dominated solutions of the current
archive. This together with an application of the PL metric ([72]) was the basis of the
selection mechanism.

Since the averaging Hausdorff measure needs two sets as arguments and the Pareto
front is unknown in general have to construct a reference set for assessing the progress
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towards the Pareto front which is the basis for the archiving strategy. For this pur-
pose the current approximation of the SMSEMOA is used in each iteration since the
SMSEMOA will drive its approximation towards the Pareto front by maximizing the
dominated hypervolume of approximation of the Pareto front. Due to this princi-
ple Pareto optimal solutions are generated sufficiently spread along the Pareto front,
however, with higher solution density at the knee regions of the front. Thus, a linear
interpolation between the points of the current approximation can then be used to place
the points of the reference set in evenly spaced manner. In detail: let v(1), ..., v(µ) ∈ R2

be the current approximation of the Pareto front in lexicographical order provided
by the SMSEMOA. Between these points in objective space a linear interpolation is
calculated, i.e., for i = 1, 2, ..., µ− 1

gi(x) =
v

(i)
2 − v

(i+1)
2

v
(i)
1 − v

(i+1)
1

(x− v(i)
1 ) + vi2,

if x ∈ [v
(i)
1 , v

(i+1)
1 ]. The length of each linear segment is Li = ||v(i)

1 − v
(i+1)
1 ||2 so that

the total length of the linear interpolation model of the Pareto front is just the sum
of the Li. Now it is easy to place µ evenly spaced points on the linear interpolation.
These points are collected in the current reference set R(t).

As for the archiving strategy let A(t) denote the archive set and R(t) the reference
set at step t ≥ 0. We assume that the archive may have at most the same cardinality
as the reference set: NA ≤ NR < ∞. The archiving procedure (Algorithm 7) is run
for every offspring x generated by the SMSEMOA for the current reference set R. The
initial archive is empty.

Algorithm 7 update(x,A;R).

1: A = Mf (A ∪ {x},�)
2: if card(A) > NR then
3: for all a ∈ A do
4: h(a) = ∆1(A\{a}, R)
5: end for
6: a∗ = argmin{h(a) : a ∈ A}
7: A = A\{a∗}
8: end if

Summarizing, the SMSEMOA and the innovative archiving strategy form a close
union with the purpose of minimizing the averaged Hausdorff distance ∆p while simul-
taneously obtaining good convergence properties of the algorithm. The SMSEMOA
ensures the latter by its efficient selection mechanism with the aim of maximizing the
dominated hypervolume. In addition, linear interpolations of the sequential approxi-
mations of the Pareto front form the basis for constructing the required reference sets
for calculating the averaged Hausdorff distances. However, in principle the SMSEMOA
could be replaced by any EMOA of similar performance.

Later studies dealed with tri-objective problems. In [20], d-dimensional objec-
tive vectors were mapped to two-dimensional space via the Multi-Dimensional Scal-
ing (MDS) metric allowing to utilize the archiving strategy used. In [21], specialized
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Algorithm 8 SMSEMOA with ∆p-Archive.

Require: draw multiset P with µ elements ∈ Rn at random
1: set A = Mf (P,�)
2: while Stop criterion is not met do
3: build linear interpolation (LI) based on Mf (P,�)
4: place NR points evenly on LI → yields R
5: generate offspring x ∈ Rn from P by variation
6: update(x,A;R)
7: P = P ∪ {x}
8: build ranking R1, ..., Rh from P
9: ∀i = 1, ..., d : ri = max{Fi(x) : x ∈ Rh}+ 1
10: ∀x ∈ Rh : h(x) = HV (Rh, r)−HV (Rh\{x}, r)
11: x∗ = argmin{h(x) : x ∈ Rh}
12: P = P\{x∗}
13: end while

triangulations and boundary detection concepts to approximate the 3D surface of the
considered approximations of the Pareto front were used. Finally, in [23] MOPs with
four objectives were addressed.

3.2.4 Partition and Selection Algorithm

Instead of an approximation of the reference front, the PSA ([73]) can be used to
generate the reference set, because PSA is capable of quickly selecting a “well-spread”
subset out of a given data set.

The PSA has been recently introduced as an algorithm for selecting m “well-spread”
points from a set of n > m points. Its mainly characteristic is that it has a low
computational complexity O(nmd), where d is the number of objectives of the MOP,
thus, the cost is in particular linear in d. PSA consists of two steps: first, the set of
interest is partitioned into m subsets in order to group similar members into the same
subset, and second, it performs the selection of one representative member from each
generated subset in order to get a diverse subset of m points of the set of interest. A
more detailed description is as follows:

Partitioning a Set

This is based on the concept of the dissimilarity of a set:

Let A = {F1 = [F11, . . . , F1d], . . . ,Fn = [Fn1, . . . , Fnd]} (i.e., n objective vectors
Fi ∈ Rd), denote aj = minFij, bj = maxFij, and Θj = bj−aj, i = 1, . . . , n, j = 1, . . . , d,
then

diss(A) = maxΘj, j = 1, . . . , d. (3.1)
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In each step, the set with the greatest dissimilarity among its members is the one
that is divided. This is repeated m times to obtain the desired number of subsets.
Figure 3.5 demonstrates the steps of part the set of interest into m = 5 subsets.

Selection of points

Once the set A has been partitioned into the m subsets A1, . . . , Am, the “most suitable”
element from each subset must then be chosen in order to obtain a subset A(r) of A
that contains m elements. This is of course problem dependent. Figure 3.5 (bottom
right) illustrates the rule of the nearest points to the centers. The centers of the grey
rectangles are marked with a cross. In each subset the member closest to the center
is circled (a random member is circled in the subset with only two members). The
representative set A(r) = {a1, a2, a3, a4, a5} is the set of all yellow points.

3.2.5 Summary

Indicator-based EMOAs use a quality indicator to assign fitness to solutions. These
algorithms transform the original many objective problem into a single objective one
(i.e., the problem of optimizing the given indicator). An unary indicator takes one set
of non-dominated solutions and returns a real number related with a given performance
criteria, whereas, binary quality indicators serve to compare the relative quality of two
sets of non-dominated solutions.

The principal difficulties in solving MOPs using EMOAs include in general: (i) the
growing proportion of non-dominated solutions, (ii) the computational cost, and (iii)
visualization of results. Methods based on preference relations as the NSGA-II or the
SPEA2 focus on the first of these difficulties by providing improved ranking schemes,
on the other hand, methods based on transformations of the original problem, as the
IBEAs presented, also considers, with a varying extent, the other two issues.

Several EMOAs, such as the NSGA-II, are designed with diversity preservation
mechanism. Because obtaining a good diversity in MOPs with a large proportion of
non-dominated solutions is not a difficult task, but there is a trade-off between con-
vergence and the extension of the covered Pareto front, then the role of these diversity
preservation mechanisms in EMOAs must be evaluated.

An advantage of methods based on performance indicators is that they are relatively
easy to implement into the same underlying EMOA. Also, preference relations may
sample different space regions as in MOEA/D. Therefore, an alternative to obtain a
good relation among convergence and diversity into a broader range of problems may
be to explore combinations of preference relations, introducing perhaps more than one
performance indicator taking care in the computational complexity it represents (e.g.,
the computational load of hypervolume calculation, in general, prevents to use this
indicator in MOPs with a high number of objectives).

The use of ∆p as the indicator that guides the search of the evolution seems to
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Figure 3.5: Partitioning of 24 elements in bi-objective space into 5 subsets (gray boxes)
and selection of the subset A(r) using the center points (bottom right).
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be promising, because this indicator aims at the same time for a good spread and
convergence. Of course we face with the problem that we need a reference set which
allows the computation of ∆p, and a very good alternative to generate this reference set
is the PSA, which computes a good reference of the Pareto front with low computational
cost (no matter the number of objectives).
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Chapter 4

PSEMOA

4.1 Basic Idea

The PSEMOA is an alternative algorithm aiming for Hausdorff approximations of the
Pareto front that uses PSA as tool to select the best individuals during the evolution
of the algorithm, those principal characteristic is that it can be used for more than
two objectives without increasing significantly the computational requirement for its
realization.

The steps of PSEMOA are as follows: first, a population is chosen at random. When
a new offspring of out of the population is created via crossover and mutation during the
evolution, the set A is defined, which is the set of non-dominated points of the union of
the current population and the offspring. Since PSA preserves any outliers encountered
during the search, a strategy to delete these points is needed (the maximum values per
objective are deleted from A). If the size of the set of non-dominated points free of
outliers A′ is less than the maximum population size, then a non-dominated sorting of
A is performed [2], and the next generation is selected according to this sorting. If the
size of A′ is bigger than the maximum population size, then PSA selects n points out
of A′ as the next generation. In order to increase the quality of the approximations
found by PSEMOA, the ∆p external archive strategy and the offline version defined in
Section 4.2 are used. The offline version allows PSA to have much more information
to generate a good reference set needed by the ∆p external archive, which will guide
the external archive to better results. In Algorithm 9 a pseudo code of PSEMOA can
be found.

4.2 Offline Approach

Suppose that some EMOA has generated an approximation of the Pareto front for some
MOP. Typically, this approximation does not yield a finite point set in objective space
that is evenly distributed. Therefore, it is proposed the following offline approach:

73
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Algorithm 9 PSEMOA Algorithm with the implementation of the ∆p external archive
strategy and the offline approach.

maxEval = Maximum number of evaluations.
popSize = Size of the population.
Draw multiset P1 with popSize elements ∈ Rn at random.
while contEval < maxEval do

Generate new popSize offspring xk ∈ Rn from Pi by variation.
Save the offspring into an external file.
contEval = contEval + popSize.
A = Mf (Pi ∪ {xk},�).
if i is pair then
A′ = deleteOutliers(A).

else
A′ = A.

end if
if |A′|< popSize then

Build ranking R1, . . . , Rh from Pi ∪ {xk}.
while |Pi+1 ∪Rj|< popSize do
Pi+1 = Pi+1 ∪Rj.
j = j + 1.

end while
if |Pi+1|< popSize then
s = popSize− |Pi+1|.
R′j = {s elements of Rj selected randomly}.
Pi+1 = Pi+1 ∪R′j.

end if
else
Pi+1 = PSA(A′, popSize).

end if
i = i+ 1.

end while
A = {all points of the external file}.
A′ = Mf (A,�).
A′R = eliminateAllNondominatedOutliers(A′, Pi).
R = PSA(A′R, popSize).
for all a ∈ A do
Archive = ∆p update(a,Archive,R).

end for
Print Archive.
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1. Run your favorite EMOA that is equipped with a tiny add-on:
- as soon as an offspring is generated and evaluated store a copy in a file

2. After termination of your favorite EMOA:
- construct an evenly spaced reference front from a given approximation

of the Pareto front (e.g. from last population of favorite EMOA)
- feed each stored offspring into the ∆p-archive updater sequentially
- output: archive A

After the reference front R has been constructed it is used in the ∆p-archive updater
to decide which point should be added to or deleted from the archive. An update
operation can be realized as sketched in algorithm 10.

Algorithm 10 ∆p-UpdatePSA

Require: archive set A, reference set R, new element x
1: A = Mf (A ∪ {x},�)
2: if |A| > NR = |R| then
3: for all a ∈ A do
4: h(a) = ∆1(A \ {a}, R)
5: end for
6: A∗ = {a∗ ∈ A : a∗ = argmin{h(a) : a ∈ A}}
7: if |A∗| > 1 then
8: a∗ = argmin{GDP (A \ {a}, R) : a ∈ A∗} {ties broken at random}
9: end if
10: A = A \ {a∗}
11: end if

The most obvious order of feeding the stored pairs (x, F (x)) into the archive up-
dater is the order of their generation. We call this the “forward update”. In this
manner, many individuals will pass the initial dominance check, so that subsequent
∆p-calculations are necessary. Some time saving may be achieved by feeding the stored
pairs into the archive update in inverted order. We call this the “backward update”.
Since points that have been generated in later iterations of the EMOA are more likely
to dominate previous points, most points from the rear of the inverted sequence will
probably not pass the initial dominance check, so that subsequent ∆p-calculations can
be avoided. Since the order of the points presented to the archive clearly affects the
final outcome of the archive, we shall compare both approaches experimentally in the
next Section.

4.3 Experiments and Results

The PSEMOA is used to solve the problem of computing finite size Hausdorff ap-
proximations of the Pareto front of four-objective optimization problems by means of
evolutionary computing.
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4.3.1 Construction of Benchmark

Reference Front for DTLZ1

The Pareto front of the test problem DTLZ1 is given by

F ∗ =

{
y ∈ Rd+ :

d∑
i=1

yi =
1

2

}

for d ≥ 2. Therefore, a regular mesh is easily generated.

Reference Front for DTLZ2 and DTLZ3

The Pareto front of the test problems DTLZ2 as well as DTLZ3 is the intersection of the
surface of the unit hypersphere with the nonnegative orthant of the standard coordinate
system. As a consequence, they can be easily expressed via polar coordinates. If d = 4
then

F ∗ =




cosω1

sinω1 cosω2

sinω1 sinω2 sinω3

sinω1 sinω2 cosω3

 ∈ R4 : ω ∈
[
0,
π

2

]3

.

4.3.2 Analysis of the Results

Besides the PSEMOA described above, we also deploy three state-of-the-art EMOAs
(NSGAII [2], MOEA/D [74], SMSEMOA [4]) for getting an idea how much can be
gained from using a special purpose EMOA.

Experiments were conducted to compare the behavior of all considered algorithms.
Three different four-dimensional test problems with different shapes of the Pareto front
and multi-modality characteristics are addressed, i.e., DTLZ1 (linear, n = 8), DTLZ2
(concave, n = 13), DTLZ3 (concave, multimodal, n=13) [75].

The algorithms were independently run 30 times on each test function for 200,000
function evaluations using a population size µ = 400. Standard settings were chosen
for the variation operator parameters of SBX and polynomial mutation for all EMOAs
but MOEA/D, i.e., pc = 0.9, ηc = 15, ηm = 20 and pm = 1/n. The MOEA/D uses
Tchebycheff decomposition, a neighborhood parameter of 10, a subproblem size of 400
and differential evolution parameters F = 0.5 and CR = 0.5. The parameter settings
of the ∆p-EMOA coincide with the respective ones in [20]. The size of the external
archive equals the population size for the ∆p-EMOA. We chose a value of p = 1 within
the ∆p-Indicator in order to minimize the influence of outliers.

Figure 4.1 visualizes the distributions of the ∆p values at the final generation of the
EMOAs for the considered test problems.
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Figure 4.1: Boxplots of ∆p at final generation for the considered test problems. Algo-
rithms with missing boxes perform much worse.

It seems to be the case that the algorithms tend to loose diversity with increasing
problem dimension so that the results of the SMSEMOA and the ∆p-EMOA based
variants are quite different.

It becomes obvious that the PSA approach is a very suitable means to generate
approximations of the Pareto front with high ∆p performance. For all test problems
the PSEMOA is performing best. While for DTLZ1 the best algorithms PSEMOA
and the SMSEMOA cannot be distinguished statistically, for DTLZ2 the PSAEMOA
algorithm is the best. Finally, the PSEMOA is the winner for DTLZ3. It is visible
that the latter test function imposes additional challenges on the optimization as the
algorithm rankings show quite different characteristics. While NSGA-II was already
3rd best on DTLZ2 it is second best on DTLZ3 behind the PSEMOA. On DTLZ3 the
SMSEMOA severely looses performance. This is due to the fact that the SMSEMOA
is not successful in maintaining a high diversity of solutions due to the high multi-
modality of this test function.

Even regarding HV the SMSEMOA is not performing best. The setting of the
variation operator parameters thus are not optimal in this case, probably better per-
formance could be gained by systematic tuning approaches which was not possible here
due to the extremely high SMSEMOA run-times. Regarding run-times the PSEMOA
clearly is the best option as it is of very low complexity. Keeping in mind that this
algorithm is high performing in all cases it is a very promising approach for higher-
dimensional problems which will be confirmed in additional systematic experimental
studies.
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Figure 4.2: Final populations of considered EMOAs on DTLZ2 with best ∆p value.
Shown are all three-dimensional projections.

Moreover, the dimension reduction approach of the ∆p-EMOA is not successful in
four dimensions. The loss of information due to omitting two dimensions obviously is
too high. A problem in this case is that the border points in 4D will not necessarily
be border points in the two-dimensional mapping which is unfortunate.

Figure 4.2 shows the three-dimensional projections of the final populations on
DTLZ2 for PSEMOA as well as NSGA-II and SMSEMOA. The PSEMOA success-
fully evolves a Pareto front approximation which is much more uniformly spread than
the respective ones of the remaining EMOAs.



Chapter 5

∆p-EA

5.1 Basic Idea

The aim of this thesis project is to compute approximations of the Pareto front (F ∗)
that are optimal w.r.t. ∆p. An optimal ∆p archive of size µ solves the following
optimization problem:

min
A⊂Ω
|A|=µ

∆p(F (A), F ∗). (5.1)

We stress that (i) since ∆p assigns a scalar value to each archive, problem (5.1) is
a SOP of dimension n · µ while the dimension of the decision space of the underlying
MOP (Definition 2.2) is n (that is, a n-dimensional problem if only one Pareto optimal
solution is sought). Further, (ii) that analog SOPs are induced by any other indicator
(e.g., HV and R2 [76]).

One practical problem of ∆p is that the Pareto front of a given MOP is not known
a priori which makes it impossible to evaluate the indicator value for a given archive
A during the run of the algorithm. A possible remedy is to consider approximations of
the Pareto front that are updated during the search process. This idea leads directly
to the following dynamic SOP:

min
A⊂Ω
|A|=µ

ξl(A) = ∆p(F (A), Z(l)). (5.2)

Hereby, ξl : Rn·µ → R, l ∈ N, and Z(l) denotes the l-th approximation of the Pareto
front. Apparently, if the approximations converge toward the Pareto front, i.e., if
Z(l) → F ∗ for l → ∞, then problem (5.2) converges to the original problem (5.1). It
remains hence to find ways to construct the reference fronts for which we propose two
strategies in the following. For this, define N(l) ⊂ Rd as the set of candidate solutions
in objective space (e.g., the image of the non-dominated solutions from a given archive),
and S(l) a (spline) approximation that interpolates N(l). One possibility is to take
Z(l) = S(l) as e.g. done in [19] using linear interpolation. This approach, however, has
the potential disadvantage that S(l) is typically “above” the Pareto front which comes

79
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with the danger that non-optimal solutions are computed when solving (5.2). In the
following we propose two remedies, namely to use (a) a penalization approach and (b)
to shift the reference front to the infeasible area under the Pareto front.

5.2 Penalization Method

Define for a point x ∈ Rn

P (x) = min
α∈Rd


∥∥∥∥∥

d∑
i=1

αi∇Fi(x)

∥∥∥∥∥
2

2

: αi ≥ 0,
∑d

i=1
αi = 1

 , (5.3)

and for an archive A ⊂ Rn
P (A) =

∑
a∈A

P (a). (5.4)

Straightforward calculations show that

(i) P (A) ≥ 0 for all A ⊂ Ω,

(ii) P is continuous if the objectives are continuously differentiable, and

(iii) P (A) = 0 iff A is contained in the set of Karush-Kuhn-Tucker (KKT) points.

Thus, we can use P (A) as a penalization function that operates on the set of archives
and which generates a pressure toward the set of KKT points. The related dynamic
SOP reads consequently as

ξP,l(A) = ∆p(F (A), S(l)) + C(l)P (A), (5.5)

where C(l) is a positive constant at step l ∈ N with C(l) → ∞ for l → ∞. Note
that the above penalization method is formulated for unconstrained MOPs, but it may
easily be adapted to constrained problems via the use of the extended KKT conditions
in (5.3).

To obtain a successive approximation of the Pareto front, one can use (5.5) together
with the following “bootstrapping”: given S(l), solve problem (5.5), define N(l + 1)
as the obtained optimal archive, and continue the search via solving (5.5) using S(l+1).

Example 5.2.1. Figure 5.1 shows numerical results of this approach on the MOPs
CONV ([19]), DTLZ2 ([75]), and DENT which have convex, concave, and convex-
concave Pareto fronts, respectively, see also Table 5.1) which has a convex-concave
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Pareto front using µ = 10 archive entries. The blue line represents the actual refer-
ence set S(l) and the black dots the solutions of the related SOP. For S(1) we have
taken the convex hull of individual minima (CHIM), that is, we have first computed the
minima of both objectives. The computations have been done using the solver fmincon

of Matlab1. As it can be seen, an even spread of solutions along the Pareto front
is obtained after three iterations (compare to Figure 5.2 which shows the optimal ∆p

approximation).

One potential drawback of the penalization approach—in particular for the use
within EAs—is that it requires gradient information. In the following we discuss a
gradient free method.

5.3 Shifting Method

The underlying idea is to shift S(l) such that this set is “left below” the Pareto front
(i.e., in the infeasible area of the objective space) to force the algorithm to compute
optimal solutions of the original MOP via solving (5.2). One such possibility is to use

Zδ(l) = S(l)− δ(l)

 1
...
1

 , (5.6)

where δ(l) > 0 with δ(l) → 0 for l → ∞. Other shifting directions than (1, . . . , 1) are
of course possible e.g. via renormalizing the objective space based on the location of
the CHIM. The resulting dynamic SOP is thus given by

ξS,l = ∆p(F (A), Zδ(l)). (5.7)

By using Zδ(l) as reference front, no gradient information is needed. On the other
hand, the proper choice of δ(l) may represent a problem. It can, however, easily be
checked if δ(l) has been chosen too small: if the optimal archive of the solution of (5.7)
contains solutions that lie on S(l), the value of δ has to be increased.

Since we are dealing here with EAs, we will use the shifting approach for our fol-
lowing computations.

Example 5.3.1. Figure 5.2 shows numerical results of the shifting approach on the
MOPs CONV ([19]), DTLZ2 ([75]), and DENT which have convex, concave, and
convex-concave Pareto fronts, respectively. We used the same ‘bootstrapping’ approach
but this time for ξS,l. For all computations we have used δ(1) = 1, δ(2) = 0.1, and
δ(3) = 0.01 and the shifted CHIM for Zδ(1). In all three cases we obtained nearly opti-
mal ∆p approximations after three iterations. The figures in the last row show images
of the optimal ∆p archives for each problem.

1http://www.mathworks.com
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Figure 5.1: Numerical results of the “bootstrapping” method using the penalization
approach on the MOPs CONV, DTLZ2, and DENT (from left to right). The first three
rows show the results of the first three iterations and the last row shows the images of
the optimal ∆p archives.
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Figure 5.2: Numerical results of the “bootstrapping” method using the shifting ap-
proach on the MOPs CONV, DTLZ2, and DENT (from left to right). The first three
rows show the results of the first three iterations and the last row shows the images of
the optimal ∆p archives.
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So far, all Pareto fronts considered here are connected. To handle disconnected
fronts, we simply used the “non-dominated part” of S(l) in our computations (i.e., we
omitted all dominated points) which already lead to satisfying results. Further, more
sophisticated, approaches are subject of ongoing research.

5.4 Description of the Algorithm

Here we propose a first evolutionary strategy, ∆p-EA, that aims for ∆p approximations
of the Pareto front via directly utilizing the SOP induced by ∆p.

In this algorithm, the current population P (l) is chosen from a pool of candidate
solutions given by the former population and a newly generated candidate solution
by considering the ∆p contributions of each point. In addition to the population, an
external archive E(l) is maintained which serves as the ‘best approximation’ of the
problem and will be returned after the run of the algorithm.

To be more precise, the l-th step of the algorithm is as follows (compare to Algo-
rithm 11): first, the shifting distance δ(l) and the reference set Zδ(l) are computed.
For Zδ(l), the actual candidate set N(l) as well as the extreme points EP of the Pareto
front are considered, where EP has to be handed to the algorithm. Second, an off-
spring x is generated from the actual population P (l). Third, both the candidate set
N(l) and the external archive E(l) are updated. Finally, fourth, P (l) is updated by x
using Zδ(l) to estimate the ∆p values.

To realize the algorithm we have used the following.

(i) Shifting parameter. At the beginning of the evolution, the reference set is
shifted by the maximal distance δmax. During the run of the algorithm, the
distance δ is then reduced linearly to a minimal value δmin. To be more precise,
we have used the following formula for the shifting distance

δ =

δmax −
(δmax − δmin

δmax · σ
· currentEval

)
if currentEval < (maxEval/σ)

δmin otherwise
(5.8)

where currentEval and maxEval denote the current and maximal number of
function evaluations, respectively. Based on some studies, we have used the val-
ues σ = 6, δmax = 1 and δmin = 0.01.

(ii) Update of the archive. For the update of E(l) we have used ∆p-Update from
[19] (see also Algorithm 12), i.e.,

E(l + 1) = ∆p-Update(x,E(l), Zδ(l), µ) (5.9)
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to select the best ∆p archive w.r.t. Zδ(l). To update N(l) it is not recommended
to store all non-dominated solutions gathered during the search since the magni-
tude of N(l) will eventually go beyond every given threshold. Instead, it seems to
be wise to select a suitable subset. In our computations we have used the archiver
ArchiveUpdateTight2 from [22] which aims for a gap-free covering of the Pareto
front in the sense of ε-dominance. Such coverings have a strong relation to ∆p

approximations as discussed in [8].

(iii) Generational operators. As generational operators we have chosen to use SBX
crossover with px = 0.9 and polynomial mutation with pmut = 1/(n ·µ). We refer
to [1] for a thorough discussion of these operators.

(iv) Reference front. To compute the interpolant S(l) which serves as the reference
front during the run of the algorithm we have calculated not-a-knot cubic splines
[77] from N(l) to build two cubic polynomials (one for each objective) using the
distance between two consecutive points as parametrization.

(v) Initial seed. To get an initial seed for ∆p-EA we have applied a short run of
NSGA-II (for the computations in this study, we have spent a budget of 10, 000
evaluations of the original MOP) since it is known that this algorithm already
very quickly identifies a rough location of the Pareto front. As a side-effect, we
received approximations of the extreme points of the Pareto front which we used
for EP . During the run of the algorithm, EP got updated whenever better so-
lutions were found.

Doing so, ∆p-EA can thus be seen as a post-processing step of NSGA-II. Needless
to say that any other state-of-the-art EMOA can be taken instead.

Note that the dominance relation is still used in the update process, however, that
this is basically outside the EA (those core is the generation of x and the update of
P ). Thus, the use of the dominance within ∆p-EA has no influence on its convergence
rate.

5.5 Experiments and Results

In order to test and compare our method we have chosen to use the algorithms NSGA-
II, MOEA/D and ∆p-EMOA. NSGA-II and MOEA/D are “general purpose” EMOAs
which are state-of-the-art for bi-objective problems as we consider here. ∆p-EMOA is
an IBEA that aims for ∆p approximations of the Pareto fronts. As BOPs we have cho-
sen to use the DTLZ ([75]) and ZDT ([78]) benchmark suites plus CONV and DENT
which are widely used in literature since they represent problems with different char-
acteristics. The definitions of all problems can be found in Table 5.1. For all problems
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Algorithm 11 ∆p-EA

Require: Extreme points EP of the Pareto front (F ∗)
1: Choose initial population P (1) ⊂ Rn×µ
2: Choose E(1) and N(1) out of P (1)
3: l = 1
4: while Stop criterion is not met do
5: Compute shift distance δ(l)
6: Compute reference front Zδ(l) from {N(l) ∪ EP}
7: for all a ∈ P (l) do
8: Generate offspring x ∈ Rn×µ from P (l) using evolutionary operators
9: Update N(l) by x leading to N(l + 1)
10: Update E(l) by x leading to E(l + 1)
11: if ∆p(x, Zδ(l)) < ∆p(a, Zδ(l)) then
12: P (l + 1) = P (l) ∪ {x}\{a}
13: else
14: P (l + 1) = P (l)
15: end if
16: end for
17: l = l + 1
18: end while
19: Return E(l + 1).

Algorithm 12 ∆p-Update(x,E, Z, popSize)

1: E = non-dominated solutions of E ∪ {x}
2: if card(E) > popSize then
3: for all e ∈ E do
4: h(e) = ∆p(E\{e}, Z)
5: end for
6: e∗ = argmin{h(e) : e ∈ E}
7: E = E\{e∗}
8: end if
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we have used n = 10 as dimension of the decision space and have used p = 1 for the
∆p indicator.

For sake of a better graphical illustration we first consider the BOPs CONV,
DTLZ2, DENT, and ZDT3 whose Pareto fronts are convex, concave, convex-concave,
and disconnected, respectively, and have set the archive size to µ = 10. For all cases,
we have executed 30 independent runs and have set a limit of 4,000 function evalu-
ations of ξ (ξ calls), which corresponds to 40,000 function evaluations of the original
problem (F calls). Figure 5.3 shows the averaged performances (ξ calls vs. ∆p value)
for the different algorithms and Figures 5.4 to 5.7 show representative results of the
final archives. Since µ = 10 we counted 10 F calls as one ξ call. Further, since ∆p was
fed by NSGA-II we have shifted the results of NSGA-II and ∆p-EMOA accordingly. In
all four cases ∆p-EA outperforms the other algorithms and comes close to the optimal
solution while the indicator values stagnate earlier or oscillate for the ‘conventional’
algorithms.

For ZDT3, ∆p-EA reveals also an oscillating behavior which is probably due to the
fact that its Pareto front is disconnected and which motivates to use more advanced
strategies for such problems in the future. Figure 5.7, however, shows that the novel
algorithm though delivers the best approximation which is indeed quite close to the
optimum.

Further, we have considered all BOPs, and now for archive size µ = 20. Figure
5.8 shows the box plots for all computations and Tables 5.2 and 5.3 the related statis-
tics for 30 independent runs using a budget of 2,000 ξ calls. In Figure 5.8 the values
for NSGA-II and MOEA/D are not displayed since its values are much worse. Here,
∆p-EA wins in all cases compared to NSGA-II, MOEA/D and ∆p-EMOA, and the
difference is significant in 13 out of 14 cases.

5.6 Proof of Concept in Three-Objectives

So far we have considered MOPs with two objectives. Though the approaches de-
scribed above are in principle applicable to MOPs with any number of objectives, the
computation of the interpolant S(l) needs careful attention, in particular for more than
two objectives. As a proof of concept that the method is also successfully applicable
to MOPs with three objectives we consider here the three-objective problem DTLZ2
(Table 5.4). We have computed the interpolant S(l) out of N(l) via triangulation as
follows: as N(l) is a set three-dimensional points, we have projected all the points
of N(l) into a plane at a given direction. The resulting two-dimensional points were
triangulated using Delaunay triangulation ([77]). This triangulation was returned to
the original coordinate system (in 3D). New points (and new directions) are generated
from the origin of the coordinate system to those points by projecting a grid of points
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Table 5.1: BOPs considered in to test the ∆p-EA.
MOP Definition

−3 ≤ xi ≤ 3
CONV a = {1,−1}

(convex) F1 =
n∑
i=1

(xi − a0)2, F2 =
n∑
i=1

(xi − a1)2

−1.5 ≤ xi ≤ 1.5

DENT F1 = 1
2

[√
1 + s(x) +

√
1 + d(x) + x1 − x2

]
+ g(x)

(convex-concave) F2 = 1
2

[√
1 + s(x) +

√
1 + d(x)− x1 + x2

]
+ g(x),

s(x) = (x1 + x2)2, quad d(x) = (x1 − x2)2, g(x) = 17
20
e−d(x)

0 ≤ xi ≤ 1
DTLZ1 F1 = 1

2
x1x2...xn−1(1 + g(xn))

(linear) F2 = 1
2
x1x2...(1− xn−1)(1 + g(xn))

with g(xn) = 100
[
|xn|+

∑
xi∈Xn(xi − 0.5)2 − cos(20π(xi − 0.5))

]
0 ≤ xi ≤ 1

DTLZ2 F1 = (1 + g(xn))cos(x1
π
2
)cos(x2

π
2
)...cos(xn−2

π
2
)cos(xn−1

π
2
)

(concave) F2 = (1 + g(xn))cos(x1
π
2
)cos(x2

π
2
)...cos(xn−2

π
2
)sin(xn−1

π
2
)

with g(xn) =
∑

xi∈Xn(xi − 0.5)2

0 ≤ xi ≤ 1
DTLZ3 F1 = (1 + g(xn))cos(x1

π
2
)cos(x2

π
2
)...cos(xn−2

π
2
)cos(xn−1

π
2
)

(concave) F2 = (1 + g(xn))cos(x1
π
2
)cos(x2

π
2
)...cos(xn−2

π
2
)sin(xn−1

π
2
)

with g(xn) = 100
[
|xn|+

∑
xi∈Xn(xi − 0.5)2 − cos(20π(xi − 0.5))

]
0 ≤ xi ≤ 1

DTLZ4 F1 = (1 + g(xn))cos(xπ1
π
2
)cos(xπ2

π
2
)...cos(xπn−2

π
2
)cos(xπn−1

π
2
)

(concave) F2 = (1 + g(xn))cos(xπ1
π
2
)cos(xπ2

π
2
)...cos(xπn−2

π
2
)sin(xπn−1

π
2
)

with g(xn) =
∑

xi∈Xn(xi − 0.5)2

0 ≤ xi ≤ 1
DTLZ5 F1 = (1 + g(xn))cos(θ1

π
2
)cos(θ2

π
2
)...cos(θn−2

π
2
)cos(θn−1

π
2
)

(concave) F2 = (1 + g(xn))cos(θ1
π
2
)cos(θ2

π
2
)...cos(θn−2

π
2
)sin(θn−1

π
2
)

with g(xn) =
∑

xi∈Xn(xi − 0.5)2

θi = π
4(1+g(xn))

(1 + 2g(xn)xi), for i = 2, 3, ..., (n− 1)

0 ≤ xi ≤ 1
DTLZ6 F1 = (1 + g(xn))cos(θ1

π
2
)cos(θ2

π
2
)...cos(θn−2

π
2
)cos(θn−1

π
2
)

(concave) F2 = (1 + g(xn))cos(θ1
π
2
)cos(θ2

π
2
)...cos(θn−2

π
2
)sin(θn−1

π
2
)

with g(xn) =
∑

xi∈Xn(xi)
0.1

θi = π
4(1+g(xn))

(1 + 2g(xn)xi), for i = 2, 3, ..., (n− 1)

0 ≤ xi ≤ 1
DTLZ7 F1 = x1

(disconnected) F2 = x2

with g(xn) = 1 + 9
|xn|

∑
xi∈Xn xi

0 ≤ xi ≤ 1
ZDT1 F1 = x1

(convex) g(x2, ..., xn) = 1 + 9
n∑
i=2

xi/(n− 1)

h(F1, g) = 1−
√
F1/g

F2 = g(x2, ..., xn)h(F1, g)
0 ≤ xi ≤ 1

ZDT2 F1 = x1

(concave) g(x2, ..., xn) = 1 + 9
n∑
i=2

xi/(n− 1)

h(F1, g) = 1− (F1/g)2

F2 = g(x2, ..., xn)h(F1, g)
0 ≤ xi ≤ 1

ZDT3 F1 = x1

(disconnected) g(x2, ..., xn) = 1 + 9
n∑
i=2

xi/(n− 1)

h(F1, g) = 1−
√
F1/g − (F1/g)sin(10πF1)

F2 = g(x2, ..., xn)h(F1, g)
0 ≤ x1 ≤ 1, and x2, ..., xn ∈ [−5, 5]

ZDT4 F1 = x1

(convex) g(x2, ..., xn) = 1 + 10(n− 1) +
n∑
i=2

(x2
i − 10cos(4πxi))

h(F1, g) = 1−
√
F1/g

F2 = g(x2, ..., xn)h(F1, g)
0 ≤ xi ≤ 1

ZDT6 F1 = 1− exp(−4x1)sin6(6πx1)

(concave) g(x2, ..., xn) = 1 + 9((
n∑
i=2

)/(n− 1))0.25

h(F1, g) = 1− (F1/g)2

F2 = g(x2, ..., xn)h(F1, g)
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Figure 5.3: Performances (averaged) of the different algorithm on CONV, DTLZ2,
DENT, and ZDT3 (from top to bottom).
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Figure 5.4: Numerical results of ∆p-EA, ∆p-EMOA, and NSGA-II on CONV. The best
∆p approximation is shown right down.
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Figure 5.5: Numerical results of ∆p-EA, ∆p-EMOA, and NSGA-II on DTLZ2. The
best ∆p approximation is shown right down.
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Figure 5.6: Numerical results of ∆p-EA, ∆p-EMOA, and NSGA-II on DENT. The best
∆p approximation is shown right down.
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Figure 5.7: Numerical result of ∆p-EA, ∆p-EMOA, and NSGA-II on ZDT3. The best
∆p approximation is shown right down.
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Figure 5.9: Pareto front and reference set for the three-objective DTLZ2.

to each triangle. The grid was oriented according to the direction of the greatest tri-
angle side, and it was checked if each new grid point was inside of the triangle. The
size NG of the grid is a number given by the user. Figure 5.9 shows an example of a
reference front with NG = 2, 000 as we have used for our computations.

As the construction of the reference set is relatively expensive, we have not done an
update of N(l) in every step (line 6 of Algorithm 1) but have done this update every
2,500 iterations.

Figure 5.11 shows the result of the optimization process using ∆p-EA and the
modifications described above after 2,500, 5,000, and 7,500 iterations together with
the optimal archive for ν = 20. Though the result is very promising, more thorough
investigations and comparisons are needed which we leave for future work.
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Table 5.4: Three-objective Optimization Problem considered in this example.
MOP Definition

0 ≤ xi ≤ 1
DTLZ2 F1 = (1 + g(xn))cos(x1

π
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)cos(x2
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2
)...cos(xn−3
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(concave) F2 = (1 + g(xn))cos(x1
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with g(xn) =
∑

xi∈Xn(xi − 0.5)2
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Figure 5.10: Numerical result of ∆p-EA on the three-objective DTLZ2. 2,500 function
calls (left up), 5,000 function calls (right up), 7,500 function calls (left down), and the
best found solution (right down).

Table 5.5: ∆p values for the approximations obtained for the three-objective Optimiza-
tion Problem considered in this example.

∆p

NSGA-II 0.08857510
MOEA/D 0.09808637

∆p-EA 0.06944972
∆p-EApenalization 0.06913851

Best Found 0.06383316
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Figure 5.11: Numerical result of ∆p-EApenalization on the three-objective DTLZ2. 2,500
function calls (left up), 5,000 function calls (right up), 7,500 function calls (left down),
and the best found solution (right down).
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Chapter 6

Applications to PID Controllers

Many real-world applications can be expressed as MOPs. Here we address a particular
three objective optimization problem that is related to the design of PID controllers
and where such an even distribution of the solutions along the Pareto front is desired.
To this end, we use the PSEMOA and the ∆p-EA that aim for averaged Hausdorff
approximations of the Pareto front of a given MOP. Averaged Hausdorff approximations
come very close to such even distributions for general MOPs, and even yield such
approximations in case the Pareto front is linear. Visual observations and a comparison
to other state-of-the-art EMOAs indicate that PSEMOA and ∆p-EA are indeed good
choices for the problem at hand.

We will present numerical results of the PSEMOA on a three objective optimization
problem related to the design of proportional-integral-derivative (PID) controllers, and
results of the ∆p-EA on the bi-objective optimization problem taking into account only
two objectives of the related design of PID controllers optimization problem.

6.1 Experiments

Here we consider a second order oscillator subject to a proportional-integral-derivative
(PID) control.

ẍ+ 2ζωnẋ+ ω2
nx = ω2

nu(t), (6.1)

where ωn = 5, ζ = 0.01,

u(t) = kp [r(t)− x(t)] + ki

∫ t

0

[
r(t̂)− x(t̂)

]
dt̂− kdẋ(t), (6.2)

r(t) is a step input, kp, ki and kd are the PID control gains. We consider the MOP

with the control gains k = [kp, ki, kd]
T as design parameters. The design space for the

parameters is chosen as follows,
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Q = {k ∈ [10, 50]× [1, 30]× [1, 2] ⊂ R3}. (6.3)

Peak time and overshoot are common in time domain control design objectives
[79, 80, 81]. We consider the MOP to design the control gain k,

min
k∈Q
{tp,Mp, eIAE}, (6.4)

where Mp stands for the overshoot of the response to a step reference input, tp is
the corresponding peak time and eIAE is the integrated absolute tracking error

eIAE =

∫ Tss

0

∣∣r(t̂)− x(t̂)
∣∣ dt̂. (6.5)

where r(t) is a reference input and Tss is the time when the response is close to
be in the steady state. The closed-loop response of the system for each design trial
is computed with the help of closed form solutions. The integrated absolute tracking
error eIAE is calculated over time with Tss = 20s.

Here, we will for sake of a comparison consider next to PSEMOA three state-of-
the-art EMOAs, NSGA-II, MOEA/D, and SMSEMOA.

Experiments were conducted to compare the behavior of all considered algorithms at
solving the PID problem. The algorithms were independently run 20 times on each test
function for 6,000 function evaluations using population size µ = 100. Standard settings
were chosen for the variation operator parameters of SBX and polynomial mutation
for all EMOA but MOEA/D, i.e. pc = 0.9, ηc = 15, ηm = 20 and pm = 1/n. MOEA/D
uses Tchebycheff decomposition, a neighborhood parameter of 10, a subproblem size
of 100 and differential evolution parameters F = 0.5 and CR = 0.5. The size of the
external archive equals the population size for the PSEMOA. We have chosen the value
of p = 1 within the ∆p-Indicator [8] that measures the averaged Hausdorff distance
to the Pareto front in order to minimize the influence of outliers. Note that the true
Pareto front is not known analytically. In order to get the distance to this set we have
computed a reference front (see Figure 6.1) that is the result of several time-consuming
computations (note also that this reference front is not used during the run of the
EMOAs).

6.2 PSEMOA Results

Figure 6.2 shows the best final approximations to the Pareto front obtained by the
different algorithms. Figure 6.3 shows the boxplots of the ∆P values at the final
generation for the considered algorithms. Apparently, PSEMOA is able to obtain the
best solution set, both visually and via the indicator values, giving the decision maker
evenly spread solutions needed for his/her decision making process in a relatively small
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Figure 6.1: Reference front of the three-objective PID control problem.

amount of time (a budget of 6,000 function calls corresponds to a total of 70 minutes
running time on the standard PC we have used).

6.3 ∆p-EA Results

Next to the three objective PID problem we solve the bi-objective problem induced by
the use of only two objectives of the second order oscillator subject to a PID control,
the peak time tp and overshoot Mp, which are common objectives in time domain
control design (e.g., [79, 81]). The bi-objective that we consider here reads thus as

min
k∈Q
{tp,Mp}. (6.6)

Also in this application, it is desired to present the decision maker a set of evenly dis-
tributed solutions along the Pareto front in order to give him/her an unbiased overview
of optimal possibilities of the problem at hand. Figure 6.4 shows a result of the three
methods on a budget of 5,000 F calls which indicates that again ∆p-EA delivers the
best results which is confirmed by the box plots shown in Figure 6.5.
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Figure 6.2: Best approximations.
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Figure 6.3: Boxplots of ∆P values at the final generation for the considered algorithms.
MOEA/D performed much worse so it does not appear in the boxplot
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Chapter 7

Conclusions and Future Work

In this thesis, we have proposed two new methods to compute ∆p approximations of
the Pareto front of a given MOP. First, an evolutionary strategy which is based on
the PSA that is capable of quickly detecting a “well-spread” subset of any cardinal-
ity from a given data set. We have tested the novel strategies on three benchmark
functions against other state-of-the-art (but general purpose) algorithms. The results
indicate that the PSA based method indeed delivers evenly spread solutions along the
Pareto front and is better than the other algorithms at least with respect to the ∆p

indicator. Second, we have proposed an algorithm based on the insight that the ma-
nipulation of λ < µ elements (µ=archive size) in each generation is not sufficient to
obtain convergence we propose here to utilize the SOP that is induced by the given
performance indicator directly. We have proposed two possible realizations tailored to
∆p that can be addressed both by mathematical programming techniques as well as
evolutionary algorithms and have further on proposed a first single objective EA for
such Pareto front approximations. Numerical results on bi-objective problems with
different shapes of the Pareto front and comparisons to three state-of-the-art EMOAs
showed the potential of the novel approach.

Though we have focused here on ∆p approximations, we think that the novel ap-
proach represents a promising research direction also for other performance indicators.
The reason for this is the potential to construct specialized single objective EAs that,
though lifted to higher dimensional space, may yield linear convergence to the set of
interest.

In our computations we have restricted ourselves to relatively small archive sizes
(µ ≤ 20). This was in order to demonstrate the effect of the method but also due
to limitations of existing EAs on high-dimensional problems. We conjecture that the
design of specialized algorithms for the treatment of these problems is a fruitful research
field which is. Further, the treatment of MOPs with more than two objectives as SOPs
has mainly been left out in this study. Though the approach presented in this paper will
in principle remain the same, this does not hold for the computation of the reference
sets which will need careful attention.

A promising stream of research will be to hybridize the above global approach with
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mathematical programming techniques in order to obtain a fast and reliable algorithm.
Most promising for this purpose seem to be multi-objective continuation techniques
(e.g., [82]) since they are capable of quickly finding further solutions along the set of
interest from a given approximate solution.

Finally, we intend to focus on the algorithm PSEMOA since this one is not using
any hypervolume calculation which is quite costly when considering more than two
objectives. In particular, we conjecture that a hybridization of this algorithm with
local search techniques is promising in order to increase the pressure toward the set
of interest. Further, the performance of the algorithm has to be tested on problems
with different objective dimensions. This, however, might not be an easy task: for less
objectives the previously developed EMOAs may be beneficial. And problems with
higher numbers of objectives have to be handled with care due to the dimensionality of
the solution set. Nevertheless, it would be desirable to have one algorithm that copes
well with all number of objectives in a certain range.
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“Operating point assignment of a linear motor driven vehicle using multiobjective
optimization methods,” 2004, proceedings of the 11th International Conference
EPE-PEMC 2004, Riga, Latvia.

[10] K. Witting, B. Schulz, A. Pottharst, M. Dellnitz, J. Böcker, and N. Fröhleke, “A
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