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Abstract

In a HPC (High Performance Computing) cluster the jobs are sent to be
executed directly in the physical nodes mainly due to performance concerns,
nevertheless such jobs not necessarily use all the allocated resources for many
and different reasons; not only that but also in many occasions there are nodes
that are not assigned processes to run even if there are jobs in the waiting queue
because many of this waiting jobs require more resources that the ones available
at that particular moment in time and have to wait for some to be freed.

In this work is presented a way to dynamically create virtual nodes that
make use of the extra resources in the nodes in such a way that more jobs can
bu ran at the same time while sharing resources among them and making use
of all the resources that otherwise would be wasted.

Virtualizing an HPC cluster is not a new idea, nevertheless at this time there
is no software available that automate the start and shutdown of virtual nodes;
here is presented a real implementation and design of a solution that allows us
to easily create a virtual cluster, this was made making use of popular software
for both cluster and cloud developing an intermediate layer that make them
work together.
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Resumen

En un cluster de cómputo para HPC (Cómputo de Alto Desempeño) los tra-
bajos son enviados para ser ejecutados directamente en los nodos f́ısicos princi-
palmente por motivos de desempeño, sin embargo estos trabajos no necesaria-
mente utilizan todos los recursos de los nodos asignados por muchos y diversos
motivos; lo que es más en ocasiones hay nodos que no son asignados procesos
para ejecutar aún si hay trabajos en la cola de espera dado que muchos de es-
tos trabajos en espera requieren más recursos de los que hay disponibles en ese
momento en particular y tienen que esperar a que se liberen.

En este trabajo es presentada una manera de dinámicamente crear nodos
virtuales que hagan uso de los recursos sobrantes en los nodos de tal manera
que se puedan ejecutar más trabajos al mismo tiempo que comparten los recursos
entre si y a su vez utilizan aquellos recursos que de otra manera estaŕıan siendo
desperdiciados.

Virtualizar un cluster HPC no es una idea nueva, sin embargo actualmente
no hay disponible algún software que automatice el inicio y apagado de los nodos
virtuales; aqúı es presentada una implementación y diseño real de una solución
que nos permite crear fácilmente un cluster virtual, esto fue realizado utilizando
software popular tanto para cluster como para nube desarrollando una capa
intermedia que les permite trabajar en conjunto.
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Introduction

Computing clusters have had a good popularity over the last two decades due
to their convenience on helping scientists to solve hard computational problems
that require a lot of processing power, with this increasing popularity also comes
a series of problems including but not limited to executing the jobs in the arrival
order or maintain the nodes of the cluster as busy as possible all the time.

It is important for the reader to understand what are the clusters and why
we need them, in chapter 1 we start by reviewing a little about the history of
the computers and how it turned out to be necessary to build clusters in order
do add the power of many of them to solve a single problem; we’ll also review
some of the popular architectures and configurations.

With the variety of processors and (specialized) operating systems that were
created in the earliest stages of computing, some people had the necessity of
running old programs in newer and faster hardware which where not compatible,
since it is an important aspect of the present work, also in chapter 1 we give an
introduction to virtualization, what is it and why we need it.

The rest of this work is as follows: in chapter 2 we talk about the problem of
job scheduling, packaging, cluster usage and job starvation, how they correlate
and why it’s been so difficult to treat them; in chapter 3 is explained the way
we suggest that the use of Virtual Machines (VMs) can be beneficial as an
alternative to treat some of those problems of the computing clusters using
some known software packages; in chapter 4 the actual implementation of the
proposal is described used as an example our testing environment; lastly in
chapter 5 a final review of tho proposal and results is given together with some
unsolved problems and future work.

1.1 History

During the design and born of the modern computer in 1940, the possibility
of parallelism was considered but rejected by Von Neumann, surely there were
reasons for that. This architecture now is known as the the architecture of

7



8 CHAPTER 1. INTRODUCTION

Von Neumann and it has one intrinsic performance limitation called the Von
Neumann bottleneck which is basically the fact that the processor has to wait
while the data it needs to work is fetched from the main memory.

Nevertheless during that same period of time many attempts to create a
parallel computer where made, one of the which was a project called ILLIAC
IV that is a computer for massive parallel processing. Regrettably there were
very few publications about it and it wasn’t very successful in the marked, so it
was abandoned and the area of a parallel computer remained only as research
topic in research centers and big universities.

The scientists wanted to verify or disprove things, the engineers wanted to
simulate more parts of the hardware of a vehicle, probably simulate the effects
of a new drug, the sellers wanted to check their sales or offers as fast as possible.
I general, the speed at which a calculation was made could (and can) be the
difference on who publishes something new.

Between the 70s and 80s it was realized that microprocessors had a good ratio
of cost versus performance compared with big computers, the problem was that
they were not very fast individually. The decision made about it was that if it
was possible to put many of this microprocessors in a single place together it
would be possible for they to have good processing power for a relatively low
cost.

The computing clusters are born from this agglomeration of processors or
computers connected if a way such that they can work simultaneously in order
solve a single problem or execute a single common program

All through history different types of clusters and configurations have been
invented depending on the specific necessities of the users and clients, and also
the available equipment acquisition budget; some examples of the different kinds
are given in section 1.2.

So that was the start of the modern computing clusters through history:
somehow make many computers work as if they were one in order to solve a
single computing problem. However lets remember that was a time of continuous
changes around the world of computing, so many different chips were engineered,
many different operating systems developed and so many different applications
of all kinds.

All those continuous changes and improvements created a completely inde-
pendent problem: how can we keep on using our software with new hardware if
they are not compatible?.

It turns out that though software could not always natively be run in newer
operating systems or hardware, it was possible to emulate either or both of
them in order to run such software, surely it imposed certain overhead, but
since newer hardware was very likely to be faster than the emulated one, it
didn’t really mattered much.

This emulation of hardware, software or both evolved in many different ways
in order to run all that outdated software, but also could be used as test bed or
prototype for new stuff or to study and improve existing one; the branch that
is of interest for this document is called virtualization which basically consists
on tricking the operating system into thinking that it is running on a hardware
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Figure 1.1: A mother board with some processors at the right side and some
memory slots.

of its own, we will study more about virtualization in section 1.3.

1.2 Architectures and uses

From the hardware point of view we have many different cluster configurations
that goes from putting many boards with their processors somehow together to
buying a single big machine with everything integrated, here we give an overview
of such configurations or architectures including the current ones.

On one side we have what is called Symmetric MultiProcessing or SMP, it
basically involves a single board with lots of slots for (usually) identical CPUs
that share the same main memory and are administered by a single instance
of an operating system. This architecture had the advantage that companies
would by lots of CPUs at a single time, getting them cheaper. One of the first
machines known is the Burroughs D825 in 1962. We can see a picture of an
SMP board in figure 1.1.

It was not always possible for the companies or laboratories to buy a whole
lot of identical processors, and they not always liked the idea of trashing all the
costly hardware they already got in order to buy new one. The solution for this
was the Asymmetric MultiProcessing architecture or AMP, it was the same basic
idea of the SMP, but this time it was possible to use different kinds of processors
(or at least different versions or revisions of a particular brand). However wen
this idea surged between the years 60s and 70s, the operating systems were not
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prepared to run in many processors; so in this case the operating system ran in
the main processor and when a job entered it sent it to a particular processor
to be executed.

One supposed enhancement to the SPM architecture was something called
Non Uniform Memory Access or NUMA; the main difference between them is
that the NUMA architecture uses a dedicated memory for each processor at
a place near of it. However it also introduced the problem of data access, a
protocol is needed in order to get or modify the data from the memory of other
processor to ensure data integrity and make sure that every processor is working
with the latest version of the data.

This kind of equipment could and can be bought from hardware companies
specialized in High Performance Computing like Cray Inc. Sometimes they come
with their own operating system, tools and connections.

The problem of data integrity is not specific of the NUMA architecture, al-
most every parallel program will have to make sure that every thread is working
with the latest available copy of the data; NUMA happened to work with this
problem at a hardware level, some of this was latter adopted by others, the
main subject about it is the cache coherency [38].

The SMP architecture has got very cheep and thereof popular in the last few
years with the introduction of the multicore processors, each core has everything
it needs to execute a program and the only thing that is shared among them is
the access to the memory; at the time of writing it was possible (and affordable)
to get a desktop computer with a 8-core processor.

Continuing with the SMP architecture, before the 8-core processors came out
there was another way to make your own SMP or AMP cluster using lots of in-
dependent computers connected to a local network through high speed switches,
the users could connect to a login server and send their jobs for execution from
there.

So far we have described clusters from the hardware point of view taking
emphasis on “user jobs”, however there are some more specialized kind of clus-
ters that are built to run a single application or a small number of them, these
are typically service or application clusters with fail-over capabilities through
redundancy.

An example of this a software cluster is in the case of a database; sometimes
databases handle too much information and are asked to execute hard queries
on it, this can be a heavy task if many of this are requested every time, so a
cluster comes in handy, create a master database server and then replicate the
data across the slave machines, then distribute the queries requests among all
of them to ensure responsiveness. A particular example of this kind of software
is MySQL-cluster.

Another typical scenario for this clusters are the web servers; back in the days
of HTML 1 this servers only sent the page that was requested, however lately
with the introduction of software like PHP, ASP, etc. their task has increased
considerably since now the servers have to compile the page before actually
sending it, this can be a problem with big and heavy pages, so sometimes the
different processing bits of the server are distributed across the cluster, so one
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Figure 1.2: A shelf with random computers that for a Beowulf cluster.

machine does the SQL queries, other compile the page, etc.

More recently, with the introduction of cloud computing, virtualization clus-
ters have surged, basically you have an image of a operating system with the
services and libraries required, if one image is not responding because there are
many requests, just launch another one and make it execute some of the re-
quests, when the load decreases shutdown one of them; we will talk more about
virtualization in section 1.3 and how to use it for High Performance Computing
(HPC) work loads in chapter 3.

After all this talk about clusters it’s probably time to talk about how to build
your own HPC cluster, since there are lots of ways, we’ll only cover some of the
popular or interesting ones, from using your coworker’s computers to buying
new dedicated hardware. For a more extensive explanation covering from the
electrical installation see [7].

Probably the most popular configuration of the “build your own cluster”
kind is Beowulf, the most basic architecture consists on taking any computer
you can get for exclusive use of the cluster, connect them through an Ethernet
switch, decide which will be the master node and you are done; it’s recommended
to pile them somewhere to save space like in the figure 1.2, we will talk a little
bit of the software used latter.

The advantage of the Beowulf cluster is that the machines are dedicated for
its use, so the administrator have a complete and centralized control of them;
when a process is executed in one node, it will give all of its resources to the
process allowing it to run at full speed every time.

The disadvantage is that if there are no jobs that can be run by a particular
node at some point in time, the node will be there waisting energy doing abso-
lutely nothing; with the current costs of electricity that is an undesirable thing,
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Figure 1.3: A COW cluster using all the workstations from 3 different floors.

we want the nodes of the cluster to be busy as much as possible or there is no
point in having them at all.

There is another very interesting possibility, lets say that everyone in the
office has assigned a computer, like in figure 1.3, the coworkers or users most
likely won’t be using even half the processing power of their respective machines
on common administrative or office tasks; it is possible to detect which comput-
ers are idle and which are not and select them to execute jobs, this is known as
a Cluster Of Workstations (COW).

The COW architecture comes in two main variants, it can be specified from
the beginning how much of the resources of each node can be used for the cluster
at a given time, or it can be dynamically detected depending on the load of the
machine and other factors. The disadvantage of this architecture is that it is
possible that the jobs are affected by the work being done by the user at random
points in time, or the jobs affect the user.

For this project we are using a mixture of the ideas surrounding the Be-
owulf and COW cluster architectures, having a bunch of dedicated nodes, but
monitoring them frequently to know how busy is each one and basing the job
assignment on the load. We will talk more about this in chapter 3.

As we can see in figure 1.2, an average Beowulf cluster take a lot of space
which limits badly the amount of computers that can fit into a room, one solution
for this is to trash the cabinet and keep only the boards with the processors;
depending of the configuration a hard drive may no be necessary either, allowing
to save even more space. However, professional production systems will use a
tower like the one shown in figure 1.4, this kind of tower in particular is around
two meters tall and can hold around 60 computers, this are specially designed
to keep the machines as cold as possible.

So how do you configure the cluster to make the machines execute jobs
automatically anyway? As usually with technology, the answer is “it depends
on your needs” however here we’ll show one of the most common solutions, what
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Figure 1.4: A rack for cluster with capacity for 60 mother boards.

you need is a shared file system to be able to find the files regardless of the
node that execute the job; an authentication system to allow the users to login
securely in the system; and a resource manager that will receive the requests
and distribute them across the available machines; it is also recommended to
have the same operating system in all the nodes, unless you know what you are
doing.

While most modern operating systems (OS) can be used for building your
own cluster, the GNU/linux family is the preferred one for various reasons,
including the fact that most distributions are free, and there are others that
have commercial support like RHEL1; at the time of writing, 91.4% of the
clusters in the top500.org used a GNU/linux OS. Another good reason for using
GNU/linux is because it comes with most of the things needed to build a cluster
out-of-the-box.

While most big clusters will look like the one in figure 1.4, an easier to
understand topology will look a lot like the one in figure 1.5, there we can
distinguish processing nodes with different characteristics at the left that will
be the ones executing the jobs, one master node or login server in the middle
that serves also as gateway for the nodes that need access to the internet, and
finally some file servers that will hold the data of the users. Finally we can see
that all the nodes are connected through a high speed switch.

A shared file system (FS) is important because the users needs to be able
to get the files that are required to execute the programs from any node, since
nodes are assigned quite randomly, and some times the users are not allowed
to access the nodes on their own, a centralized place to store everything is

1Red Had Enterprise Linux
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Figure 1.5: An example of a Beowulf cluster to distinguish between processing
nodes at the left, a login server in the middle and some file server at the right.

desirable. One popular solution is the Network File System (NFS) that comes
by default with most GNU/liux OSes.

The authentication system is important because is desirable to make sure
that the person using the system is the one that was given access to it; also it may
(or not) be desirable to treat all users equal, specially if some are paying to use
the infrastructure; finally it’s not a good idea to allow the users to access directly
to the nodes because they may interfere with the jobs of other users, however
this is a more advanced configuration. GNU/linux clusters will allow the access
through Secure SHell (SSH) that allows to encrypt the communications, is very
configurable and comes with every GNU/liux system.

There is one particular piece of software that makes it possible to efficiently
share the computational resources among all the users of the cluster, that is
the middleware, or more precisely the Resource Manager (RM) which job is
to monitor the existing resources and share them among the users; its main
function can be explained more easily from the figure 1.6: the user will send
(or request) a job execution to the RM, the RM will put the job in its queue
and allow them to run according to the scheduler rules used and the amount
of resources available; finally the job will run in a set of assigned nodes until
it finishes or its time runs out. We will talk more about the middlewares in
appendix A.

1.3 Virtualization

We have talked only a little bit about virtualization so far but haven’t said how
it works or why is it important, so in this section we are giving a more in dept
explanation of what is virtualization, what it does, how it works and some more
information that may be interesting for those that are working on the area and
also for those that are not familiar with it.

Resource virtualization is a joint technique of software and hardware that
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Figure 1.6: Life of a job in a cluster: enter the queue, wait for resources, run
until it finishes or its time runs out.

allow us to trick a process into thinking that it is being executed inside a phys-
ical node while that’s not actually the case, so we can execute many different
applications inside one computer and at the same time isolate all of them.

Virtualization is also a very broad subject, thereof in this section we give
only the basic concepts that helps to understand how it works and how to apply
it. We start with a very general definition of what virtualization is [43] “Virtual-
ization is a technology that combines or divides computing resources to present
one or many operating environments using methodologies like hardware and
software partitioning or aggregation, partial or complete machine simulation,
emulation, time-sharing, and others.”

Partitioning From a multitude of equal resources a piece of one is shared.
For example, in the case that we have two network cards but we want to
present only one.

Aggregation The opposite of partitioning, we want to present more resources
that the ones actually available. For example we can present more RAM
memory through the use of a swap partition.

Simulation Through software the instructions of the program are interpreted
in order to reproduce the behaviour.

Emulation Its a way to model the device for which the application was written
in order to allow it to execute.

Both, simulation and emulation require support through software in order
to run applications, this make the programs execute slower than in the original
hardware, this is one of the reasons for which neither of the two were adopted
for use in high performance computing where is used all the computing that is
possible to get.

The virtualization technologies have improved a lot in resent years, now
the processors provide hardware extensions that make the emulation easier, for
example AMD-v from AMD and VT-x from Intel are hardware extensions that
are used by products like VirtualBox, VMWare and others to make the virtual
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machines a lot faster; nevertheless they still need some pieces of software that
modify part of the guest OS so that some devices work correctly, for example
it’s usually needed to install some device drivers provided by the virtualization
vendor.

In grid environments many users donate their dead processor cycles2 for
use in the grid that they are members of, this potentially gives access to their
(personal) machine to hundreds of users of the network, which is not a good
thing from the point of view of security; for this reason since some years virtual
machines have been used for the execution of scientific code in grids, the user
only needs to give access to the virtual machine and in this way the programs
run in a completely isolated environment leaving alone the files of the user.

Even though the hardware assisted virtualization provides a good perfor-
mance, the fact of having to install and upgrade specialized device drivers on
the guest OS and the latency for input and output devices were a hindrance for
its use in high performance computing, so much that at the time of writing of
this document only very few serious publications about its use for HPC were
found [20,40].

The fact that there are not many publications about the use of virtual ma-
chines for high performance computing does not mean that there is no interest in
it, in fact, the thing is that currently there is no important supercomputing cen-
ter that uses them as part of their infrastructure, nevertheless is an alternative
that is being explored [50].

Since many years ago the concept of “paravirtualization” was conceived,
though this technique became popular recently with the introduction of th Xen
hypervisor3 in 2003 [3]. This technique consists in allowing most of the instruc-
tions to execute directly in the bare hardware, without relying on a software
that interprets the application, this allows the programs to execute roughly at
the speed that they would execute if they were in their own physical machine.

Besides Xen, there is another popular hypervisor called KVM (Kernel Vir-
tual Machine), that like the former, provides a good performance of the virtual
machines and is used a lot lately, among the reasons for this popularity is the
fact that is free and comes included as part of the Linux kernel since version
2.6.20, this makes it very easy to configure.

With this and other paravirtualization alternatives a new interest on using
VMs on HPC surged; numerous studies of performance have been made regard-
ing the use VMs for HPC for example in the area of memory access [26], also
for reducing the input and output penalty [37], and methods for optimizing
scientific libraries like MPI [25].

The main problem with solutions like [50] is that it only propose the use of
virtual machines to build and administer a supercomputing cluster and gives
much of the theory about job scheduling and resource administration, but it
doesn’t provide an actual way of building or configuring a virtual cluster.

This little gap is taken into account by various cloud technologies which

2Time that the computer is on but is doing no work.
3Or Virtual Machine Manager (VMM)
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provide means for realizing much of the administrative tasks that get us closer
to a virtual cluster, for example the EC2 from Amazon and the One-Click
Cluster from Nimbus; the problem with both of this is that they are independent
solutions and doesn’t integrate seamlessly with the existing infrastructure.

We talk a little more about the building a virtual cluster in chapter 3 since
that is an important piece of information for this work.

1.4 Problem approach

Nowadays the use of computing clusters to run scientific applications is a widespread
trend in many different social communities due to the huge amount of resources
that are easy to request; however this massive amount of resources not always is
used at its fullest for many reasons including the fact that packaging all the ap-
plications given their expected runtime and resources is a very complex problem.
On the other hand the virtualization of the Operating Systems has been get-
ting popular specially for server environments because it allows to easily share
computing resources across isolated applications or (virtual) servers and thereof
increase the utilization of resources of the hosting nodes (ie: hardware). On
one hand we have a computing cluster whose resources are not used at its full
potential and on the other hand we have a technique that allows us to easily use
more of the resources of the nodes; from here the idea of using virtual machines
to create a computing cluster for scientific applications was born; we wish to
be able to monitor the nodes of the cluster in search of available resources and
allocate them for the use of the jobs, this way it is believed that it is possible
to dispatch more jobs in the same amount of time.

1.5 Justification

The interest in the use of virtualization for HPC workloads is slowly but steadily
increasing across the community due to the benefits that it provides and the
active development and improvement of such technology, however at the time
of writing there is still no free solution available for joining both worlds, instead
there are applications that do either of the two. The main point of this thesis
is to show both a general architecture and the actual implementation of it for
creating a virtual cluster that automatically starts and stops virtual machines
based on the amount of jobs (applications) waiting for execution and the amount
of resources left unused by the jobs that are executing already.

1.6 Objectives

General objectives:

• Evaluate a general architecture for a virtual HPC cluster
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• Develop a software for automating the management of a virtual HPC
cluster

Particular objectives:

• Evaluate the possible gains in utilization under the job per node granu-
larity.



Chapter 2

Problem

With the massive collection of computers that form a cluster it is normal that
many different problems arise. From the scheduling point of view we have
the problem of deciding in which order to send the jobs to the cluster, this in
turn affects the average usage of it because sometimes it’s necessary to wait for
resources, the later is solved through a packaging optimization algorithm, but
this might override the desired schedule and move certain jobs again and again
preventing them from executing.

In this chapter we give a comprehensive description of this problems, along
with some of the proposed solutions for them. To our knowledge there is no
way to solve all those problems, at once, or at least not an implementation of
one, and here we describe why.

2.1 Scheduling

A schedule is a execution plan for various tasks, this is true for both the personal
life of an individual and for the jobs in the computing clusters. The difference
could be that one person is restricted to maybe one or two tasks at a time while
clusters can allocate a very volatile number us tasks at the same time due to
the numerous resources.

Since many years ago, specially between 1900 and 1980, various techniques
for scheduling and planning were developed to make an efficient use in Shop
Floor Control (SFC) [23] and based in many different criteria, for example those
based in job attributes, or in the time required to complete it, the type of jobs
in the queue, etc.

It’s convenient to describe some of the characteristics of this different philoso-
phies of SFC because some of this were adopted, adapted or ported for the use
in computing cluster scheduling where there are also many different kinds of
jobs that arrive randomly and from which is necessary to select and optimum
way of executing them.

It is possible to think in two possible generic models for planning jobs: a
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Figure 2.1: Number of jobs that arrived on periods of 2 months in the cluster
of ANL during 2009 per hour of the day.

static one in which all the tasks known are planed at once and no new tasks are
accepted until all of them are dispatched and the schedule gets empty; and a
dynamic one where new jobs keep getting into the list of pending tasks and are
scheduled on the go. The static model is very unlikely to have a practical use
in practice, so for the current work we think on the dynamic and more flexible
model.

The dynamic model for planning is necessary because there are job run
requests arriving at the cluster at all times, probably not so many at 3 in the
morning, but still some do get into the queue at that time just as we can see
in figure 2.1 where we can see an histogram of job arrival per hour of the day
in the Blue Gene cluster of the ANL1 from January to August 2009; it’s very
similar to the result that we can see in [35], so the scheduling must be flexible;
also let’s notice that some jobs get canceled before or during their execution
leaving holes in the schedule.

How can we select the order in which to queue the jobs anyway? As we
can see in [23], by 1989 there were already more than 30 different algorithms
to schedule tasks: based on priority, properties, processing, etc. also global and
local rules. Each one of this algorithms have their own pros and cons, though
we will not study them in detail, let’s just see what are they about.

The priority based rules make a schedule of the pending jobs in such a way
that all the machines get busy, once any machine finishes it selects the next task
among the list of pending ones, in order for the machine to make such selection,
a new schedule must be computed.

The priority functions based on properties assign a priority to the jobs inde-
pendently of the urgency of realizing other tasks, it only weights the different
properties of each individual and use them a measure, there is a variant of this
one that also consider other tasks though.

The rules based on processing time assign a priority based on the time re-
quired to complete the job, for example, it is possible that the longest tasks are
considered more critical than shorter tasks, in the other hand, it is possible that
long tasks are so rare that they are not really important, so they can actually

1Argonne National Laboratory.
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Figure 2.2: An example of the result of scheduling some jobs using a) FCFS
and b) EASY backfilling.

wait for the resources to get available.

Finally, in the event that there are various queues that happen to share some
resources, we can think of local and global rules; the local ones just ignore the
other queues, while global rules do care about the status of other queues, so for
example if there are jobs that can only be executed by certain subset of shared
resources and others that can be executed by any, they try to take that into
account.

Leaving all those algorithms aside, let’s see which are the ones actually used
for scheduling clusters: in literature we will usually find FCFS (First Come First
Served) and EASY backfilling [24, 33, 41, 46, 52], the former one because is the
simplest that one can think of, and the later because it happens to give a fair
performance and is easy to implement.

As we can see in figure 2.2a what FCFS does is to try to run the jobs in the
same order that they arrived into the queue, if there are not enough resources to
run a job it waits for them to free until the next job in the queue is able to run,
this has obvious problems since the free resources are being wasted meanwhile.
The good thing about FCFS is that there will be no complains about why a job
that was sent after another of the same priority ran first.

In 2.2b we can see how EASY backfilling works, it basically will create a
schedule just as FCFS, then it will search for holes or wasted resources in the
schedule and will try to fit jobs that will execute later into the available holes,
this is a good thing because it will keep all the machines busy. This backfilling
comes basically in two flavors, one is conservative backfilling [42] which creates
the whole schedule and then backfills jobs only if by doing so it doesn’t postpone
the scheduled start time of other jobs; the other flavor is EASY backfilling [36]
which will schedule only the next job in the queue and allow to run other jobs
as long as there are enough resources for them to start executing.

Because of its simplicity we can categorize [24] FCFS into the group of queue
based schedulers since it will always take the next job in line regardless of the
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rest of the jobs; while backfilling is more a planning based scheduler since it will
have an execution plan of some (EASY) or all (conservative) the jobs in the
queue and then will try to optimize it.

Another issue caused by this very good backfilling algorithms other than
the mere fact that small jobs can keep on skipping the line to execute before
others is something called job starvation which occurs when a jobs is postponed
again and again and doesn’t get executed; we talk more about job starvation in
section 2.4.

The problem of scheduling is a very important one, it’s not only about
deciding what goes first than what or how busy are the machines, there are
also political implications, for example in [46] we can see many of the decisions
around the design of the scheduler Maui; things like quality of service (QoS)
which is the use of privileges or policies based on users, groups, types of jobs,
etc. in order to decide how to prioritize the jobs; fare share which is making
sure that everyone gets resources at some point while preventing a single user
from taking all the cluster for themselves (for example in cases when a single
user submits hundreds of jobs at once).

Maui is not the only scheduler using all that concepts for planning purposes,
and also those are not the only thing to consider that will take a toll in the
efficiency of the scheduler’s efficiency; schedulers like OSCAR [12], SLURM [30],
PBS [18], Catalina [55], and others [54] include considerations about QoS and
fare share into their scheduling mechanisms.

There is another problem we haven’t mention yet, in order to calculate a
schedule, the expected runtime is needed or else there is no other option but
to execute the jobs as they arrive; however, what happens when a job doesn’t
finish in the planned time? there are mainly three options for an event like that:

• Leave the job running and postpone the start time of the waiting jobs
that depend upon the finishing of the current jobs. Let’s notice that this
might render useless the whole schedule as it will move the end time for
as much as the extra time required for the job to finish.

• Start the next job anyway; this is very much a poorly monitored solution,
two jobs sharing a single node could interfere with one another as the first
would be stealing time from the second.

• Kill the offending job and start the next scheduled one in order to keep
the current deadlines.

Some companies expend lots of money in products like MOAB in order to
have a good scheduler that can provide lots of functionality and good QoS, so
the first option is rarely used, expect in old and specialized clusters that doesn’t
require the user to provide runtime estimates; to our knowledge the second
option is not really used expect when there is no resource manager installed in
the cluster; finally, killing the job whose time expires seems to be the preferred
behavior as its the default in many resource managers including TorquePBS and
SLURM.
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Figure 2.3: 1 the user requests enough time to guarantee that the job finishes.
2 the job actually finishes before the allocated time.

Estimating the runtime of a job is very complicated, specially when it’s a
parallel job due to Amdahl’s law [7,44,47]; it’s not only about dividing the time
required to run the serial version by the number of machines to use, but it’s
actually necessary to take into account the fact that there is always a serial part
of the program and one or more parallel parts.

Amdahl’s law added to the fact that every generation of hardware has im-
provements or drawbacks in different areas makes calculating the expected run-
time a nuisance, and even after this the users of the cluster have to deal with
the fact that if the estimation is short the job will be killed make the users
overestimate the runtime of their jobs [2, 42, 51]; so an scenario like the one in
figure 2.3 where the job doesn’t use half of the requested time is quite common.

Since we don’t want to waste all that extra time freed by jobs that finish
earlier than expected, and is very unlikely that someone will complain for their
jobs finishing sooner, the schedule is recalculated or optimized quite frequently,
there’s even work being done in schedule optimization [33] and also in predicting
the runtime of the jobs before creating the schedule [41,52].

Even though there exists already so many awesome scheduling algorithms
based on all kinds of philosophies like profiling the applications [21], predicting
the performance [29], using job statistics and monitoring to schedule [34] and
others; current cluster middleware keep using the simplest scheduling algorithms
specially due to the fact that scheduling thousands of jobs at once can take some
time even with todays computers, the algorithms are complex to program and
generate a big latency or require lots of memory, so most of them stay in the
publications and never get used.

While this section was mostly about the algorithmic approach for the schedul-
ing problem, there are more computational approaches, we show some of them
in section 2.3, however even if the approaches are different, the purpose is the
same, to increase the utilization of the cluster while trying to keep the user from
complaining.

2.2 Motivation, cluster usage

Let’s begin by describing what usage means in the context of cluster computers,
thought it’s similar in other contexts; usage is the measure of how much the
resources are being used, we can break it in many levels; the higher level we
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are concerned about is the cluster usage which is how many of the computers
of the cluster are working in average over the course of time; of course, this is a
continuous function.

We can calculate the usage of a resource at the time t using equation 2.1
where U(t) is the utilization at time t, ra(t) are the total resources available at
t and rb(t) are the resources busy at t; so for example, if we have 64 computing
nodes and 50 are working then the cluster usage is 84.375% at that moment.

U(t) =
ra(t)

rb(t)
× 100 (2.1)

Knowing the cluster usage at certain time is not really useful, we are usually
concerned about the utilization during a period of time, this could be a con-
tinuous function, however the computers updates the usage static in a discrete
manner, so we can use equation 2.2 where i is the time of the first measure we
have, j is the time of the last one and n is the number of measures.

U(i, j) =

∑t=j
t=i U(t)

n
(2.2)

While one of the main objectives of scheduling is to maximize the utilization
of the cluster, it is known that the average usage of the nodes rarely goes over
60% [17, 42, 53] (this studies suggest that is between 7% and 22%, but the
communication speed has improved a lot since, so probably that’s not the case
anymore).

Why do we care about utilization anyway? To explain that let’s take the
(very conservative) example of TCO (Total Cost of Ownership) from [16]; if
a 128 node cluster costs $67,300 USD/year just to run and the average node
utilization in one year is 50%, that means that we are waisting $33,350 USD/year
on electricity, now let’s say that with the present work we manage to increase the
average node utilization from 50% to 60%, that’s a 10% increase that accounts
for $6,730 USD/year.

Probably $6,730 per year doesn’t sounds like much, but production systems
nowadays are much bigger than that, at the time of writing the machine in
rank 498 of the top500 supercomputers was a xSeries x3650M3 with 9084 cores,
supposing that each node had two six core processors, then that system had
around 757 nodes, so a 10% increase of utilization on that would account for
$39,800; but a kilowatt doesn’t costs $0.10 per hour, and the power consumption
of a 12 core node is not the same of a 4 core one, so we can expect the actual
gain from a 10% increase to be higher that that.

In the figure 2.4 we can see an example of a schedule, this is not the graph o
a function, instead it represents what was each of the nodes doing at a particular
moment of time; in the X scale we can see the time in hours since the cluster
was turned on; the Y scale represents the worker nodes of the cluster, in this
particular case there are 1024 nodes, for now we don’t care about a particular
set of nodes and there are too many of them so the scale is not shown; a single
job is represented by one or more rectangles of the same color that start and
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Figure 2.4: The usage of the cluster for around 7 hors is not even 30% because
there are no jobs in the queue.

end at the same time, they don’t need to be continuous and the decision of how
to allocate them is up to the scheduler; the vertical line represents the moment
in time when this snapshot of the schedule was taken (due to the fact
that the schedule changes dynamically over time).

Now that we know why the utilization is an important subject, we can pass
onto some of the reasons for the cluster not being used at 100%; one reason is
simply because there are no jobs in the queue, and therefore nothing to do as
we can see in figure 2.4 where more than half of the cluster got wasted for a few
hours. This event can not be helped, no matter how good is the scheduler, if
there is nothing to schedule the whole cluster will sit idle.

The second possibility, and the one anyone working on scheduling is con-
cerned with, is when there are jobs waiting to be executed, like in figure 2.5
but none of them can be executed right away because there are not enough
resources, so it’s necessary to find a way of keep as many of the resources busy
as possible at all times; this is also part known as the packaging problem, we
explain a little more of it in section 2.3.

There is also another important aspect to know about the schedules shown
in figure 2.4 and 2.5, that is not a map of the usage of the cluster at certain
point, but actually a map of what machines were given something to do during
that time; the truth is that even if the machines were given something to do,
they are not necessary using all their resources [53].

Commercial resource managers for computing clusters doesn’t monitor the
resources of the nodes, they limit themselves to assigning jobs to the nodes; it
is known however that duplicating the number of nodes used to solve a problem
doesn’t cut the time needed to complete it by a half, so this means that the rest
is wasted CPU time, time that could be use to run other jobs.

Other kinds of middleware do care about CPU and memory usage of the
nodes they are administrating, for example SQL clusters use that information
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Figure 2.5: There are lots of jobs waiting for execution but non of them fit in
the holes, so the cluster gets wasted during that time.

in order to direct the requests to the nodes, however this is more a load balancing
strategy since the only thing different is the query, but the data and the server
are the same on all nodes. Also the VMM (Virtual Machine Monitor) use to
monitor both the hosts (physical nodes) and guests (virtual machines) and use
that information to take decisions concerning VM allocation and load balancing
across the cluster of VMs.

In chapter 3 we describe our proposal for increasing the cluster usage by
using mixing two kinds of middleware, one VMM that is used to start and stop
virtual machines depending on the load of the hosts, and one resource manager
for computing clusters that allocates jobs on the virtual machines.

To understand better why middlewares seems to do so many different things,
which they actually do, refer to appendix A, also for the particular case of the
SLURM middleware refer to appendix B.

2.3 The packaging problem

Packaging, when talking about scheduling, is a problem that consists on trying
to cover as much of the execution plan area as possible in the smallest amount
of time; as we can see in figure 2.5, the scheduler actually did everything it could
to try to fill the gaps, but as there were not enough small jobs that could fit in
them, some resources still got wasted for some time.

The problem with the scheduling algorithms described in section 2.1 is that
they try to make the plan using non-overlapping blocks as width as the number
of resources requested and as long as the time required (including the overesti-
mated time), so they heavily depend on small jobs to fill the gaps; big jobs get
postponed to start in a future time and are rarely eligible for backfilling while
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Figure 2.6: Run the jobs as long as there are enough resources. A) If it doesn’t
finish, kill and re-queue the job. B) If it doesn’t finish, suspend and resume
again when possible.

small jobs not only skip into the line to get executed before but also are eligible
for backfilling.

There are two main ways of doing a better execution plan without depending
so much on small jobs that are from the computational point of view: those are
space sharing and preemptive execution. The basig idea behind both techniques
is depicted in figure 2.6, both require support from the resource management
middleware.

The first of the techniques is the preemptive execution, it allows on allowing
the participant jobs to be executed as long as there are enough resources available
even if there is not as much time as the one requested by the user to run the
job; since the time requested is usually greater than the time it actually takes
the job to finish, this is a little bit of a gamble because the job may actually
finish in time, however, in case it doesn’t finish, it is killed to comply with the
execution plan of the rest of the jobs and the killed one gets queued again as
we can see in figure 2.6a.

Not all the jobs are suitable for preemptive execution because some of them
need to do some housekeeping tasks before or after the execution like fetching or
(un)compressing files used throughout a simulation or whatever the job is meant
to do; this kind of jobs could leave random files spread across the nodes that
they started running on, or if they depend on the successful execution of some
particular command that destroys the input pile (like gunzip(1)) they could just
crash the next time.

For some resource managers, this kill and requeue policy is only used in case
of a node failure, so the rest of the job is killed an requeued before it crashes
because a node died. So this usually has to be enabled from the scheduler itself
and also the job needs to be sent to a queue that supports preemptive execution.

The second computational approach for filling the holes in the schedule and
package the jobs more tightly is time sharing, it not only requires an special
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queue and the explicit enabling of it in the configuration of the scheduler, but
also requires special support from the operating system and the software and
libraries being used.

Time sharing, like preemptive, allows a job to run as long as there are enough
resources available even if there is not enough time for it to finish, but unlike
the later, when it is time for the scheduled job to begin running, the other job
doesn’t gets killed, instead it is paused by the system and saved to the disk so
that when another set of resources of the same size is available it can be resumed
on those nodes as we can see in figure 2.6b; the job gets suspended and resumed
until it finishes.

Time sharing is even trickier than preemptive execution, it requires the op-
erating system or the libraries or both to support the suspend resume features
in order to work. For example, the team of OpemMPI had to implement a
particular solution to suspend/resume parallel jobs using it [27], because there
would be problems if the job was suspended at any time and there was some
group communication or synchronization at the time; also for non MPI jobs,
the OS have to have support for such a feature, in the case of the GNU/linux
OS, BLCR (Berkeley Lab’s Checkpoint Restart) [15] provides this functionality
though a kernel module.

While this solution partially solve the problem of packaging (because it may
run-out of participant jobs), it’s not always available, for instance, at the time
of writing BLCR is not compatible with Linux 2.6.39 and up; also this software
solutions are scheduler based, so it leaves out the other problem we are to take
care of: it ignores the actual utilization of the nodes and only supposes that
they are running at full speed.

For more information about scheduling algorithms see appendix C.

2.4 Job starvation and expansion factor

The use of eXpansion Factor (XFactor) and job starvation have been suggested
as metric for scheduling and backfilling jobs, and also as metrics for the effec-
tiveness of the scheduler, respectively [48].

The XFactor is basically the ratio of the amount of time that pass since a
job entered the queue until it is expected to finish executing taking into account
the runtime estimate, the basic way to calculate it is shown in equation 2.3.

XFactor =
waittime + estimatedruntime

estimatedruntime
(2.3)

So basically, the greater the time it waist and the shortest the estimated
time, the priority of the job goes up; this scheme will give preference (too) to
the small jobs that are already skipping the line through backfilling. This also
doesn’t count the width of the job (ie: the number of nodes requested), so the
weighted version of the XFactor.

While the XFactor is more a way of prioritizing, the job starvation is how
well it is doing in terms of starting its execution compared with the the time it
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would have started to execute using the conservative backfilling; lets remember
that conservative backfilling schedules an start time for every job in the queue
and is willing to let the job start before but not after that time.

If using conservative backfilling a job would have started at certain time,
and using EASY it starts after that time, it is said that the job was starved.
Reviewing the results show by [48], we can see that wide jobs tend to be starved,
while small and short ones get preference. This is very intuitive, one cannot let
a number of jobs skip into the line without others suffering the consequences.

With the current work we want to be able to decrease the overall job starva-
tion while keeping a high real cluster usage and omitting unnecessary priorities
for small jobs that end up starving wide jobs.



Chapter 3

Solution Proposal

There have been some studies about the use of Virtual Machines (VMs) for
High Performance Computing (HPC), some claim that virtualization is good
for HPC because it allows easier migration and testing of new platforms [40];
others claim that the performance penalties are low enough for using in HPC
systems [56]; there is who claims that hypervisors still need to be improved [20],
others actually provide enhancements [26]. The truth is that virtualization has
been improving quite a lot since most of those works were released and no one
seems to suggest that VMs shouldn’t be used for HPC.

Based on all the previous evidence, and some more [25,37,49], we present an
actual architecture for using a virtual cluster for HPC workloads that aims to
reduce the overall job starvation and increase the cluster utilization while also
allowing to do load balancing across nodes an provides a more flexible schedule.

In this chapter we describe the theoretical part of the solution along with
some virtualization, cloud and resource managing software we evaluated in order
to do the proposal. In chapter 4 we present the software written to implement
our solution along with some experiments.

3.1 A cluster that grows and shrinks dynami-
cally

Usually the size of the cluster doesn’t change much over time unless some node
fails or more hardware is bought, so the scheduler has to package the jobs across
a static number on nodes, this causes that even if the next job only requires one
more node than the ones currently available it has to wait for one more to get
free, this is not good because either some job has to skip the line in order to
maintain those nodes busy for a while, or they get wasted doing nothing until
more resources get free.

We propose to make the size of the cluster change in order to allows jobs to
run when they require only a few extra nodes, this is possible using VMs and
provides some interesting advantages over the use of the physical cluster.

31
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In order to allow the number of computing nodes change in a efficient way,
we actually need to make a distinction between the physical nodes an the virtual
ones, because they have to be managed in a different way, for instance, it doesn’t
matters if a VM is being wasted doing no job at all as long as the node hosting it
has also other VM that is actually working enough to use most of the resources.

The idea is to fractionize the physical resources by allowing various VMs to
share them, this means that we also have to take into consideration the amount
of resources free in order to take the decision of creating or destroying a VM.
This problem is known to be at least NP-hard [50] even if we don’t consider all
the resources that can be fractionized.

Implementing an idea like [49] may actually require yet another scheduling
system due to all the variables considered, we instead take our first approach
to be only fractionize the CPU in order to increase the utilization on per-node
basis, that in a global scale should also increase the real utilization of the whole
cluster.

We propose the monitoring of the hosts and their resources along with the
hosted VMs in order to take decisions concerning the size of the cluster, if we
detect overloaded hosts, we may decide to relieve them from some VMs, on the
other hand, nodes running below, lets say, 50% of their capacity are eligible for
hosting another VM that should start running jobs soon after its creation.

3.2 Formal description

Be H = {h1, h2, · · · , hi} the set of computing hosts in the cluster and Vt =
{v1, v2, · · · , vi, · · · , vj} the set of virtual machines running at some time t; since
the VMs are the ones executing the jobs and we don’t want to waste any re-
sources, we need to have at least one VM running per host, so it must follow
that |Vt| ≥ |H|.

The tuple h = (idi, coresi, rami, CpuLoadi, RamUsagei) describes a host
and a the tuple v = (idj , coresj , ramj , CpuLoadj , RamUsagej , namej) describes
a VM. The id’s are necessary to uniquely identify either hosts or guests; cores
and RAM are useful information about each (virtual) node that can help take
decisions; cpu load is a measure of the utilization for either one in the last few
minutes, we use it to decide whether or no create a VM and also for load bal-
ancing; ram usage is reserved for future research, we want to use it together
with the cpu load to take decisions; lastly name is necessary only in the VM
because there must not be more than one host with the same name.

The set H is static because we have no control over it, while the set Vt is
dynamic, so |Vt1| 6= |Vt2| since we can add or remove VMs depending on the
utilization of the cluster and the jobs in the queue.

Lastly, the set Vt is updated immediately after the event of creating or
destroying a VM; every hi and vj are updated automatically by the monitoring
software approximately every 15 minutes, this is not necessarily a bad thing,
after all, if the job doesn’t take 15 minutes to complete, probably it’s not worth
running on a cluster.
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With this, the real utilization of the cluster Ut at the time t can be calculated
by adding the independent cpu load measures of each node at some point and
dividing them by the total number of available nodes like in equation 3.1.

Ut =

∑k=i
k=1 CpuUsagek

|H|
(3.1)

Here the idea is to maximize Ut and keep it high as long as there are jobs
in the queue. Lets also notice that the cluster usage reported by the resource
manager considers that every node that has been assigned work is running at its
full capacity, so that would be the theoretical upper limit of equation 3.1 when
every CpuUsage is at its maximum, that happens to be what we are trying to
accomplish.

3.2.1 Good cluster usage with FCFS

FCFS as scheduling algorithm is probably the one that gives the worst cluster
usage of all the available ones, that’s why EAYS backfilling is used to increase Ut.
With the use of VMs we aim to keep a high cluster utilization even using FCFS
for scheduling. This is achieved with something similar the one of “volunteer
computing” described [53], only that the volunteers will be virtual machines
launched on underutilized nodes.

Taking into account that for a virtual cluster, the maximum number of
nodes that can be requested by a job should be less than equal to the number of
physical hosts, and not that of the amount of registered computing nodes (VMs);
because there is no point on giving more than that if some VMs assigned to the
same job will have to share the same node.

If the results shown in [42] still holds truth, then there is a high possibil-
ity that a good number of machines are underutilized while executing a single
program at any point in time, then with the maximum number of nodes set as
described, even if the next job in line is a wide job (requests many nodes) we
are very likely to find some underutilized hosts in which to start additional VMs
to let the next job in line start right away.

Unless the cluster is very small, it wouldn’t be common to have jobs request-
ing more than half of the total number of hosts, so the event that no more VMs
could be started to run the next job would mean that the cluster usage at that
time is very high, most likely with no idle hosts. On the other hand, if two VMs
are running in the same host and they have been competing for resources, then
one of them would be moved to other host during the load balancing phase,
if they are nor really competing, it doesn’t matter whether or not they share
hosts.

While one of our objectives is to make FCFS a useful scheduling algorithm,
it doesn’t mean that others won’t appreciate the benefits, quite the opposite,
any algorithm that can handle events that change the amount of available nodes
can be used, so at least the popular ones that limit to regenerate the schedule
on such events will get the benefits.
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3.3 General solution

The general way we propose for building a virtual cluster on top of the physical
one, and which we think is fairly easy, is by using an existing resource manager
for the tasks of scheduling jobs and cloud virtualization software. Both must
have certain capabilities that we describe here.

Any solution with support for hardware assisted virtualization will do, this
is necessary to get the most out of both the hardware and the OS used for the
cluster; also it is convenient to select something with support for an hypervisor,
among other reasons, to allow the management of guests without the need of a
Graphical User Interface (GUI) and also to gain support for migration.

The cloud software to be used must allow to manage any number of hosts
in order to add and remove them from the pool and also be able to disable
some in case of any needing maintenance. While an static number of hosts
registered would suffice, it’s convenient to be able to add and remove them to
gain flexibility and even be able to send some outside the local network.

Also the package used has to be able to monitor both hosts and guests. The
hosts must be watched in order to decide whether or not to allocate any or
more VMs in it, most cloud packages with build-in load balancing will do this
much, though this is usually only for taking decisions about allocation. Also it’s
convenient to be able to monitor the guests in order to take decisions concerning
load balancing.

There would be very little use of the information retrieved from the resources
if we couldn’t access it, so the cloud solution must also provide ways of retriev-
ing this information. In the best of the cases, this package would be able to
automatically balance the load by migrating the VMs, however we still need to
access this data for the reasons described before.

Lastly, the software used should provide support for VM migration; while
this is not a must, it’s very useful in order to fix possible mistakes about VM
allocation due to lack of information about node workload or due to the dynamic
nature of the jobs running in the (virtual) cluster. Without migration support,
the virtual cluster would be limited to (un)allocating guests, loosing flexibility.

Just as cloud software doesn’t schedule jobs, the Resource Manager (RM)
doesn’t manage virtual machines, so this means that there is some work that we
actually have to do in order to make it communicate with the cloud technology
that the RM doesn’t know about. It must provide ways for managing the hosts,
for instance, it should provide some event-based means to request more resources
or liberate existing ones.

Liberate resources : this event would be triggered when there is no work
that a particular node/VM can do at the moment or from the last couple
of minutes. With this we can shutdown a VM.

Restore resources : the counterpart of the former, an event that should ask
to get back the nodes that were liberated when they are needed to run
some job. Here we allocate a VM.
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This events are needed in order to allows the indirect interaction between the
RM and the cloud manager, of course, we need to personalize the way in which
such events are treated depending on the information provided or required by
both solutions.

In the case that the RM doesn’t provide ways for requesting and liberating
resources, there is still a way to work with the virtual cluster. A daemon is
needed to retrieve information about hosts and guests and allocate more VMs if
the utilization is low or shutdown them otherwise; for this to work, the RM must
be able to handle node failure and return to service events. The optimal way
of handling the liberation of a VM would be to ask the RM to stop allocating
jobs to it, and then when the usage of the VM falls near to 5% shut it down
(the guest is unlikely to fall below that because there are always daemons or
services consuming CPU), also we need to tell it to start allocating jobs again
if the VM is to be resumed.

The way of actually building this middleware to allows the RM and cloud
to interact will depend on the packages used, so in section 3.4 we describe how
we actually do it.

3.3.1 Ad-hoc VMs by per node requirements

So far we have seen one way to a virtual cluster, the solution proposed so far
will use groups of homogeneous VMs, it wouldn’t make sense otherwise since we
need a template (probably based on queues) to create the new VMs every time;
so for the express queue, probably the templates defines a 2 core VM with only
2 GB of memory (we don’t want them to get in the way of the other jobs) while
the high memory queue will define VMs with 16 cores and 32GB of RAM.

Other possibility is to create something similar to a external scheduler, some-
thing like Maui [46] or Moab. Most RMs will provide ways for checking which
is the next job in the execution queue, the idea of a ad-hoc VM is to retrieve the
requirements of the next job and modify or create the VM templates according
to they, for instance we can retrieve at least the number of nodes required, we
can enforce a policy of providing a memory estimate for the job too and retrieve
that information to make and ad-hoc group of VMs for the exclusive use of a
particular job.

In order for this solution to work we need to be able to tell the RM no to
assign any job to the nodes, instead we need to create the VMs and liberate the
job and ask for it to be executed by the indicated nodes, most RM will allow at
least the first part, also, requesting particular nodes is usually supported.

While this possibility has the disadvantage that it will include some job start
latency (while the VM boots) we actually explored a bit of it and we describe
our experience in section 4.3.2.
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Figure 3.1: In a virtual cluster, the VMs are the ones running the HPC jobs
and connect to the network using bridged connections (dotted line).

3.4 Software review

We reviewed some software packages in search for the characteristics described
in section 3.3, since there is a number of such packages with their own advan-
tages over one another we review a few popular ones and decided to stay with
the Kernel Virtual Machine (KVM) hypervisor, SLURM resource manager and
OpenNebula cloud competing. Also for connectivity we use bridged network
devices in order to gain access to the local network.

The software that we are using and the basic configuration and roles is shown
in figure 3.1. Following we give a small comparison of the different alternatives
that we tried and also why we decide to use the aforementioned software and
the proposed architecture.

Both the login and file servers must be accessible from the hosts and guests
however the later groups doesn’t necessarily need to see one another, so in order
to access the guests, bridged connection are needed, they can be in the same
sub-net or in a different one.

3.4.1 Virtualization technology

There are lots of alternatives for virtualization, the most promising of them: an
hypervisor. VMWare provides an hypervisor, however we cannot afford it, so
we fall back to free software. There are two good popular alternatives available
for the open source community: XEN and KVM.

While XEN is an older solution with lots of interesting features, it was also
harder to install, a patched kernel (which is available for many distributions) is
needed for it to work and uses lots of concepts like Dom0, DomU, ring, etc. to
distinguish between (non) privileged VMs and users. We ran a few tests with
XEN, specially while selecting a cloud technology (see 3.4.3) but in the end
decided to stay away from it.
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Hardware Complex
Type Name Speed assisted Free terminology CLI

Emulation VMWare Fast Partial X X X
VirtualBox Fast Partial X X X

Paravir- XEN Faster Complete X X X
tualization KVM Faster Complete X X X

Table 3.1: Resume of virtualization technologies.

After XEN, the next we tried was KVM, unlike the former, KVM comes
by default as part of the kernel, so we only need to install its tools and it’s
ready to go, at first the performance wasn’t that good, but a little research
yielded that it was due to the image format settings, so using a QCOW2 image
with metadata preallocation and without write-trough cache gives a very good
performance [11].

Even though we preferred KVM over XEN or VMWare we still wanted some
platform agnostic solution, so we decided to give libvirt a try, it is a very com-
plete package that is compatible with KVM, XEN, Qemu and others, it works
through a XML configuration file were we can define the MAC address of the
virtual network devices, virtual images to use and drives and other interesting
features, however even the simplest configuration file turns out to be fairly big
and is not very intuitive.

Working directly from the Command Line Interface (CLI) using KVM or
XEN isn’t easy because of the amount of parameters that they can receive so
a solution that takes care of the dirty job is needed, this is where the cloud
technology comes into play, see section 3.4.3.

A resume of the virtualization technologies can be found in table 3.1.

3.4.2 Network

There are a few options for allowing the VMs into the network, for instance
let the VMM create something like a private virtual bridge that allows the VM
into the internet, however the host doesn’t see the VM and the VMs can’t see
each other, so this solution doesn’t work for a cluster. Even more, this kind of
express configuration is very slow.

It is also possible to create a private bridge, this one is a lot faster and allows
both host and guests to see each other, however this one doesn’t allow to access
the internet or guests from other nodes; a workaround for it is configuring NAT
in the host, however a better solution exists.

A public bridge is the best of the two worlds, it’s a permanent connection that
allows sharing the physical interface, so it’s very fast and allows the hosts and
guests to see one another even across nodes, the only issue with this particular
bridge is that it doesn’t seems to work with wireless cards, however no serious
cluster will use a wireless connection, so we went for this one. Both XEN and
KVM are compatible with bridged connections.
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Range of the connection
Type Speed Net Host Other VMs

Virtual Slow X X X
Private Fast X X X
Public Fast X X X

Table 3.2: From the types of NICs for VMs, the public network is the best.

A resume of the types of network connections for virtual machines can be
seen in table 3.2.

3.4.3 Cloud technology

To save ourselves the pain of working at low-level with the VMs and having
to implement all the control system needed to administer a handful of images,
hosts and guest we decided to turn into the cloud computing technology, this
kind of software is excellent for those tasks plus many of them implements
contextualization and monitoring facilities of both hosts and VMs.

We started by setting up and testing Nimbus which is a very mature project
that integrates with the Globus toolkit, it supports either XEN or KVM, but
not both at the same time, setting it up is very difficult mainly due to all the
security built around it and it’s somehow hard to personalize and administer;
besides the very handy one-click cluster [31] it also proved other interesting
features like run-time requests for limiting the time that he VM will remain
running. Overall nimbus turned out to be quite complex and we decided no to
use it even with all its interesting features.

The next we tried was OpenNebula, it turned out to be very a flexible and
extensible cloud technology, it was very simple to setup (compared to Nimbus)
and allow mixing virtualization technologies like KVM, XEN, VMWare, etc. at
the same time and the contextualization doesn’t require network to work for it
uses an ISO image to hold the required files.

OpenNebula also provides a very good set of RPC (Remote Procedure Calls)
that makes it a good choice for development, for instance one.vm.allocate will
try to create a VM, we can decide in which host by calling one.host.info to
retrieve the status of all the hosts registered in order to make the decision.

There are other interesting cloud systems like Eucalyptus, and also some
programmer oriented virtualization frameworks like Usher [39], however there
was no time to review them all and OpenNebula turned out to good enough for
the proof of concept that we mean to give.

A resume of the cloud computing technologies evaluated is found in table
3.3.

OpenNebula

OpenNebula (ONE) is a somehow popular cloud software out there, many com-
panies, schools and researchers use it because of the amount of feature it pro-
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Compatible with Multi-
Name XEN KVM Qemu VMware API driver

Nimbus X X X X X X
Eucalyptus X X X X X X

OpenNebula X X X X X X

Table 3.3: Comparison of cloud computing packages.

vides; one of those that use it is the CERN, one of the reasons for them to use it
is because of the extensible XML-RPC API that allowed them to automate some
process required; a German lab SARA developed their own management console
to allow the users to request VMs or upload their own on top of ONE; many
others have evaluated many technologies out there and also preferred ONE for
similar reasons, like CloudWeavers “We evaluated basically all the other toolk-
its on the market, and these were our findings: OpenStack: clean design [...],
immature [...], Swift storage is very amazon-like, but slow and cpu intensive.
Eucalyptus: the OSS edition is years behind the commercial version, and miss-
ing many important things. CloudStack: monolythic, nice looking but terribly
complex to debug if something does not work properly. Heavy (Heavy!!!). Dif-
ficult to extend. Opennebula was for us much simpler to explore, adapt and
customize; core is clean and small, most other things are manageable scripts.
We found it stable [...]”

3.4.4 Resource manager

The Resource Manager (RM) is the one in charge of sending the jobs to the
appropriate nodes, it has to monitor the HPC (virtual) nodes and make sure
that they are up and working, in case of a node failure, it has to be able to
take action, like sending an email to the user or requeuing the job running in
the node that failed. With this much it’s obvious that at RM is not a trivial
piece of software; since we don’t want to write our own, we have to look for the
alternatives.

The first RM we tried was Torque from AdaptiveComputing, it is a industry
class open source software with lots of features, the ones that are of interest
for us are the ones for changing node states issuing the command pbsnodes

-o nodename we can mark a node as offline and so it won’t be considered for
executing other jobs after finishing the one that is running (if any); also we
can return it to service using pbsnodes -c nodename. While we can work with
Torque with this features, it limits what we can do with it as we can only have
the external daemon starting and stopping VMs when it see it appropriate.

We alto tested SLURM [30], it very much shares the mentioned node status
administration options with Torque, for instance, in order to remove a node
we use scontrol update nodename=name state=DRAIN, this will stop send-
ing new jobs to the node; in order to make the node available again we issue
scontrol update nodename=name state=RESUME, this will tell SLURM that
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Drain shutdown Custom APP
Name nodes Extensible nodes execution API

TorquePBS X ? X X X
SLURM X X X X X

Table 3.4: Comparison of resource managers

it can allocate new jobs to the node again.
Besides those administrative options, SLURM also provides some features

for power saving which automatically executes a program in order to decrease
it’s power usage in a custom way, as the node is in power saving mode, no new
jobs are allocated to it, so we can take advantage from it to issue the signal to
shut down the VM; also nodes in this state are returned to service when there
are jobs it can execute by calling another program that we can use to create the
VM when it’s required.

The interesting power saving features and also some newly introduced sup-
port for the EC2 cloud services made SLURM very attractive for the system we
were trying to develop, so we stayed with it.

The resume of the evaluation of the resource managers is in table 3.4.

SLURM

SLURM is a cluster resource manager developed by a team from the Lawrance
Livermore National Laboratory (LLNL) to manage the workloads from their
GNU/linux clusters, this is also very popular across the free software commu-
nity, it has even made it into the official repositories of some operating systems
like Debian (and it’s derivatives); it’s enough to check the amount of traffic
in their user’s mailing list and the amount of third party plugins available to
have an idea of the amount of people using it for their clusters. It’s modu-
larity and helpful community has made it the choice of companies like Intel,
The National University of Defence Technology (NUDT), CEA, Swiss National
Supercomputer Centre, Barcelona Supercomputer Center and others.



Chapter 4

Results

In this chapter we present the actual implementation of the solution proposed
in section 3.3 with the software selection specified in section 3.4; here the most
important parts of the software created are shown along with the results of
some experiments made using the infrastructure that was made available for
this purpose.

While we give more interest in our own software, called Thiao, we also
provide some configuration examples for the software used as some times it may
affect the performance or it’s necessary to take into account some considerations
for they to integrate correctly or provide all the functionality required.

4.1 Hardware and software specifications

The specifications of the software and hardware used for both testing and de-
velopment of Thiao is described here. The example configuration and services
running in each node is shown in figure 4.1.

The slave nodes and file servers are from the Sierra cluster at SDSC that is
part of the FutureGrid project; this are 8-core nodes with 32GB of RAM mem-
ory connected through InfinBand network. The operating system is RedHad
Enterprice Linux 6.0 (RHEL6). As some nodes were provided for exclusive use
of this project, we ran RHEL6 instead of RHEL5 like the rest of the cluster
nodes.

The hosts connect to the NFS server through LDAP which mounts on de-
mand the shared directories, this make a little more efficient the FS as they
have 2 NFS servers, it’s also necessary to have this NFS directory for the VM
images, otherwise it’s not possible to configure live migration.

The NFS servers provide user’s home directories and also project directories,
in the home directory we store our sample codes for testing purposes, in the
project directory we store the main VM template image and also the temporal
clones for the instantiated hosts along with the necessary descriptor files for
management tasks.

41



42 CHAPTER 4. RESULTS

Figure 4.1: Services running in each node, and network interfaces.

The server doesn’t needs to be very powerful, as it doesn’t run VMs nor
it stores anything, instead it needs some updated software, as this cloud and
virtualization packages depend on new libraries, so RHEL6 was not enough, we
used Debian/testing instead as it’s fairly stable and provides current versions of
the packages with better debugging features than the ones shipped with RHEL6.

While any Operating System can be used for the job execution nodes, and
RHEL is one of the preferred ones, we opted for Debian/testing instead, as it’s
convenient to have the same OS in both the login server and the job execution
nodes. Also Debian provides more prepackaged software that RHEL, making it
easier to setup.

OpenNebula (ONE) 2.2 was also used, during the development ONE 2.3
was released, but some changes in the way it read the template files broke it’s
backwards compatibility, so we didn’t upgrade, furthermore no new features of
interest to us were implemented in the new version so the manual upgrade of
the package was not worth the effort.

For SLURM we also used version 2.2 since it provides all the features we
wanted to test like power saving, node status control and various scheduling
algorithms, at the point of testing; in the latest development version, support
for Amazon’s EC2 services was being added, this was one feature that we wanted
to test, however the support was still in the planning phase; having some direct
communication with Moe Jette (SLURM’s architect) we discovered that the
main difference with our method was that EC2 allowed to change the IP of the
newly created hosts which isn’t really necessary for our solution.

With all this properly known and configured we got an appropriate environ-
ment to develop the solution proposed in 3.3 and also run some test to compare
the performance upon finishing.
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4.2 Architecture of Thiao

As first result we developed a software that we called Thiao, this word doesn’t
have an special meaning, it was extracted from one of the text from Aleister
Crowley; this software was necessary because no other solution for virtual clus-
ters existed ad the time of the research/writing.

Thiao is the software created to serve as a middleware for both SLURM and
OpenNebula in order to create a virtual cluster, as of the point of writing it’s a
solution dependent of both pieces of software, our objective is to demonstrate
that it’s possible to create a virtual cluster for HPC and evaluate it’s advantages
over a normal one.

Thiao is divided in various pieces, some standalone and some complementary,
here we describe each one of them and show the way they were implemented
and how they work towards our objective.

Upon finishing all the different blocks of software described in the following
sections we were finally ready to run some experiments.

4.2.1 Basic VM management

While we can manage the VM on our own without the intervention of the RM
we still prefer to let it participate in the process by sending requests for resource
allocation or liberation, this is convenient because this way we don’t need to be
pooling the job queue and we still can liberate the VMs when necessary based
on the status of the cluster.

SLURM can make requests for allocation and liberation of resources through
some power saving features that has built in, this automatically calls the com-
mand defined as ResumeProgram in slurm.conf; ResumeProgram is called with
the host names of the VMs that it is requesting as parameter, this program can
do whatever we want, wakeup the indicated host from suspend state, increase
their CPU frequency, etc.

In order to enable the power saving mode we need to indicate the path for the
resume and suspend programs in the slurm.conf configuration file as follows
(this will use Thiao’s resume and suspend programs):

#/etc/slurm-llnl/slurm.conf

SuspendProgram=/opt/thiao/bin/Suspend

ResumeProgram=/opt/thiao/bin/Resume

ResumeTimeout=180

SuspendTime=60

When there are jobs in the queue and some nodes in power saving mode,
SLURM will call the program called Resume that comes with Thiao with the
list of VM names to be launched as parameter, this is because it was set as
the ResumeProgram in the configuration file. Resume then looks into the
/opt/thiao/examles directory for a VM template file with the same name of
the host to be launched, then sends an XML-PRC request to OpenNebula to
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Figure 4.2: Sequences for starting and shutting down VMs through SLURM’s
power saving features.

allocate the indicated VMs and have it start executing jobs; we can see this
sequence in the first part of figure 4.2.

The VM template file indicates the image to use, whether to clone it or
not and the contextualization variables to be used like IP address, number of
network interfaces, number of virtual CPUs, size of the RAM memory, DNS
servers and optionally files to send along to the VM among with some more
information, an example of one looks like this:
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NAME = "fg0"

vCPU = 3

CPU = 1

MEMORY = 3000

DISK = [

source = "/N/project/opennebula/img/d-testing.img",

target = "hda",

driver = "qcow2",

readonly = "no",

clone = "yes" ]

NIC = [ NETWORK = "fg1" ]

CONTEXT = [

gw = "$NETWORK[GATEWAY, NAME=\"fg1\"]",

netmask = "255.255.254.0",

ip = "192.168.11.",

dns = "$NETWORK[DNS, NAME=\"fg1\"]",

files = "/etc/slurm-llnl/slurm.conf /opt/thiao/examples/mio.sh

/opt/thiao/examples/mictx.sh /opt/thiao/examples/hosts",

target = "hdb"

]

If a VM is idle (no jobs assigned to it) for more than SuspendTime seconds,
SLURM calls another Thiao module called Suspend, that as the other, receives
a list of unused VMs and asks OpenNebula to shutdown them, so this comple-
ments Resume as we can see in the second part of the sequence diagram shown
in figure 4.2.

Since the resource manager doesn’t know about the physical hosts and
doesn’t know that the execution nodes are virtual, it will keep on asking to
resume VMs as long as there are job in the queue that can be run by allocating
one host, however Thiao is aware of the hosts and the fact that they can hold a
limited number of VM, therefore it can decide no to give more VMs if the uti-
lization reported by OpenNebula is over the required limit, we propose to start
a VM only if the utilization of the node is below 60% of it’s capacity, otherwise
it’s very likely that the new VM would compete for resources with the other
and slow down the execution of both.

The way the Remote Procedure Call (RPC) works is by requesting the exe-
cution of a registered service with a set of parameters formatted in eXtensible
Markup Language (XML), thereof XML-RPC call. OpenNebula 2.2 provides
over 30 XML-RPC calls for various tasks, all the calls receive as first parameter
a session string to authenticate the user issuing the call.

For allocating and liberating VMs we are interested in the calls with the
signatures one.vm.allocate and one.vm.action, the second parameter of the
former one is the VM template string indicated before, OpenNebula 3.0 also
allows a third parameter to indicate which node will host the VM, we plan to
update the code for that in the near future. The second call performs actions like
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Figure 4.3: Load balancing achieved by migrating VMs from one host to another.

shutdown, restart, suspend, etc. the action to execute is the second parameter
and the third parameter is the ID of the VM in which to perform the action.
Both calls will return an XML formated string with the result of the operation
and a string indicating the errors if any.

With this now we are able to automate the creation of virtual nodes to
execute jobs in the cluster.

4.2.2 Load balancing

As we just explained, currently we don’t have control over where each VM will
be hosted, however, OpenNebula with KVM and LibVirt provide facilities for
live VM migration. Live migration is known to be a fast and efficient way of
doing load balancing [10] as the downtime of the VM is minimal (between 210ms
and 60ms depending on the size of the VM and the work being done).

A module called Balancer was implemented, as it’s name suggests it’s pur-
pose is to balance the load across the nodes of the cluster, it is intended to be
executed automatically using some service like cron probably every hour. Bal-
ancer is implemented completely independent of SLURM, however it depends
on OpenNebula as it retrieves information about the hosts and the guests from
it.

Lets take as example the figure 4.3, for whatever reason we ended up with
many VMs executing in one host, and now it’s running close to 100% of it’s
capacity, there is also other node that is underutilized; as depicted in figure 4.4,
balancer will retrieve the information about all the registered hosts and VMs,
in an event like the one described, Balancer will ask for a live migration of a
VM from one host to another, increasing the utilization of one and leaving some
extra resources at the disposal of the VMs of the other host (which may actually
use them immediately! in case that they were competing for resources).

As we see in figure 4.4 Balancer also issues XML-RPC calls to the OpenNeb-
ula server, this are one.hostpool.info, one.vmpool.info and one.vm.migrate,
the two *pool.info procedures return a list of hosts or guests with their status
which includes number of processors, size of the memory, the average utilization
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Figure 4.4: Host and VM information gathering in order do balance the load.

and some more information.

Having the status of all the hosts and guests we store them in lists, drop the
ones that are failing or out of services and then sort them based in their load
(utilization), having this we can expect the ones at the head of the list to be the
most busy ones and the ones at the tail the least used, if the next node from
the head of the list is running more than one VM and the next from the tail is
running below the desired utilization level, Balancer issue one.vm.migrate to
OpenNebula including as parameter the destination hosts (tail of the list), the
ID of the VM to migrate and also tels it to perform a live migration, the output
of this request is the result of the operation; after this we drop the head and
tail of the list and repeat.

Executing Balancer automatically, we can keep the load of the nodes bal-
anced, however at this point we don’t consider yet the memory usage of the
nodes during the balancing process, this could be a problem in the event that
the size of the VMs surpass the amount of memory of the hosts as it would be
forced to use paging in order to maintain it’s VMs running which could lead to
some slowdown in the execution.

The live migration of VMs is a feature available in many hypervisors, it allows
to move a VM from one host to another without stopping the computation, so
the penalty for the migration is very small, specially when there is a high speed
connection between the hosts; that’s another one of the interesting features of
virtualization.

In order to enable live migration it is necessary than both, the source and
destination hosts, see exactly the same OS image in the same path, this is easily
achieved by configuring some shared directory, for example with the Network
File System (NFS), a shared directory is part of the standard configuration of
most if not all clusters.

It is possible to migrate VM from one host to another even without a shared
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directory, but the process is very slow as it saves the VM to the disc, then copies
the resulting image to the destination and then tries to execute it again, this
process is proportionally long to the memory size of the VM and it is very likely
to make the RM think that the node failed as it wouldn’t respond for a few
minutes while the migration is in process; the RM then will cancel the job an
queue it again using other nodes.

With this load balancing we can increase the overall utilization without hav-
ing to necessarily create more VMs on the nodes, instead we move the existing
ones around to achieve the same thing.

4.2.3 Flexible scheduling

By default, the EASY scheduler always tries to execute the jobs in the same
order as they arrived (FCFS) and then uses backfilling to fill the gaps in the
schedule; mixing both the power saving features that asks for VMs and the
EASY backfilling we automatically get a more flexible scheduler that will try
first to launch more VMs in order to run the next job in the queue, and only if
no more (or enough) VMs were given will backfill other jobs (probably bigger
than the ones that could have run otherwise).

This is exactly what happens in our current test environment using Open-
Nebula and SLURM, the ultimate goal is to execute the jobs in FCFS order
as much as possible without wasting the cluster (which is usually the result of
using FCFS as scheduling algorithm) by extending an decreasing the size of the
cluster depending on the demand of resources and the utilization of the nodes.

Other possibility is to easy the use of express queues registering some dedi-
cated VMs on the least busy nodes, and also the sharing of consumable resources
like licenses; also it would be easier to schedule dedicated hardware like GPUs
without leaving the hosts that have those resources idle until some job requests
them which is one of the things that happens, keep the node idle until a job
requesting GPUs enters the queue and execute it immediately, or run jobs in
the node and when a job that needs GPU enters the queue have it wait until
the node gets free.

4.2.4 Advanced management

We also implemented a light version of the ad-hoc VM mode described in section
3.3.1, this was intended to test how convenient would the advanced management
of resources and virtual nodes was, it turned out to be quite difficult and much
more dependent on the resource manager. Only compare the sequence diagram
4.5 with the one using the power saving features 4.2.

For the per job VM mode to work correctly, we need a far more elaborated
middleware, it actually needs to closely resemble an external scheduler that
tell the RM what to do and when like Catalina [55], MOAB [28] or Maui [46],
otherwise the VMs are not used as expected.

The way we developed this advanced management program was by creating
our own submit command called tsub that is used instead of sbatch, tsub will
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Figure 4.5: Services running in each node, and network interfaces.
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receive the job file and internally submit it in the name of the user, the resume
of steps performed is as follows:

1. The job is submitted internally using sbatch and save the job id for future
use.

2. We retrieve the job requirements pooling the job queue through squeue

-o ’%5D %7m’ -j <job id>.

3. As many VM templates are created as hosts requested by the user with
the appropriate memory limits of the job.

4. Launch the VM defined previously.

(a) Store the VM ids and link them to the job id for which they were
created in our local database.

5. Wait a little for the VMs to boot (or pool the VM database to know their
status).

6. Set the nodes in which the job can run using scontrol --ReqNodeList

<VM hostname list>.

7. Let the job start running using scontrol release <job id>.

8. Prevent any job from starting running in the ad-hoc hosts by changing
their status scontrol nodename=<VM> state=draining.

9. Once the job finishes, a program that cleans the environment, called
tclean.py, is automatically executed.

(a) Shutdown the VMs.

(b) Clean the VM and job ids from the local database.

If we don’t limit the nodes in which the job can run, we may end up shutting
down an incorrect VM, messing our environment, also we need to “drain” the
nodes in order to prevent any job from executing in them after the job for which
they were created finishes. As we can see, this is quite complex and we don’t
even do scheduling yet!.

4.3 Experiments

In order to test Thiao in a real environment, we ran a few parallel jobs in the
local cluster, here we show the logs from SLURM and OpenNebula and evaluate
what was going one inside each of this middlewares than now collaborate to run
efficiently this jobs as to see what we can expect from this virtual cluster.
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Figure 4.6: There are no jobs running or in the queue, all the VMs in power
saving mode are in state idle~.

4.3.1 Powers saving mode

We start with no jobs in the queue as we can see in the status output shown
in figure 4.6, since there is nothing requiring resources, all the nodes are put in
power saving mode (bottom) identified as idle~ (top) as opposed to idle (not
shown) when are up but doing nothing, here there is no point on letting the
VM run if it will be idle anyway; here we can also see some down* nodes (top),
this status means that the nodes failed or were shutdown externally, so SLURM
won’t try to allocate jobs in they until they are started manually (only the first
time needed).

In the figure 4.7 we can see what happens when a job is submitted; for
starters, it’s not necessary to modify the job’s description file as we can see in
the middle of the figure, so it’s a seamless migration from the user’s point of
view; if we start with no jobs in the queue like in figure 4.6, upon submitting a
job with sbatch (top) SLURM will wakeup (request) some VMs through Thiao’s
Resume program (bottom), so OpenNebula will allocate some (top).

Next we tested how it worked in the presence of big and wide and narrow
jobs, starting with the five nodes in power saving mode shown in figures 4.6 and
4.7 we submitted a few 4 node jobs to be executed for which VMs fg0 to fg3 were
launched to run them as seen in figure 4.8, next we submitted a few one node
jobs using sbatch, after a few seconds SLURM decided to try to launch the
remaining VM to backfill the job and start executing it right away sharing the
node with the other VMs. In this particular case, the new VM doesn’t compete
for resources with the other VMs that were already running since it only used
one core.

Overall the results were as expected, now we have a fully virtualized cluster
for HPC workloads, however it is still possible that some VMs compete for
resources, in those cases the execution time of the jobs increases a little, however,
even if the parallel process in one computing node finishes before its siblings the



52 CHAPTER 4. RESULTS

Figure 4.7: Job files doesn’t need modifications, upon submitting a normal
parallel job, some VMs are launched to run it.

Figure 4.8: The jobs can be backfilled on the running VMs or starting a new
one.
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Figure 4.9: Sometimes the VMs takes too long to “return to service” and others
are used instead.

node isn’t likely to be wasted as it might be hosting more that one VM at a
time making used of the dead cycles.

4.3.2 VM on per job basis

Lastly, we also did some experiments launching VM on per job basis, that is,
modifying the VM template files depending on the requirements of the jobs as
this looked quite promising; we ran, however, with some issues: users are very
likely to overestimate the runtime of their jobs, which is the one mandatory
parameter for most resource managers, they would be even less likely to provide
good memory requirements for their jobs which is not a mandatory parameter.

As is expected, the boot time for the VMs is not always the same, many
things in the way can make it faster or slower, for example the load of the host
booting the VM, the network or I/O load of the file server as in needs to clone
(copy) the VM image before booting. This variability of the boot time can
lead to some problems: when we start some VMs to run a particular job, this
VMs are assigned to it and given some time to boot, if the amount of time it
takes the VMs to boot is longer that usual it could be marked as down or not

responding and thereof not used.

In figure 4.9 we can actually see that for a job that required a varying number
of nodes (it required either 3 or 4) first we tried to launch the upper limit of
nodes requested, but one of them didn’t boot in time so SLURM gave up waiting
for it and only 3 were used to run the job.

While the wait time before considering a VM as not responding can be
configured, this extra time still counts as part of the runtime of the job for the
which the VM was created as we can see in figure 4.10, though this is part of
the results from the power saving mode, this is still what we can expect from
the “per job VM” policy. In the power saving mode this extra time counts only
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Figure 4.10: The time that one VM takes to start is counted as part of the job’s
real runtime.

for the first job running on the VM, the rest doesn’t get penalized because the
VM is already running.

This variation in the boot time might be negligible for big jobs, it could also
be a problem if we have to wait 10 minutes while the VMs boot just so that the
job fails to start due to an user error in the job description file.

Also, another problem we ran into with this solution is that the resources
are not always used as expected, to begin with, we have to specify the base
features of the computing nodes in the slurm.conf file, this is what the nodes
are registered with when they are sleeping. If we define less resources than the
ones defined in the configuration file, SLURM sometimes doesn’t use the nodes
because they mismatch, so we need to define the minimum number of resources
that will be available for the VMs. On the other hand, the VMs not always have
time to report the real number of resources that they really have, so the job
ends up running in a VM with lots of resources but only using a few of them,
we specially noticed this while setting the number of cores to be used.

This solution, however, is quite promising since not only allows us to share
the resources as well as the nodes, but also is another way of job “processor
affinity” [57], as this is another problem in the table, specially because some
users might request only one core in order to move quickly trough the queue
and then launch lots of threads effectively using more resources than the ones
requested. If we run this kid of jobs in one core VMs, there is no way that the
user gains anything from doing such things.

4.3.3 Performance

In order to evaluate the performance of the solution proposed, a set of runs were
prepared, we start with a fixed amount of jobs that are queued all at once in
random order, we start by measuring the amount of time it takes the cluster to
run them all in bare metal, then we continue by allowing each node to run one,
then two, then n VMs at once and each virtual machine to run a single job at
a time from the pool of jobs.

The workload consists on 107 configurations of the AIRES cosmic rays sim-
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Figure 4.11: Total time to process the 107 jobs workload: a) Incremental VM
creation b) All VMs available from the beginning.

ulator, in dedicated bare metal each job runs for between 20 and 40 minutes,
this configurations consists very much on the elements of the periodic table of
elements to prevent the same from running more than once.

A total of 33 experiments were performed, for each of this 33 one batch
of 107 jobs was sent in random order, giving a total of 3531 jobs successfully
run from beginning to end, no more experiments were executed due to time
reasons, because in contrast with simulations, here we actually have to launch
the experiment by hand, recollect the data and run it again in case of failure,
each one of this successful experiments correspond to one point in the graphics
shown in this section.

In most configurations the user will be able to request full nodes even if only
one core is needed, this is allowed because there is no way to know in advance
how many cores will be used, so here we take the same approach.

The first experiment consists on queuing the batch of jobs and then gradually
creating virtual machines every 4 minutes until the specified limit of VMs for
that experiments is reached, each node will boot 1 VM at a time, since we have
4 nodes 4 new VMs will be available to run jobs every 4 minutes.

For the first experiment, as the amount of VMs per node increases least
performance gain is noticed (figure 4.11a), that comes from the fact that we are
waiting 4 minutes between each creating of VMs so by the time the 8th batch
of VMs is created 32 minutes will have passed, time during the which a few
jobs will have finished executing and many others will be very close to; for the
experiments past 12 VMs per node the last VMs to be created hardly get to
run one job because the queue is emptied before they finish their first job.

The average job execution time for the first experiment (figure 4.12a) is a
little misleading, for the experiments of less than 8 VMs per node, there is
hardly any competition for resources at all, however after 8 VMS per node the
jobs start fighting among them for the resources (mainly processor cores), not
only that, but also the time it takes each job to finish gradually increases with
the amount of VMs created and thereof the the amount of jobs executing at the
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Figure 4.12: Average job runtime: a) Incremental VM creation b) All VMs
available from the beginning.

same time in a single machine.

The second run was starting the the given amount of VMs before queuing the
jobs, this way the nodes will start working at full capacity in just a few seconds
after starting sending the jobs instead of progressively using the resources until
the upper limit is reached.

As we can see in figure 4.11b the total time to finish processing all the
workload is lower than in the first experiment in many cases, that’s not only
because of the immediate availability of the VMs but also because less amount
of jobs fail to begin execution, compared to the first experiment where up to 15
jobs needed to be automatically requeued because they couldn’t start running
at all, so less time is wasted in at least 2 aspects.

In figure 4.12b we can see the average job execution time, from 0 to 6 VMs
per node we notice that both graphs are pretty much the same, however from
that point on the average job execution time for the second experiment increases
much more, that is because in the first experiment the competition for resources
is gradual while in the second it presents itself from the very beginning affecting
all the jobs and not only the middle to last ones.

From this results we can conclude what is quite obvious: we gain from
making use of available resources but the most we cross the line of overloading
the nodes the least is the gain because it affects noticeable the jobs that are
being run in a cluster in order to gain performance in the first place. Also for
this particular kind of jobs the optimal number of VMs per node is 6, which gives
a total of 7 processes running at the same time and leaving the 8th processor
available to take care of the random process that each VM and the host needs
to run (like login systems, session managers, etc.)

Lastly but not least important, from the experiment where a total of 1 VM
per node was available from the beginning we calculated the average time the
jobs spent running in the physical nodes and the VMs; a total of 53 jobs ran
in VMs and other 55 ran in the physical nodes, the average runtime of the jobs
that ran in VMs was 1995 seconds while the average of the jobs running on
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Figure 4.13: Normalized experiment comparison points, percentage of time
spent to finish the experiment in base of VMs per node.

physical nodes was 1986 seconds, the ratio virtual/real was 1.0046, so the VMs
are about 0.46% slower than the physical nodes for this particular kind of jobs,
lets remember that this ratio increases with the number of VMs running (which
is bad).

In figure 4.13 we can see the normalized performance of the experiments
where all the virtual nodes are available from the beginning, so for example the
experiment where only one VM was created per node finished in 52.45% of the
time spend in the base experiment, for 2 VMs per node it spent 37.78% of the
base time and so on with a minimum close to 17% at 8, 9 and 13 VMs per node.

Measuring the energy utilization of the nodes is beyond the scope of the
work, however if we could expect some energy usage similar to the one in figure
4.14, we can see that even if the node uses about 2.5 times more energy while
working at full capacity it is actually a good gain considering that it would finish
about 5 times faster (20% of the base time, see figure 4.13), so we not only gain
in time but also in energy efficiency.

We have proved that the automatic creating of virtual nodes to run jobs in
a cluster actually pays off for the kind of jobs that doesn’t make an efficient use
of the resources allocated, not from the point of view of a single job, but from
the point of view of the whole number of jobs in the waiting queue.
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Figure 4.14: Possible energy usage in function of the number of cores working.



Chapter 5

Conclusions and future
work

We believe that the software developed (Thiao) is a great tool that serves as
a proof of concept that the use of virtualization for HPC workloads is actu-
ally possible without too many hassles, and we hope it will motivate others to
actually start using it seriously, at least in the middle-range clusters.

However Thiao is not the panacea that will cure the problems of all the
clusters, like the seemingly mutual exclusion between Quality of Service, fairness
and utilization; though we hope it will make it easier to try to solve this problems
without having exclude some of them.

Even though the objective of Thiao is to automate the management of the
virtual machines there is still an amount of work that requires supervision from
a cluster/system administrator and/or the support staff, for instance the con-
figuration cannot be automated nor are we aware of a tool that does such a
thing, there must be always someone with a good knowledge of the cluster’s
infrastructure and the needs of the group to configure it specially since the
quantity of possible configurations varies greatly, also problems related to ser-
vices, like home directory not being mounted, etc. must be taken care of in a
cluster-specific way.

Here we present the resume of our achievements and also the set of problems
that we still need to work on in order to have a software fit to be used in
production systems.

5.1 Virtualization and resource managers

The performance of the Virtual Machines is such that nowadays they are fit
to us in High Performance Computing, however very few people has seen any
advantage on doing that, mainly because the creation of the VMs should be
manual because no framework for integrating the VM management with the job
scheduling existed.

59
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HPC computing since it’s beginning has been performed over a physical
hardware with a mostly static number of nodes (except when there is a hardware
failure or new equipment is acquired), so the Resource Managers are not really
developed with the thinking that they must also manage the hardware resources
and not only assign jobs to them.

Since there exist this gap between this two problems, HPC and virtualiza-
tion, a few people has been trying to close it, proposing the use of VMs for
HPC workloads, however, no framework seemed to exist yet to facilitate this
use, many of the researchers have to develop their own management software
and scheduling algorithms and don’t actually integrate with existing schedulers
or cloud management systems.

For instance, many use frameworks like Usher that allows them low level
access to virtual machine creation, however, this package is not even an standard
software to use, it has not been updated in years and leave lots of work to the
programmer in order to give a fine grained VM management framework that is
not really necessary.

The software we developed is meant to close the gap between workload re-
source managers and the more recent cloud systems, allowing the cooperation of
two popular packages, the SLURM resource manager and the OpenNebula cloud
system which originally were developed for completely independent purposes,
but now they can cooperate.

Thiao allows the unattended management of a virtual cluster that grows and
shrinks in size when it’s necessary, for instance, if a set of nodes are not working
to their full potential, more VMs are created and sent to those lazy nodes in
order to start running wide jobs sooner and increase the utilization of the nodes.

The dynamic increase and decrease of execution nodes gives a great schedul-
ing flexibility, for instance, with this is possible to schedule faster the jobs that
require specialized hardware like GPUs, while before it was necessary to wait for
the node to get freed or to modify the whole schedule, now the job requesting
such resources can start running almost immediately just by starting a new VM
with access to those particular resources.

In the event that one machine has a shareable resource, but don’t seems to
have enough resources to host one more VM, it is still possible to fix the problem
simply by migrating one VM from the node to other node, this is not possible
when we are working directly with the bare hardware.

Also Thiao has a module that allows to do load balancing across the nodes
by migrating VMs between them, this is necessary because the extra VMs are
meant to increase the utilization of the nodes, but if we just keep creating VMs
the nodes are overloaded and the jobs will interfere with each other; we don’t
want the jobs to take longer to finish just because we packaged lots of jobs
in them, what we want is to keep the usage high without slowing down the
execution time of the jobs.

Thiao is a free and open source software and can be found at

github.com/scarmiglione/thiao.
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5.2 Future work

There are still a few issues that we are aware of that need to be solved to make
Thiao a better software, since so far it’s more like a prove of concept to shown
that it it possible to force the collaboration of RM and cloud systems, we left
this problems for further research.

For instance we are only considering one resource when deciding whether or
not to allocate more virtual machines, it is the CPU, the CPU is the bottleneck
of modern computers, and we want to keep it busy for as long as possible without
affecting too much the performance of the running jobs.

Besides the CPU we need to take into consideration also the amount of
memory RAM available in the machines, if we try to host two or more virtual
machines in one node that together sum more memory than the one available
in the host, it will be forced to use paging in order to keep all the VMs running,
this could negatively affect the processing speed of the jobs, specially if they
access random parts of the system’s memory.

Other issue that we haven’t been able to solve is the job suspend and resume,
mainly using the Berkeley Lab Checkpoint/Restart (BLCR) kernel module, we
need a way to pause jobs in order to allows jobs with greater priority to run
immediately when not enough resources to start the VMs are available, however
the BLCR kernel module is not compatible with the Linux version we are using,
so we are right now between two choices, use and older OS and setup BLCR, or
use some recent OS to do actual research and don’t job suspend/resume yet; we
got for the later for now since this “kick low priority jobs to run high priority
one immediately” policy is used only in very particular cases, most of the time
will just stop taking jobs from the lower priority queues until the high priority
one gets empty.
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Appendix A

Middleware

We have mentioned a little bit about certain applications that run in the slave
nodes and others that run in the server, however we haven’t said much about
them besides the fact that they collect information logs, monitor nodes and send
jobs. Here we explain a little more about how this pieces of software work and
how “middleware” can mean almost anything.

A.1 Definition

It is believed that the term middleware was used for the first time in the NATO
conference back in 1968 [4] where figure A.1 was presented, in this case, the
application software had to communicate with the file system, however each
vendor programmed the routines for accessing it in a different way and with
different calls, thereof without the middleware, each time that the application
was to be executed in another system it was necessary to rewrite the whole
module that used the hard drive services, however with the middleware only
compatibility with the new Operating System was needed in it and the software
itself didn’t need to be changed.

After NATO 1968, the term middleware has been used to describe many
and distinct software products [6], so with the mere mention of middleware is
not possible to know immediately what is meant without entering first in the
appropriate context. In contrast whit what happens with terms like “kernel”,
“console”, “GUI”, etc. In this case the term kernel, even though it can be used
to define other things, it’s most common meaning is “operating system kernel”
unless otherwise specified.

The term middleware has been used to define a software layer between the
OS or the network and some application in order to allow the communication
between two programs [5]. Also it has been defined a as integration tool to
connect software modules [1].

Bishop and Karne propose the following definition for middleware: “Mid-
dleware is the software that assists an application to interact or communicate
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Figure A.1: In 1968, the middleware was used as an intermediate layer between
applications and heterogeneous services that could change.

with other applications, networks, hardware, and/or operating systems. This
software assists programmers by relieving them of complex connections needed
in a distributed system. It provides tools for improving quality of service (QoS),
security, message passing, directory services, file services, etc. that can be in-
visible to the user.”

Lets notice that this definition tries to cover as many software products as
possible, so it’s actually a little bloated for most of the cases because the mid-
dleware typically targets an specific problem on a particular level; this, however
doesn’t affects our purpose that is to define the middleware for computing clus-
ter which we do in A.3.

A.2 Classification

There exists different ways to classify the middleware, it all depends on the
characteristics considered more or less important, for this text the classification
of Bishop was adopted, that is shown in figure A.2, this divides the the mid-
dleware in two main branches: integration and application. Here we give an
overview of each classification, for more information see [6].

The branch of integration refers to the products that facilitate the commu-
nication between applications and services or servers, for example the service
Remote Procedure Call (RPC) allows to request in a standardized way an par-
ticular service, it is even possible to request a particular version of the service
to a server through a particular port without having to care about which port
the service is actually using because the appropriate port is returned too (RPC
can controll TFTP, FT, NFS, etc.).

Other example is in the case of the agents where each one can take decisions
in the name of the user, this is used by some internet advertising services where
each agent gathers information about the search items of the user, and based
on them offers other products or services that could be of interest for them.

It is possible to offer components that perform an specific task, for example
there exists some grid services that calculate the Fast Fourier Transform (FFT),
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Figure A.2: Middleware classification depending on it’s purpose.

in this case the middleware takes care of managing the connection to the service,
send the data that will be used to perform the transform and retrieve the results;
taking care of hiding the all the obscure details about secure connection, service
lookup, etc.

Other kind of middleware that has turned popular is the Simple Object
Access Protocol (SOAP), this facilitates the communication between object ori-
ented programming languages of different families. What SOAP does is to
transform the objects that are to be sent into a platform and programming lan-
guage independent format that is sent through some network protocol between
the applications.

The branch of applications refers mainly to the products that offer well de-
fined functionality specific to make it easier the development of applications that
require a particular set of services in a way such that the required functionality
can be “embedded” into the new application.

There exists web services that monitor the search terms of the user ind the
pages and offer products and services depending on what seems to be of interest
to the user, they also show advertising based on the OS that the user is running,
etc. This services have to be platform agnostic and provide a good set of actions
at the same time, for example to perform a secure connection to the user’s bank
account in order to realize payments, etc.

The real time middlewares are specially concerned about attending the
queries of the users as soon as they are sent, otherwise the data requested
could not be useful anymore, an example of this are the Massive Multiplayer
Online Games (MMOG), this in real time take the actions performed by the
user, send them through internet, perform some computation and forward it to
every player sharing the session, in this cases, getting something that occurred
two minutes before in the game is plain useless.

There exists also desktop applications with similar functionality, some of
them show in the screen updates of news channels or any other content that
could be of interest like traffic, weather and others.
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There is still much more that we could say about middleware, however that’s
not the objective of this work to disclose every detail of each of this softwares
as variate as useful, so from now on, we concentrate on a particular kind of
middleware that is use for computing clusters.

A.3 Middleware parar clusters

As we just see previously, there are lots of kinds of middleware, in this section we
try to characterize one particular type that is used for computing clusters, both
commercial and free software. We cover in particular some popular products
like TorquePBS, Oracle Solaris Cluster, SULRM and OSCAR without actually
entering deep into the details of each one of them, as they are good or weak in
different ways.

A.3.1 Randomly available resources

Lets suppose that an user has a set of n jobs that would like to execute and that
the company has a set of m computers available to execute such jobs, some of
the m machines are completely idle while others are executing jobs from other
users. The user faces the dilemma of deciding which machines pick to send the
jobs to; because selecting idle computers will allow the jobs to finish faster, it is
natural for the user to want to know which are being used and which are not.

It is not viable for users or big groups to be everyone on their own polling
the nodes in order to check which are less busy at the time in order to run
their jobs, neither is viable to ask everyone no to use the nodes because they
are needed or manually schedule the time that everyone can use them, because
it’s possible that some will have more time that the one they actually need and
others will be short of time.

Part of the job of the middleware for computing clusters is precisely to
maintain a control of how many and which nodes (or resources) have been
requested by each user in order to assign automatically the resources that each
users needs, this is made by providing means to request and liberate resources.
The user usually requests a number of resources, and resources are assigned
from the pool of free resources.

Even though it is better to let the middleware decide which resources to
assign, sometimes the user would want to indicate a set of nodes to use to run
the application, many of this middlewares allow the user to explicitly indicate
the hostname of the nodes that want to use, or name capabilities or attributes.

A.3.2 The problem with the access

There is also another problem while trying to execute parallel program that is to
be divided in processes in tens of computers or sessions, it wouldn’t be feasible
to expect the user to individually login into each of the machines by entering
user name and password for each session to be launched.
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Nevertheless it’s not feasible either to allow the access without password be-
cause it’s possible that the user will leave in some nodes confidential information
about their work or research and such don’t want any other user to be able to
access it.

When one has hundreds of nodes it’s also a lot of work for the administrator
to take the task of administering the users in each node, assign passwords, etc.
so a efficient way of managing users is needed, or even better, if it wasn’t needed
to administer the users at all and even so, allow the users to execute their jobs
and keep the privacy.

The middlewares for clusters are compatible with some popular authentica-
tion mechanisms depending on the policies and resources available, for example
it’s possible to use mechanisms of remote sessions like rsh, secure connection
with ssh, secure connection without password authentication with the combi-
nation of ssh and rsa, authentication daemons like MUNGE and services like
Kerberos, it’s possible to choose which to use or migrate from one to another
just by tweaking some configuration parameters.

A.3.3 User’s shared directory

Generally, when users are created in a computer, they are also created a personal
directory where they can store their working files. Even if it’s not strictly
necessary that the user have a personal directory, due to security and privacy
concerns it’s convenient for it to be that way.

Now lets imagine that the user requests the execution of a program and it
allowed the middleware to decide where it should be executed. Suppose that
the output of the program is a file that was stored in the user’s personal folder
in the machine where it executed, nevertheless the user doesn’t know in which
node the program executed, so a way of entering to each computer and search
for the output file would be needed, or include within the program a route that
sends a mail with the name of the machine used or send the file itself.

Both of the described solutions have their problems, to begin with, there is
a lot of time wasted by the user to search for the file that could be used for
something else, and other problem is that it could compromise the portability
of the code.

The resource managers also allow the easy integration with dynamic direc-
tory services like the Network File System (NFS) that comes by default with
most of the *nix systems, this enables the sharing of a group of directories
between many computers. NFS is an excellent service for small clusters, but
maintaining the connections of many nodes represents a good challenge for the
bandwidth.

There are better solutions that also work like the Lightweight Directory
Access Protocol (LDAP) that dynamically mounts a remote directory when it’s
needed, it leaves it like that for some time and if it’s not used during that time
then closes the connection; this is a useful solution specially because it’s not
very sensible to the changes.
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In this way the user only sees one directory, the same, in every node of the
cluster, so there is no worrying about where the file was stored, with this kind
of solutions is also possible to use diskles nodes.

A.3.4 Add and remove resources

Some of the recurrent problems that a system administrator faces is to add new
resources, give maintenance, fix and drop some of the existing resources that
are available. For instance, one of the new generation computers could do the
work that before was done by four of the five year old nodes.

I wouldn’t be feasible to ask each of the users to stop using a group of nodes
that are to be deprecated or given maintenance and then wait for the to confirm
that their jobs finishes executing, specially because it’s possible that they don’t
even read their mail too often.

Middlewares allow to specify which nodes are available to execute jobs and
which are to be “drained” from jobs, if a node is to be replaced, it’s possible to
tell the resource manager to stop sending jobs to that particular node or nodes
an even to send an email to the system administrator when that node is free
and so can be replaced.

In the same way it’s not necessary to notify each of the users when a new
node is added, unless it has some special hardware that could be of interest for
some, it’s enough to tell the resource manager that such node is available for
executing jobs and all the users will benefit from the new addition.

A.3.5 Statistics

Naturally, and specially when the resources are being rented to some users
or companies, the people in charge of the computing cluster is interested in
obtaining information about what is happening with each of the nodes.

They could be interested in knowing, for instance, the average waiting time
of the jobs, if they are too high it wold probably be convenient for them to get
more resources in order to give a better service to the users, or to revise the job
policies implanted, like maximum number of nodes or upper limit for the run
time request.

They would also be interested in knowing what percentage of the computers
are used a day. If the wait times are to high and some computers are not used
at all most of the time, probably there is some problem with the job policies,
and tweaking them could improve the service.

The middleware collects lots of information and also has utilities to format
it in a way that is easy to read for everyone, specially for the responsible of the
cluster, allowing to take decisions more easily.
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SLURM

Because we are making use of the Simple Linux Utility for Resource Management
(SLURM) to implement the solution proposed in this work, trough the text we
have mentioned about this Resource Manager (RM), in this appendix we give
a more detailed study of its architecture to show yet another reason why we
decided to use it.

We start by studying the life cycle of a typical job in the computing cluster
and see the information that is available or can provide about the jobs, also the
information available at the end of its execution. Lastly we see the facilities
available to modify or tweak to our needs the behavior of SLURM trough the
use of plugins.

B.1 Job execution

The process of executing jobs in a cluster can be as simple or as complex as
needed depending on the user’s necessities, we can search manually for the nodes
that are available, request them, request the amount of time, etc. or we can
allow the RM to do it all for us.

In figure B.1 we can see a basic (generic) diagram of the life cycle of the jobs
in a cluster from the point of view of the RM: the users start by submitting
their jobs, the middleware (for a description of middleware see appendix A)
queues them, the scheduler (internal or external) orders the queue in base of
some rules, the middleware sends the “next job in the queue” to the set of
machines assigned to run them, the nodes execute the jobs and notify the RM
about their exit status.

First of, the user’s program has to be in a place where all the nodes can find
it , depending on the kind of job, it’s possible that it’s installed in all the nodes,
or that it’s copied to a file server or that it’s compiled from the nodes before
executing it.

If all that applies, the set of nodes and their status can be found as follows:
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Figure B.1: Diagrama de ejecución de un trabajo

farfan@lamia:~$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

particio* up infinite 5 alloc lamia[2-3]

particio* up infinite 5 idle lamia[4-6]

particio* up infinite 1 down* lamia

In this particular case, we can see a total of six nodes, from which two were
busy (alloc), one was unavailable (down) and three were available for running
jobs (idle).

We can do more in depth inspection to check the characteristics of the nodes
that are available os follows (only part of the output is shown):

farfan@lamia:~$ scontrol show node --oneliner

NodeName=lamia4 Arch=i686 CoresPerSocket=1 CPUAlloc=0

CPUErr=0 CPUTot=2 Features=(null) Gres=(null) OS=Linux RealMemo

ry=493 Sockets=1 State=IDLE ThreadsPerCore=2 TmpDisk=11264

Weight=1 BootTime=2011-05-26T12:21:46 SlurmdStartTime=2011

-05-26T13:19:49 Reason=(null)

NodeName=lamia5 Arch=i686 CoresPerSocket=1 CPUAlloc=0

CPUErr=0 CPUTot=1 Features=(null) Gres=(null) OS=Linux RealMemo

ry=755 Sockets=1 State=IDLE ThreadsPerCore=1 TmpDisk=11264

Weight=1 BootTime=2011-05-26T12:21:59 SlurmdStartTime=2011

-05-26T13:19:49 Reason=(null)

NodeName=lamia6 Arch=i686 CoresPerSocket=1 CPUAlloc=0

CPUErr=0 CPUTot=1 Features=(null) Gres=(null) OS=Linux RealMemo

ry=247 Sockets=1 State=IDLE ThreadsPerCore=1 TmpDisk=11264

Weight=1 BootTime=2011-05-26T12:22:01 SlurmdStartTime=2011

-05-26T13:19:49 Reason=(null)

As we can see, the machine 4 has 2 cores and the rest have 1, giving a total
of 4 cores that can be requested to execute a given application, even more, all
the machines are i686 compatible.
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After having verified the nodes that we are interested on using, we can
request the execution of a process in the desired nodes this way:

farfan@lamia:~$ srun -N3 -t5 -w lamia[4-6] hostname

lamia5

lamia4

lamia6

This will block the terminal until the three (parameter -N3) resources re-
quired (lamia 4 through 6) are available at the same time for five minutes (pa-
rameter -t5) to execute the application, the current terminal is used as standard
input, output and error.

Unless there are very good reasons for doing it that way, the average user will
only be interested in knowing the maximum number of nodes and the greater
amount of time that can be requested

farfan@lamia:~$ scontrol show partition

PartitionName=particion

AllocNodes=ALL AllowGroups=ALL Default=YES

DefaultTime=NONE DisableRootJobs=NO Hidden=NO

MaxNodes=UNLIMITED MaxTime=UNLIMITED MinNodes=1

Nodes=lamia,lamia[2-6]

Priority=1 RootOnly=NO Shared=NO PreemptMode=OFF

State=UP TotalCPUs=9 TotalNodes=6

The average user will let the RM allocate the first subset of nodes that meets
the requirements of the job, this is because, generally, it’s faster to wait for any
subset to get free that to wait for a particular subset to get free, this is achieved
simply by omitting the parameter “-w <nodes>.”

For non interactive processes that require, though, to realize some preparing
or cleaning tasks, it’s possible to create a bash script with the parameters to be
sent to the RM along with the job:

#!/bin/bash

#SBATCH --nodes=5

#SBATCH --time=10

#SBATCH --job-name=CalculaPi

#SBATCH -o pi.txt

mpicxx PiM.cpp -o /tmp/PiM

mpirun /tmp/PiM 90000

rm -f /tmp/PiM

In this example any set of five nodes is being requested for ten minutes, the
name of the job is CalucalPi and the standard output is to be saved in a file
named pi.txt of the file and directory where the job runs. Lets notice that
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here we are compiling the program before executing it and we delete it after it
finisher, this are the preparing and cleaning tasks for this job.

If that bash script is named Pi.sh, we can queue it executing the following
command: sbatch Pi.sh. This script is sent to every one of the nodes where
they first compile the program and will save the binary in /tmp/PiM (lets re-
member that its in a shared directory), after that it is executed using MPI and
at the end the binary is deleted. The middleware is responsible of redirecting
the standard output to the specified file.

B.2 Queuing process

At the time of writing this document there was not enough documentation about
the path followed by a job that is to be executed in the cluster from the time
when it’s submitted, nevertheless here we try to describe such path to the best
of our knowledge in order to show that just knowing a little bit about SLURM
we can implement even an scheduler.

It starts by requesting computing resources to allocate the job, this is done
with the commands shown in section B.1. What this does is to fill a data
structure with information that defines the requirements of the job and then
uses a Remote Procedure Call (RPC) to the slurmctld daemon, this daemon
in turn validates the requirements and notifies whether or not is possible to
execute the job immediately, if it was put in the waiting queue or if there was
an error.

The process of resource selection requires various stages, some of the which
are done with the help of plugins.

1. Calls the presentation plugin job submit to modify the request in an
appropriate manner.

2. Checks that everything is in order with the job (queue accessible for the
user, limits, etc.)

3. If it’s a high priority job, allocate the resources immediately, otherwise,
validate that it could be allocated if there were no other jobs running.

4. Establish which nodes could be used to run the job.

5. Call the selection plugin select to chose the best resources for the request.

6. The selection plugin will consider the topology to chose the resources if
it’s available.

To allocate a job, the command srun is always used, this sends the RPC
request to the slurmctld daemon using the parameters from the command line
and those in environment variables. The logic used for the resource selection is
withing the slurmctld daemon. If for any reason it’s not possible to allocate the
resources, the appropriate notification is sent and srun tries again at some other
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time. Once the resources are allocated, a certificate that identifies the resources
that can be used is generated, this certificate is validated by the nodes before
executing the jobs.

With a single allocation it’s possible to execute many tasks (known as steps),
so slurmstepd is called for each step to be executed, this program among other
things does the following:

• Configure the Message Passing Interface (MPI) through some plugin (the
way of initializing is different for each vendor).

• Calls the switch plugin to configure the network.

• Generates a container for each task using the proctrack plugin.

• Changes the User IDentificator (UID) for that of the appropriate user
(otherwise it would be executed as administrator).

• Configures the Input/Output for the task using either files or sockets with
the srun command.

• Configures the environment variables.

• Calls fork or exec for the tasks.

There are various ways in which a step of a task can finish, the simplest one
is when the process finishes successfully. srun realizes that the job finished and
notifies the slurmctld daemon about the event. slurmctld only registers the
termination. Others are that the task step finished because it was canceled, the
time ran out, etc. what happens is described in the following paragraph.

A job can terminate due to the user (job canceled) or because of the sys-
tem. The termination requires that the slurmctld daemon notifies the slurmd

daemons in every node that the job is to be terminated. After that the slurmd

daemon does the following:

1. Sends the signals SIGCONT1 and SIGTERM2 to the user’s tasks.

2. Waits KillWait seconds for it to finish.

3. Send the signal SIGKILL3 to all the tasks.

4. Wait for the tasks to finish.

5. Execute some finish program (if configured).

6. Send epilog complete to slurmctld through RPC.

1Resume execution
2Finish the execution cleanly
3Kill the process at OS level
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B.3 Job scheduling

As we saw in section B.1, SLURM is conveniently divided in modules, daemons
and plugins with well defined purposes. This makes it specially attractive in
case that it’s needed to write a personalized scheduler or influence in the existing
one.

There are mainly two ways in which we can influence the order in which
the jobs will be executed through the use o a planification plugin, one is to put
an initial priority of zero that will prevent them from executing at all until the
scheduler (extern or wiki) explicitly changes their priority.

The other is using some kind of backfill that periodically alters the priority
of the jobs, this changes their order in the queue. For example, increasing the
priority of a job may make it start sooner, though it could also move the start
time of the other jobs too.

A plugin of type wiki has the advantage that the underlying scheduler is
generic in a way such that can be used with more that one middleware, like in
the case of Maui and Moab, both work with a variety of RM without the need
of madifications for either one.

An important aspect of the wiki plugin is that it allows the developer to have
a complete control of each of the planning phases, this is not necessarily good
or bad unless aspects like development time, middleware dependencies, etc. are
taken into account. For the kind of work proposed in this text, unfortunately,
there is not enough time for a solution of this magnitude.

Both wiki and backfill have to follow the same Application Programming
Interface (API), the difference is that wiki allows an external agent to do the
planning or tell it what to do.
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Scheduling and planning

In this appendix we study the three different levels of planning that is convenient
to distinguish in order to have a better understanding of the scope of this work,
after that we see some categories of scheduling algorithms for clusters and some
of the representatives of each category.

C.1 Planification levels

We haven’t found in the literature what we call here “planification levels”,
maybe because generally it¡s implicit in the level in which each job is being
done. Nevertheless, with the purpose of limiting the scope of this work, here
we define three levels of planning that we can distinguish: grid, cluster and
application.

In any of the levels we are planning the work that is pending to do while
taking into account the work that is being done along with the resources allo-
cated and free, with this, one of the objectives of the planification for any of the
levels is the efficient use of the resources, keeping them busy as long as possible.

Grid (figure C.1): In this planification level, the resources for the jobs of the
users will typically be 1 clusters or supercomputers, the middleware
of the grid, thereof, forwards the jobs to the clusters that it considers
appropriate for executing it.

Because this level is composed by many heterogeneous elements, many
research works have been made with the purpose of exploiting the dynamic
nature of it’s individual resources [9,22,29,34], we are not very interested
in this planification level, so no further mention is done.

Cluster (figure C.2a): In this level the work to schedule are also the user’s

1In some kinds of grids, for example, Globus, the users can allow their personal computers
to be used to execute jobs when they are idle for a long time (instead of running a silly
screensaver).

75



76 APPENDIX C. SCHEDULING AND PLANNING

Figure C.1: Planification at cloud/grid level: one server and many independent
and different resources.

Figure C.2: A) The server distributes the job between the resources. B) The
process distributes the data among the allocated nodes.

jobs 2 while the resources can be, depending of the configuration, nodes
(computers), processors, processor cores [57] and / or hardware threads 3.

Application (figure C.2b): This is the user’s job, here it’s resources can be
complete nodes 4 or cores 5. What is planned here, instead, is the total
amount of work to do, for example, elements of a matrix, database objects,
files [32], etc.

The job of the cluster schedulers, then, finishes once is allocates a subset of
resources to a job and it starts it’s execution, as we saw in appendix B, the only
thing that the middleware sees is a plain text file with the requirements of the
job and the command line commands that starts it, for this reason, the cluster
scheduler cannot plan also the job that the application needs to finish.

2That can be considered external if they come from the grid or internal if a user accessed
directly to the cluster to request the execution.

3Also can be scheduled the memory, I/O [45], licenses, etc. For this work, however, the
unit are nodes.

4Specially when threads are used.
5Mainly for MPI jobs where one process is launched per each core.
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The fact that there are many publications about grid load balancing, like
[13,14] just to mention some, could confuse those relatively new to the subject,
not being obvious that before making their own planning, the job already passed
through the scheduler of the grid and cluster.

C.2 Kinds of cluster schedulers

Hovestadt et al. [24] identifies two main ways to do job schedule in clusters and
grids depending on whether the plan is complete or partial or takes into account
only free resources or also allocated ones.

The first are the queue based systems, this where the first to be developed
as they are simpler. It counts with many queues, each one with different limits
in the number or kinds of resources requested, the time limit, etc. Also the
queues can be activated or disabled based in the hour or date 6.

The job of a queue system is to assign free resources to pending jobs. The
request with the highest priority always is the head of the queue, it’s possible to
assign resources to more than one head at the same time and additionally it’s
possible to use criteria like the priority of the queue and the best fit to select
between the pending jobs.

In the event that there are not enough resources available to start executing
the head job from any queue, the system waits until some resources get freed,
Nevertheless, the resources available at that moment can still be used through
backfilling policies.

Because the head of the queue is always the one to try to execute, this
systems doesn’t really require information about the expected execution time
of the jobs, unless backfilling is desired.

One of the problems with this kind of systems is that it’s difficult to tell
when a new job will start running 7, nevertheless the “scheduling cost” 8 is
relatively low and executing the next job is fast.

The other ones are the systems based on a schedule, this make the
present and future execution plan, this gives as result that it’s now possible to
know the start and finish date for each job, obviously for this to work the runtime
estimates are needed, this is also important because this way it’s possible mo
make reservations 9.

Every time a new request is sent or a job finishes before it’s expected, a new
plan is made. Everything except reservations is deleted, the queue is sorted
depending on the scheduling politics and then they are assigned the earliest
start time possible. This process is called rescheduling and is only necessary for
some algorithms.

6For example it’s possible to create queues that can only be used during weekends.
7Because the queue can be sorted every time that a new job is sent or one is canceled.
8Time that it takes to to sort the queue.
9If a single grid job can be executed in many clusters at once then it’s expected to start

running at the same time in all of them.



78 APPENDIX C. SCHEDULING AND PLANNING

Making the rescheduling implies some kind of backfilling, because every job
is schedule to start as soon as possible, some can be planned to start even before
others that where already scheduled as long as their reservations are not affected
(moved) by doing so.

One of the disadvantages of the schedule based algorithms is that the are
more complex computationally than the queue based, with todays processors
this is not a big problem though, other is in case that the users can peek into
the schedule, they could get mad because some jobs are planned to start before
than their own.

C.3 Scheduling algorithms

Now let’s see some examples of scheduling algorithms and how they work, we
describe very quickly how some of they could be implemented together with
some properties of the resulting schedule and the way they select the jobs from
the defined queues.

Many planing algorithms ave been proposed, nevertheless not all of them
are used in practice, for instance those that do data mining through the job
registry [21], even though they seems to work well, the latency introduced could
make them impractical or hard to develop.

The queue based ones gives a priorities to each of the jobs in the queue
and only select the one with the greater priority (the head of the queue) to be
next one executed, the criteria can be of any kind like if the user is paying or
not, type of job, special requirements, etc.

First Come First Served (FCFS) maybe the simplest of all, don’t even sort
the queue, it only takes the one in the head every time and run them in the
same order the arrived, if at some point there are not enough resources for the
next one to run, it simply waits for some to get freed until the job can run, its
main disadvantage is that many resources stay idle for randomly long periods
of time.

Shortest Job First (SJF) is similar to FCFS with the difference that it first
sorts the queue based on the size (length and width) of the jobs giving the
highest priority to the smallest of them. At first it will assign lots of jobs, but
soon after there will be only big jobs in the queue that are more difficult to
schedule efficiently.

Longest Job First (LJF) it’s quite the opposite to SJF, however it could be
more useful, for instance if the job is very small it could be executed in the
personal computers of the user instead of on the cluster, also using backfilling
the smaller jobs could be executed anyway in order to keep the machines busy
until there are resources available for the bigger jobs.

Earliest Deadline First (EDF) if the user can set a deadline to run the job
such as “if it doesn’t run by some date don’t run it at all” this algorithm can
be used as it will try to execute as many as possible based on their deadlines.

The schedule based ones make the plan for all the jobs in the queues at
once, this way it’s possible to know in advance the time at which (most likely)
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Figure C.3: A) FCFS: the jobs are assigned in the order they enter the queue.
B) Backfill: if there is a hole and a job of its size, it is allowed to run.

a particular job will start running and even which nodes it will use. The queue
based algorithms can be ported to behave this way very easily.

As we already mentioned the schedule could be modified by some events like
the arrival of a job to the queue, the cancellation of one or when one of they
finishes before it was expected to (which is very common [2]).

Better Gap (BG) searches for the gaps in the schedule, for every job in the
queue it tries to fit in in the gaps big enough for they to fit it, some criteria
must be followed to decide which of the gaps to use, for example ti increment
the performance of the algorithm the first gap big enough could be used.

Some ways of enhancing the performance in the algorithms and increasing
the utilization of the cluster at the same time have been proposed depending on
the particular necessities of the people behind the idea or the type of jobs that
run in the cluster in order to take advantage of them.

Probably the most successful enhancement is the backfilling because it
works well with any other algorithm. As its name suggests, after having created
the schedule in the usual way, this algorithm searches for holes in the schedule
and also for jobs that can fit in them in order to keep the resources busy. There
are two main ways of doing backfilling:

Conservative backfilling [42]: The requests are selected in a way such that
none of the jobs that were already planned are postponed.

EASY backfilling [36]: It selects a job only if by doing so the next job in the
queue is not postponed, even if others are.

In figure C.3 we can see the result of scheduling using FCFS (a) and also
the backfilled version of it (b).

Other enhancement is the time prediction this is similar to techniques like
data mining [41], the runtime estimate given by the user is ignored in order to
make the schedule [52] and instead a runtime prediction is made based on the
behavior of previous jobs.
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Figure C.4: A)The job runs, if the time is not enough it’s killed and requeued
B) The job is saved to the disk and resumed again.

There are many ways of doing the predictions, one is using the whole history
of the jobs, or using only the few last of them, calculating the median, or using
the same that lasted the earliest one having finished, etc.

Multitasking is another enhancement that allows many jobs to run in a
single processor [19], this kind of solution however, could affect the performance
of the jobs [8], how much it does, we don’t know, however the solution proposed
in this work share some common properties with this kind of enhancement.

The preemptive execution C.4a allows a job to run as long as there are
enough resources available even if there is not enough time for it to finish run-
ning, if the job happens to finish in time then it’s good, otherwise it is killed
and queued again.

Time sharing C.4b is like an enhancement of the previous one, in this case,
if the job doesn’t finished running, then it’s saved to the disk and resumed again
later, this way the work done before is not waisted away.



Appendix D

Graphs

Here a set of graphs with very little relevance for this work that some people
may find interesting.

Figure D.1 is the base experiment where no VMs are running at all, that is,
the classical cluster; this experiment applies as starting point for the other two;
the X axis is the number of the node (101 through 104 real), the Y axis is the
number of jobs in the leftmost graph and the time in the rightmost graph.

Figures D.2 trough D.7 are extracts from the experiment where 1 VM was
created per node every 4 minutes, the last 4 nodes are the physical ones and
the first n are VMs running in any random node; the upper VM limits are 1, 2,
4, 8, 12 and 16 respectively, in the graph of the left side we see the amount of
jobs that each node (physical or virtual) ran, while in the right side we see the
average runtime of the jobs that ran in each of those nodes.

Figures D.8 trough D.13 are the same as the previous but this time making
all the VMs available from the very beginning of the experiment.

Figure D.1:
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Figure D.2:

Figure D.3:

Figure D.4:
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Figure D.5:

Figure D.6:

Figure D.7:
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Figure D.8:

Figure D.9:

Figure D.10:
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Figure D.11:

Figure D.12:

Figure D.13:
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Appendix E

Source code

Here are included some pieces of the software developed for this work: Thiao.
Only a few functions and files that we consider important are shown.

The complete source code of the project is freely available under the GNU/gpl
license at https://github.com/scarmiglione/thiao.

rc.local: Sets the appropriate hostname and IP address of the VM, depends
on pre-rc.sh and post-rc.sh:

#!/bin/bash

mount /mnt

if [ -f /mnt/pre-rc.sh ]

then

echo cargando el contexto

. /mnt/pre-rc.sh

else

echo no hay contexto

exit -1

fi

echo $HOSTNAME > /etc/hostname

hostname $HOSTNAME

if [ -n "$IP0" ]; then

ifconfig eth0 $IP0

fi

if [ -n "$GATEWAY" ]; then

route add default gw $GATEWAY

fi

if [ -f /mnt/post-rc.sh ]; then

bash /mnt/post-rc.sh

fi

pre-rc.sh: reads the environment file context.sh sent by OpenNebula and
sets some variables needed by it.
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#!/bin/bash

if [ -f /mnt/context.sh ]; then

. /mnt/context.sh

fi

if [ -n "$IP" -a -n "$HN_BASE" -a -z "$IP0" ]; then

IP0=$IP

IP=${IP:‘expr index $IP .‘}

IP=${IP:‘expr index $IP .‘}

IP=${IP:‘expr index $IP .‘}

HOSTNAME=$HN_BASE$IP

#echo siii

fi

post-rc.sh: updates some configuration files and start required services.

#!/bin/bash

con=/mnt

if [ -f /mnt/context.sh ]

then

echo cargando el contexto

. /mnt/context.sh

else

echo no hay contexto

exit -1

fi

if [ -f $con/slurm.conf ]; then

cp $con/slurm.conf /etc/slurm-llnl/

fi

if [ -f $con/munge.key ]; then

cp $con/munge.key /etc/munge/

fi

if [ -f $con/prolog.sh ]; then

cp $con/prolog.sh /usr/local/bin/

chmod a+x /usr/local/bin/prolog.sh

fi

for i in rc.local hosts resolv.conf fstab groups group

shadow passwd ;

do

if [ -f $con/$i ]; then

cp $con/$i /etc

fi

done

/etc/init.d/slurm-llnl restart

remote.cpp



89

Receives a command with it’s parameter list and forward it to the server.

bool one_rpc(const string service, xmlrpc_c::paramList *params,

xmlrpc_c::value *rpc_value){

xmlrpc_c::clientSimple client;

xmlrpc_c::value result_rpc;

xmlrpc_c::paramList param;

unsigned int i;

param.add(xmlrpc_c::value_string(rpc_id));

if (params != NULL)

for (i=0; i<params->size(); i++)

param.add((*params)[i]);

client.call(serverUrl, service, param, &result_rpc);

if ( result_rpc.type() != result_rpc.TYPE_ARRAY ){

cout << "expected an array but got something else,

aborting: " << result_rpc.type() << endl;

return false;

}

xmlrpc_c::value_array result_array(result_rpc);

vector<xmlrpc_c::value> const result(

result_array.vectorValueValue());

xmlrpc_c::value_boolean status = static_cast<xmlrpc_c::value>

(result[0]);

*rpc_value = result[1];

return static_cast<bool>(status);

}

Retrieves the list of active VMs and store them in a list for further processing.

void fill_vm_list(vector<VirtualMachine*> *vms){

xmlrpc_c::clientSimple client;

xmlrpc_c::value result_rpc;

string const service = "one.vmpool.info";

client.call(serverUrl, service, "si", &result_rpc,

rpc_id.c_str(), -2);

if ( result_rpc.type() != 6 ){

cout << "expected an array but got something else,
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aborting: " << result_rpc.type() << endl;

return;

}

xmlrpc_c::value_array result_array(result_rpc);

vector<xmlrpc_c::value> const result(

result_array.vectorValueValue());

xmlrpc_c::value_boolean status = static_cast<xmlrpc_c::value>

(result[0]);

xmlrpc_c::value_string vm_xml =

static_cast<xmlrpc_c::value_string>(result[1]);

if ( static_cast<bool>(status) ){

string xml_str = static_cast<string>(vm_xml);

TiXmlDocument root;

root.Parse(xml_str.c_str());

TiXmlNode *element = root.FirstChild("VM_POOL")->

FirstChild("VM");

while(element != NULL){

cout << "VM found" << endl;

VirtualMachine *vm = new VirtualMachine(element);

vms->push_back(vm);

element = element->NextSibling("VM");

}

} else {

cout << "RPC call failed to retrieve VM list" << endl;

cout << static_cast<string>(vm_xml) << endl;

}

}

resume.cpp launches the VMs specified as parameters

int main(int argc, char ** argv){

sqlite3 *db;

list <string> hlist, running_vms;

int rc;

char *errmsg = NULL, oneid[10];

bool force_vm_creation = false;

if (argc < 2 || argc > 3){

usage();

return 1;

}

if (argc == 3){
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if ( argv[1] == string("-f") || argv[1] == string(

"--force") ){

force_vm_creation = true;

hlist = extend_host_list(argv[2]);

} else if ( argv[2] == string("-f") || argv[2] == string(

"--force") ) {

force_vm_creation = true;

hlist = extend_host_list(argv[1]);

} else {

usage();

return 1;

}

} else

hlist = extend_host_list(argv[1]);

putenv((char*)one_auth);

rc = sqlite3_open((char*)db_file, &db);

if (rc){

cout << "Couldn’t open the database, aborting..." << endl;

sqlite3_close(db);

return 1;

}

rc = sqlite3_exec(db, "PRAGMA journal_mode = OFF", NULL, 0,

&errmsg);

while ( ! hlist.empty() ){

while ( !running_vms.empty() ) running_vms.pop_back();

rc = sqlite3_exec(db,

(oneid_from_hostname + hlist.front() + "’")

.c_str(),

make_list_callback, (void*)&running_vms,

&errmsg);

if ( running_vms.empty() || force_vm_creation ){

if ( !running_vms.empty() && force_vm_creation )

cout << "forcing the creation of " <<

hlist.front() << endl;

ifstream t((vm_script_dir + "/" + hlist.front() +

".one").c_str());

string vm_def((istreambuf_iterator<char>(t)),

istreambuf_iterator<char>());

xmlrpc_c::value value;

xmlrpc_c::paramList param;

param.add(xmlrpc_c::value_string(vm_def));
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if ( one_rpc("one.vm.allocate", &param, &value) ){

xmlrpc_c::value_int vi =

static_cast<xmlrpc_c::value_int>(value);

sprintf(oneid, "%d", static_cast<int>(vi));

cout << "oneid: " << oneid << endl;

}

else{

cout << "error trying to create the VM," << endl;

return 0;

}

string query = register_hostname_oneid +

hlist.front() + string("’, ") + oneid + string(")");

cout << query << endl;

rc = sqlite3_exec(db, query.c_str(), NULL, 0, &errmsg);

} else {

cout << "This VM seems to exists: " << hlist.front()

<< " NOT starting it again, "

"you can change this with --force." << endl;

}

hlist.pop_front();

}

return 0;

}

balancer.cpp migrates the VMs between the nodes to make the load bal-
ancing.

int main(int argc, char **argv){

vector<class Host*> hlist;

vector<class VirtualMachine*> vms;

list<class Host*> sorted;

class Host *hl;

unsigned int i = 0, j;

fill_host_list(&hlist);

while( i < hlist.size() ){

hl = hlist[i];

cout << hl->getName() << endl;

sorted.push_back( hlist[i] );

i++;

}
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sorted.sort(compare_host_load);

for (i=0; i<hlist.size(); i++){

hlist[i] = sorted.front();

sorted.pop_front();

cout << "used: " << hlist[i]->getUsedCpu() <<

" percentage: " <<

hlist[i]->getCpuUsagePercentage() << endl;

}

fill_vm_list(&vms);

for (i=0; i<vms.size(); i++){

cout << "vmid " << vms[i]->id << endl;

cout << "host " << vms[i]->host_id << endl;

}

match_vm_host(&hlist, &vms);

for (i=0; i<hlist.size(); i++)

if (hlist[i]->getState() != Host::NODE_ON){

cout << hlist[i]->getName() << " --> is offline,

dropping from the list" << endl;

hlist.erase(hlist.begin()+i);

i--;

}

i = 0;

j = hlist.size() - 1;

while (i < j){

hlist[i]->migrateVmFrom(hlist[j]);

i++; j--;

}

return 0;

}


