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Resumen 

Función léxica es un concepto que formaliza relaciones semánticas y sintácticas entre palabras. 

Estas relaciones son muy importantes para cualquier sistema de procesamiento de lenguaje 

natural.  

Una relación colocacional es un tipo de relación léxica entre la base de una colocación y su 

colocado. Una colocación es una combinación de palabras en la cual las palabras no tienen sus 

significados típicos. Ejemplos de colocaciones son to give a lecture, impartir una conferencia, to 

make a decision, tomar una decisión. En esas colocaciones las bases son lecture, conferencia, 

decision, decisión, support, apoyo, y los colocados son give, impartir, make, tomar, lend, dar. Sin 

embargo, cuando se utiliza el significado típico, las combinaciones de palabras se conocen como 

combinaciones libres. Ejemplos de combinaciones libres son: to give a book, dar un libro, to 

make a dress, hacer un vestido, to lend money, prestar dinero.  

Existen muchos métodos de extracción automática de colocaciones. El resultado más común 

de estos métodos son las listas de colocaciones. Las listas de colocaciones contienen solamente 

las palabras que forman la colocación y la frecuencia de éstas. En este estudio nos enfocamos en 

agregar información semántica y gramatical a las listas de colocaciones. Esta información es 

extraída en forma de funciones léxicas. Dicha información hace que las colocaciones sean más 

útiles para aplicaciones computacionales tales como: analizadores morfológicos, traducción 

automática de alta calidad, sistemas de paráfrasis y aprendizaje de idiomas extranjeros asistido 

por computadora.  Entonces nuestra meta es extraer funciones léxicas de tipo verbo-sustantivo en 

español de un corpus. Para lograr eso, proponemos representar el significado léxico de una 

palabra con el conjunto de sus hiperónimos del diccionario Spanish WordNet y usar métodos de 

aprendizaje de maquina supervisados para predecir funciones léxicas de colocaciones 

desconocidas. Evaluamos varios algoritmos de aprendizaje de máquina utilizando el conjunto de 

entrenamiento y el conjunto independiente de prueba. Los resultados obtenidos (el valor de la 

medida F-measure de 75%) muestran que es posible detectar funciones léxicas automáticamente.     
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Resumen 

Función léxica es un concepto que formaliza relaciones semánticas y sintácticas entre palabras. 

Estas relaciones son muy importantes para cualquier sistema de procesamiento de lenguaje 

natural. Por ejemplo, para seleccionar el significado de una palabra se necesita identificar sus 

relaciones con otras palabras en el contexto.  

Una relación colocacional es un tipo de relación léxica entre la base de una colocación y su 

colocado. Una colocación es una combinación de palabras en la cual las palabras no tienen sus 

significados típicos. Ejemplos de colocaciones son to give a lecture, impartir una conferencia, to 

make a decision, tomar una decisión, to lend support, dar apoyo. En esas colocaciones las bases 

son lecture, conferencia, decision, decisión, support, apoyo, y los colocados son give, impartir, 

make, tomar, lend, dar. Sin embargo, cuando se utiliza el significado típico, las combinaciones 

de palabras se conocen como combinaciones libres. Ejemplos de combinaciones libres son: to 

give a book, dar un libro, to make a dress, hacer un vestido, to lend money, prestar dinero.  

Existen muchos métodos de extracción automática de colocaciones. El resultado más común 

de estos métodos son las listas de colocaciones. Las listas de colocaciones contienen solamente 

las palabras que forman la colocación y la frecuencia de éstas. En este estudio nos enfocamos en 

agregar información semántica y gramatical a las listas de colocaciones. Esta información es 

extraída en forma de funciones léxicas. Dicha información hace que las colocaciones sean más 

útiles para aplicaciones computacionales tales como: analizadores morfológicos, traducción 

automática de alta calidad, sistemas de paráfrasis y aprendizaje de idiomas extranjeros asistido 

por computadora.  Entonces nuestra meta es extraer funciones léxicas de tipo verbo-sustantivo en 

español de un corpus. Para lograr eso, proponemos representar el significado léxico de una 

palabra con el conjunto de sus hiperónimos del diccionario Spanish WordNet y usar métodos de 

aprendizaje de maquina supervisados para predecir funciones léxicas de colocaciones 

desconocidas. Evaluamos varios algoritmos de aprendizaje de máquina utilizando el conjunto de 

entrenamiento y el conjunto independiente de prueba. Los resultados obtenidos (el valor de la 

medida F-measure de 75%) muestran que es posible detectar funciones léxicas automáticamente.     



Abstract 

Lexical function is a concept which formalizes semantic and syntactic relations between lexical 

units. Relations between words are a vital part of any natural language system. Meaning of an 

individual word largely depends on various relations connecting it to other words in context. 

Collocational relation is a type of institutionalized lexical relations which holds between the base 

and its partner in a collocation (examples of collocations: gives a lecture, make a decision, lend 

support where the bases are lecture, decision, support and the partners, termed collocates, are 

give, make, lend). Collocations are opposed to free word combination where both words are used 

in their typical meaning (for example, give a book, make a dress, lend money). Knowledge of 

collocation is important for natural language processing because collocation comprises the 

restrictions on how words can be used together. There are many methods to extract collocations 

automatically but their result is a plain list of collocations. Such lists are more valuable if 

collocations are tagged with semantic and grammatical information. The formalism of lexical 

functions is a means of representing such information.  If collocations are annotated with lexical 

functions in a computer readable dictionary, it will allow effective use of collocations in natural 

language applications including parsers, high quality machine translation, periphrasis system and 

computer-aided learning of lexica. In order to create such applications, we need to extract lexical 

functions from corpora automatically.  

It is our intent to extract Spanish verb-noun collocations belonging to a given lexical function 

from corpora. To achieve this task, it has been proposed to represent the lexical meaning of a 

given word with a set of all its hyperonyms and to use machine learning techniques for 

predicting lexical functions as values of the class variable for unseen collocations. Hyperonyms 

are extracted from the Spanish WordNet. We evaluate many machine learning algorithms on the 

training set and on an independent test set. The obtained results show that machine learning is 

feasible to achieve the task of automatic detection of lexical functions.    



Chapter 1.   Introduction 

1.1. Lexical Functions: Preliminaries  

In this section, we introduce the concept of lexical functions with simple illustration. The 

definition and more profound explanation will be given in Chapter 3, Section 3.3.  

It does not surprise us that a bank can be a financial institution as well as a piece of land. It is 

quite often that one word is used with different meanings. But sometimes the opposite happens: 

we choose different words to express the same idea. For example, to give a smile means to smile, 

and to lend support means to support. These two combinations convey the same idea: to smile is 

to “perform”, or “do” a smile, and to support is to “do” support, so that both verb-noun 

combinations share the same semantics: to do what is denoted by the noun. Likewise we find that 

to acquire popularity and to sink into despair both mean ‘to begin to experience the <noun>’, 

and to plant a garden and to write a letter mean ‘to create the <noun>’. Such semantic patterns 

or classes are called lexical functions. 

The notion of lexical functions is closely related to another linguistic concept, i.e., 

collocations. Again, collocations are presented in a simple, illustrative and informal way here. 

More details are given in Chapter 3, Section 3.2.2 and in the same chapter, Section 3.4. 

The meaning of word combination such as give a book or lend money can be obtained by 

mechanically combining the meaning of the two constituting words: to give is to hand over, a 

book is a pack of pages, then to give a book is to hand over a pack of pages. However, the 

meaning of such word combinations as give a lecture or lend support is not obtained in this way: 

to give a lecture is not to hand it over. Such word pairs are called collocations. Collocations are 

difficult for a computer system to analyze or generate because their meaning cannot be derived 

automatically from the meaning of their constituents. However, this difficulty could be resolved, 

if each collocation is assigned its respective lexical function, since the latter represents the 

collocational meaning.   

More than 70 lexical functions have been identified. Each lexical function represents a group 

of word combinations possessing the same semantic content. If we construct a database of word 

combinations annotated with semantic data in the form of lexical functions, natural language 

processing systems will have more knowledge at their disposal to fulfill such an urgent and 

challenging task as word sense disambiguation. Lexical functions can also be helpful in text 

generation, automatic translation, text paraphrase, among others.  



1.2. Objective 

Our objective is to construct a database of collocations annotated with lexical functions. This 

objective can be achieved by completing the following tasks:  

1. Create a lexical resource of Spanish verb-noun collocations annotated with 

lexical functions and senses of the Spanish WordNet [Vossen 1998, SpWN]. 

Collocations are to be extracted automatically from the Spanish WebCorpus 

[SpWC] by the Sketch Engine [SE, Kilgarriff et al. 2004], natural language 

processing software. 

2. Compile a training set for machine learning experiments using the lexical 

resource of collocations. 

3. Compile a test set of collocations. Collocations for the test set are to be 

extracted automatically from a corpus other than the Spanish Web Corpus.  

4. Apply the machine learning methods as implemented in WEKA learning toolkit 

[WEKA] and evaluate them in fulfilling the task of predicting lexical functions 

for unseen Spanish verb-noun combinations using the training set and the test 

set. Find what methods are the best for predicting lexical functions chosen for 

the experiments.  

5. For each lexical function chosen for the experiments, use the learning algorithm 

that predicts this function in the most effective way in order to detect what 

collocations in the test set belong to the lexical function in question; annotate 

collocations with this lexical function.    

6. Save collocations annotated with lexical functions in a database. 

1.3. Methodology 

To achieve the objective given in Section 1.2, we use the following methods: 

1. To extract collocations from the Spanish Web Corpus, we use the Sketch Engine, a 

program designed to process corpora.  

7. To compile a lexical resource of collocations, we rely on our intuition to assign 

lexical functions to collocations and to tag each word in collocations with an 

appropriate sense of the Spanish WordNet. 

8. To construct the training set and the test set accessible by machine learning 

methods, we use the ARFF format. The training set and the test set are built 

automatically with the help of a Perl program written by us for this purpose.  



9. To experiment with machine learning methods, we use WEKA 3-6-2 learning 

toolkit. 

10. To evaluate the performance of machine learning algorithms on the training set, 

we use 10-fold cross-validation technique.  

11. To evaluate the performance of machine learning algorithms on the test set, we 

rely on our intuition to verify if the lexical functions predicted by classifiers for 

particular collocations in the test set are the same as we would choose for these 

collocations. In this manner, we estimate the values of precision, recall and F-

measure for the classifiers. To make the output of the machine learning 

algorithms human readable, we process it by a Perl program written by us for 

this purpose whose code in given in Appendix 4.    

1.4. Organization of the Document 

This document is organized in seven chapters. Chapter 1 is introductory, in Chapter 2 

contributions of this work are birefly outlined. Chapter 3 describes state-of-the-art theoretical 

framework, the basis of which is Meaning-Text Theory. It also explains a number of basic 

concepts among which the concept of lexical function is fundamental for our work. Chapter 4 

presents data and Chapter 5 explains how our data is represented in a new way for machine 

learning experiments. Chapter 6 gives a detailed description of methods used to compile the 

training set and the test set for machine learning experiments and learning algorithms applied to 

fulfill the task of automatic detection of lexical functions. In Chapter 7, we present and consider 

the experimental results. Chapter 8 speaks of some computational applications of lexical 

functions, and in Chapter 9, a result analysis with respect to our contribution to linguistic 

research is given. Chapter 10 presents conclusions, and in Chapter 11 future work is outlined. 

The document concludes with a list of author’s publications, awards, appendices and references.  

 



Chapter 2.  Contributions  

2.1. Scientific contributions 

1. A new method of lexical meaning representation has been proposed in this work. Lexical 

meaning is represented using the hyperonym hierarchy (in the case of our research the 

hyperonym hierarchy of the electronic dictionary Spanish WordNet was used). This 

representation has its potential use in other natural language processing tasks such as word sense 

disambiguation, textual entailment among others. This meaning representation has been proved 

effective in our case study, i.e. automatic extraction of lexical functions, realized on Spanish 

material.  

2.  A new method of textual meaning representation has been proposed in this work. Textual 

meaning is represented as a union of hyperonyms of all words used in a particular text. One of 

advantages of such representation is its simplicity, since the meaning of a set of words is 

represented in an additive manner, i.e. as a simple union of hyperonyms of each word in the set. 

Therefore, this representation makes it possible to make a sum or subtract of meanings which 

benefits its use in a variety of areas like information retrieval, making text summaries, text 

classification, etc. In the case of our research, we used this method of semantic representation for 

pairs of Spanish words, and it was demonstrated to be efficient.  

3. In this work, the task of recognition of lexical functions in text has been achieved with a high 

precision. Given two works, the system can predict the corresponding lexical function. At the 

same time, since each lexical function has its proper semantics, the meaning of lexical function 

disambiguates the words presented to the system. This makes it possible to predict new meanings 

in texts although such new meanings do not appear in sense inventories. Therefore, lexical 

function recognition contributes to a better text understanding.  

4. It has been demonstrated in this work that lexical functions characterize words which show a 

strong mutual association in texts. Such word combinations are called collocations or 

instutionalized combinations. Therefore, given a word and a corresponding lexical function, we 

can predict the other word to be used in combination with the given word. Also, the information 

on lexical functions makes it possible to predict new meanings and helps to generate texts in 

natural language.  



5. A new meaning representation opens new ways for research. The metrics based on hyperonym 

information can be used in data structures organized hierarchically and can be applied within the 

Word Sense Model which is the future work. 

6. The task of automatic detection of lexical functions has been formulated in a way that permits 

a thorough investigation of new data representations and methodologies. In other words, 

automatic extraction of lexical functions can not only help to resolve other tasks of 

computational linguistics and natural language processing, it is also an independent area of 

research.  

 

2.2. Technical contributions  

1. A database of hyperonyms of Spanish verb-noun combinations has been created automatically 

using Perl programs whose code is given in Appendix 4.   

2. A database of Spanish verb-noun lexical functions has been created. This lexical resource 

includes 900 verb-noun pairs annotated with lexical functions and word senses of the Spanish 

WordNet. The database is open to the public and is located at www.Gelbukh.com/lexical-

functions.  

3. Best algorithms for recognition of lexical functions has been determined, see Chapter 7, 

Section 7.1.2.  

In general, machine learning techniques have been demonstrated to be feasible to fulfill the task 

of automatic extraction of lexical functions. A wide-range comparison of many machine learning 

techniques has been made for the task of automatic detection of lexical functions, and methods 

have been identified that are able to give high quality predictions of lexical functions for unseen 

verb-noun collocations.  

 

 



Chapter 3.   State of the Art  

3.1. Lexical Functions: Theoretical Framework  

As a concept, Lexical function (LF) was introduced in the frame of Meaning-Text Theory 

described in [Mel’čuk 1974, 1996]. Later on, the LF formalism was used for various purposes: 

word sense disambiguation, automatic translation, text paraphrasing, second language teaching, 

etc.   

Meaning-Text Theory (MTT) was created by I.A. Mel’čuk in the 1960s in Moscow, Russia. 

Nowadays, the ideas that gave rise to MTT are being developed by Moscow semantic school 

[Apresjan 2008]. MTT was proposed as a universal theory applicable to any natural language; so 

far it has been elaborated on the basis of Russian, English and French linguistic data.  

MTT views natural language as a system of rules which enables its speakers to transfer 

meaning into text (speaking, or text construction) and text into meaning (understanding, or text 

interpretation). However, for research purposes, the priority is given to the meaning-text transfer, 

since it is believed that the process of text interpretation can be explained by patterns we use to 

generate speech. MTT sets up a multilevel language model stating that to express meaning, 

humans do not produce text immediately and directly, but the meaning-text transfer is realized in 

a series of transformations fulfilled consecutively on various levels. Thus, starting from the level 

of meaning, or semantic representation, we first execute some operations to express the intended 

meaning on the level of deep syntax, then we go to the surface syntactic level, afterwards 

proceeding to the deep morphological level, then to the surface morphological level, and we 

finally arrive to the phonological level where text can be spoken and heard (oral text or speech). 

Another option is a written text which is actually speech represented by means of an orthography 

system created to facilitate human communication. Each transformational level possesses its own 

“alphabet”, or units, and rules of arranging units together as well as rules of transfer from this 

level to the next one in the series. So at each level we obtain a particular text representation – 

e.g. deep syntactic representation, surface morphological representation, etc.     

Semantic representation is an interconnected system of semantic elements, or network; 

syntactic representations are described by dependency trees; morphological and phonological 

representations are linear.  

The most significant aspects of MTT are its syntactic theory, theory of lexical functions and 

the semantic component – explanatory combinatorial dictionary. The syntactic part is most fully 



presented in [Mel’čuk 1993-2000], lexical functions are explained further in this work, and the 

best achievement in lexicography is explanatory combinatorial dictionaries for Russian and 

French [Mel’čuk and Zholkovskij 1984, Mel’čuk et al. 1984]. 

3.2. Lexical Functions: Relations in Word Combinations  

Theory of lexical functions is presented with the purpose to apply it to classification of 

collocations. Therefore, we successively explain the concepts of institutionalized lexical 

relations, collocational relations, lexical functions and syntagmatic lexical functions. 

3.2.1. Institutionalized Lexical Relations  

[Wanner 2004] states, that lexical function (LF) is a concept which can be used to systematically 

describe “institutionalized” lexical relations. We will consider the notion of institutionalized 

lexical relations and show its relevance to collocation. Wanner clarifies that “a lexical relation is 

institutionalized if it holds between two lexical units L1 and L2 and has the following 

characteristics: if L1 is chosen to express a particular meaning M, its choice is predetermined by 

the relation of M to L2 to such an extent that in case M and L2 is given, the choice of L1 is a 

language-specific automatism.” Institutionalized lexical relations can be of two types – 

paradigmatic and syntagmatic. Paradigmatic relations are those between a lexical unit and all the 

other lexical units within a language system (as between synonyms, hyperonyms and hyponyms, 

etc.) and syntagmatic relations are those between a lexical unit and other lexical units that 

surround it within a text. These are some examples of words between which there exist 

institutionalized lexical relations: feeling – emotion, move – movement, snow – snowflake, 

acceptance – general, argument – reasonable, make – bed, advice – accept, etc. In the first three 

pairs of words we observe paradigmatic institutionalized lexical relations and the syntagmatic 

ones in the rest of the examples. 

In the above definition the term lexical unit is used to define a form-meaning composite that 

represents a lexical form and single meaning of a lexeme [Loos 1997].  The phrase 

“institutionalized lexical relation” does not have the meaning of the relation between lexical 

units which build a cliché as in [Lewis 1994]. Speaking of multi-word entities as a whole, Lewis 

divides them into two groups: institutionalized expressions and collocations. He defines 

collocations as made up of habitually co-occurring individual words. Then he adds that 

collocations tell more about the content of what a language user expresses as opposed to 

institutionalized expressions which tell more about what the language user is doing, e.g. 



agreeing, greeting, inviting, asking, etc. Institutionalized lexical relations in [Wanner 2004] 

possess the quality of association present between habitually co-occurring words, or collocations, 

if we consider the syntagmatic type of institutionalized lexical relations. Indeed, it can be seen 

from definitions of collocation (see Appendix 2) that the relations between collocation 

components, i.e. between the base and the collocate, are characterized by high probability of 

occurrence of the collocate given the base and by arbitrariness of the collocate choice. The latter 

is emphasized by [Lewis 1997] who insists that collocations do not result from logic but are 

decided only by linguist convention.  

We can notice that the concept of institutionalized lexical relations is wider than the concept of 

relations between collocation elements. As it was mentioned in the beginning, institutionalized 

lexical relations can be paradigmatic and syntagmatic.  Paradigmatic relations connect lexical 

units along the vertical axis of a language system while syntagmatic relations connect words 

positioned along the horizontal axis of the language; they tie together lexical units within a linear 

sequence of oral utterance or a written text as, for example, they link the base and its collocate in 

a collocation. So the relations within a collocation are institutionalized syntagmatic lexical 

relations which can be also termed collocational relations.  

3.2.2. Collocational Relations 

[Wanner 1996] gives the following definition of collocational relation. “A collocational relation 

holds between two lexemes L1 and L2 if the choice of L1 for the expression of a given meaning is 

contingent on L2, to which this meaning is applied. Thus, between the following pairs of lexical 

units collocational relations hold: to do: a favor, to make: a mistake, close: shave, narrow: 

escape, at: a university, in: a hospital.” The term lexeme used in the above definition is the 

minimal unit of language which has a semantic interpretation and embodies a distinct cultural 

concept, it is made up of one or more form-meaning composites called lexical units [Loos 1997].  

As it is seen from the definition, a collocational relation holds between components of non-

free word combinations, i.e. such combinations whose semantics is not fully compositional and 

has to be partially or entirely derived from the phrase as a whole. Non-free combinations are 

opposed to free word combinations where syntagmatic relations hold between words in a phrase 

with purely compositional semantics. Examples of free word combinations are: a black cable, a 

different number, to put a chair [in the corner], to write a story, to run quickly, to decide to do 

something.  Examples of non-free word combinations are: a black box, as different again, to put 

into practice, to write home about, to run the risk of [being fired], to decide on [a hat]. The 



distinction between free and non-free combinations is a general distinction usually made in 

linguistic research with respect to syntagmatic relations.  

Collocational relations can be classified according to lexical, structural and semantic criteria. 

The most fine-grained taxonomy of collocations based on semantic and structural principle was 

given by [Mel’čuk 1996]. This taxonomy uses the concept of lexical function which we will 

consider now.  

3.3. Lexical Functions: Definition and Examples 

The concept of lexical function was first introduced in [Mel’čuk 1974] within the frame of a 

Meaning-Text linguistic model.  It is a way to organize collocational data with the original 

purpose of text generation. Here we will supply the definition of lexical function from [Mel’čuk 

1996]. 

“The term function is used in the mathematical sense: f(X) = Y. …Formally, a Lexical 

Function f is a function that associates with a given lexical expression L, which is the argument, 

or keyword, of f, a set {Li} of lexical expressions – the value of f – that express, contingent on L, 

a specific meaning associated with f:  

f(L)  = {Li}. 

Substantively, a Lexical Function is, roughly speaking, a special meaning (or semantico-

syntactic role) such that its expression is not independent (in contrast to all “normal” meanings), 

but depends on the lexical unit to which this meaning applies. The core idea of Lexical Functions 

is thus lexically bound lexical expression of some meanings.” 

To explain the concept of lexical function in a simple and illustrative way, let us consider two 

sentences where the Spanish verb dar, give, is used.  

(1) Te quiero dar un regalo, lit., I want to give you a gift.  

(2) Quero dar un paseo, lit., I want to give a walk, the correct translation: I want to take a 

walk.   

In the first sentence the meaning of the phrase dar un regalo, give a gift, is composed of the 

meaning of dar and the meaning of regalo. That is, the meaning of this phrase is a simple sum of 

the meaning of its components. This is true for free word combinations to which dar un regalo 

certainly belongs. If we observe the phrase dar un paseo in sentence (2), we notice that its 

meaning can not be represented as a sum of the meanings of its components. The noun paseo is 

used in its common or most frequent meaning. However, this is not the case of the verb dar. It 



adds such a semantic component to the meaning of dar paseo that makes the whole phrase 

convey the idea of pasear, to walk, or “efectuar” un paseo, “carry out” a walk. It can also be 

mentioned that in order to express the meaning efectuar with paseo, only the verb dar is chosen, 

and in fact this is the only choice because no other verb would be used in such a case by a native 

Spanish speaker. This restrictive word co-occurence is characteristic of collocations to which dar 

un paseo belongs. The same phenomenon is observed in the sentences  

(1) Toma la mano, lit, Take the hand. 

(2) Toma la decisión, lit. Take the decision, the correct translation: Make the decision.    

In the first sentence we see a free word combination, and in the second sentence – a 

collocation tomar la decisión, make the decision, which has the meaning “efectuar” la decisión, 

“carry out” the decision. Now, we have two collocations with the same semantic component 

efectuar: dar un paseo and tomar una decisión. Designating the semantic element efectuar by 

Oper (abbreviated Latin verb operor, carry out) and using mathematical notation, we write the 

following:  

Oper(paseo) = dar, 

Oper(decisión) = tomar. 

Oper is the name of a lexical function, its value for the argument, or keyword paseo is dar, for 

the keyword decisión – tomar. We can say that the generalized meaning or gloss of the lexical 

function Oper is efectuar. Here are other examples of Oper:  

Oper(conferencia, conference) = impartir, give, 

Oper(anuncio, announcement) = hacer, make.  

Oper values make up collocations with their respective keywords: impartir una conderencia, 

hacer un anuncio, where the keyword is the base and the LF value is the collocate. 

Thus, lexical function Oper denotes the collocational relation with the gloss ‘efectuar’, 

‘perform’, ‘experience’, ‘carry out’. Other glosses, and therefore, lexical functions can be 

distinguished among collocational relations. Consider some LFs in Table 1. 

Table 1. Examples of lexical functions 

LF 
Name 

description 
Gloss Keyword Value Collocation 

Fact from Latin 

factum, fact 

accomplish itself sueño, dream cumplirse, 

come true 

el sueño se cumplió, the 

dream came true  



Real from Latin 

realibus , real 

fulfill the  requirement 

contained in the argument 

invitación, 

invitation 

aceptar, 

accept 

aceptar una invitación, 

accept an invitation  

Caus from Latin causa, 

cause 

cause to exist asociación, 

association 

fundar, 

found 

fundar una asociación, 

found an association  

Magn from Latin 

magnus, big 

intense, intensely, very 

(intensifier) 

temperatura, 

temperature 

alta, 

high 

la temperatura alta, high 

temperature  

  

Latin abbreviations are used for the names of lexical functions. The names are accompanied 

by numeric subscripts. They signify how the LF argument and the LF semantic structure are 

projected onto the syntactic structure of the LF value. For example, used as a subscript for Oper, 

1 means that the Agent (the first participant) in the situation denoted by the argument is the 

verb’s subject and the argument itself is its object. For example:  

Oper1(demanda, demand) = presentar, present (presentar una demanda, present a demand).  

Remember that the gloss of Oper1 is efectuar. As a subscript for the same LF, 2 means that 

the verb’s subject is the Undergoer (the second participant) in the situation denoted by the 

argument. For example:  

Oper2(culpa, guilt) = tener, have (tener la culpa, have the guilt, be guilty).  

The gloss of Oper2 is experimentar. Zero (0) as a subscript for the lexical function Func 

(Latin fungor, realizar) shows that the LF argument is the subject of an intransitive verbal value. 

For example:  

Func0(viento, wind) = soplar, blow (el viento sopla, the wind blows).  

3.4. Lexical Functions and Collocations 

As it was mentioned in the beginning, lexical function is a concept used to systematically 

describe “institutionalized” lexical relations, both paradigmatic and syntagmatic. Since we are 

interested in collocational relations, i.e. syntagmatic institutionalized lexical relations, only 

syntagmatic lexical functions will be considered in this work.  

3.4.1. Syntagmatic Lexical Functions  

Now we provide a definition of syntagmatic lexical function [Wanner 2004]. A syntagmatic 

LF is a (directed) standard abstract relation that holds between the base A and the collocate B of 

the collocation A⊕ B and that denotes ‘C’ ∈  ‘A⊕ C’ with ‘A⊕ C’ being expressed by A⊕ B. 

‘Directed’ means that the relation is not symmetric. ‘Standard’ means that the relation apples to a 



large number of collocations. ‘Abstract’ means that the meaning of this relation is sufficiently 

general and can therefore be exploited for purposes of classification.  

Alongside with formalizing semantic information, lexical functions specify syntactic patterns 

of collocations. For this purpose, subscripts are used with the names of LFs as explained above. 

Subscripts identify syntactic functions of words denoting basic thematic roles associated with LF 

argument. We will not take semantic roles into account in our research and will treat subscripts 

as a part of LF name. LF names serve as tags with which collocations are to be annotated as a 

result of classification.   

LFs can be grouped according to parts of speech to which collocational components belong. 

The following classes of collocations are distinguished: 

1. Verb-noun: to make a decision, to take a walk 

2. Noun-noun: heart of the desert, prime of life 

3. Adjective-noun: infinite patience, strong tea 

4. Adverb-verb: to laugh heartily, to walk steadily 

5. Noun-preposition: on the typewriter, by mail 

6. Verb-preposition: to fly by [plane], to go to [the park] 

About 20 of standard simple LFs capture verb-noun collocations. Simple LFs can further 

combine to form complex LFs. Complex LFs reflect compositional semantics of collocates. For 

example,  

Magn + Oper1(laughter) = to roar [with laughter],  

where roar means do [= Oper1] big [= Magn] laughter. In complex LFs, or in a configuration 

of LFs, the syntactically central LF which determines the part of speech of the configuration and 

the value is written rightmost. In the above example the value is a verb, so Oper is written 

rightmost in the configuration:  

MagnOper1(laughter) = roar [with ~].   

3.4.2. Syntagmatic Lexical Functions as a Collocation Typology 

Collocation definition has been a controversial issue for a number of years. Various criteria have 

been suggested to distinguish collocations from free word combinations (see Appendix 2). 

Definitions based on statistical distribution of lexical items in context cover frequently 

encountered collocations but such collocations as feeble imagination are overlooked since they 

occur rarely in corpus and thus are not considered collocations in the statistical sense. On the 



other hand, collocation definition which suggest arbitrariness of lexical choice of the collocate 

depending on the base does not encompass such phrases as strong man and powerful neighbor 

which are considered recurrent free combinations.  

We are interested in a collocation classification that can give an insight in the collocational 

meaning. Syntagmatic lexical functions have glosses which represent a semantic component 

added to the collocational base to form the meaning of a collocation. A gloss is an element of 

meaning found common in a group of collocations. Such groups of collocations form classes, 

each of the classes is associated with a particular lexical function. For verb-noun collocations, 20 

lexical functions are identified. Compared to the only other existing semantic and syntactic 

typology, the one proposed by [Benson et al. 1997], which includes 8 types of grammatical 

collocations and 7 types of lexical collocations, the LF typology is very fine-grained. Verb-noun 

lexical functions are listed and exemplified in Appendix 3.   

3.5. Automatic Extraction of Lexical Functions    

Not much research has been done on automatic detection of lexical functions. In fact, there are 

only two papers that report results on performance of a few machine learning algorithms on 

classifying collocations according to the typology of lexical functions, [Wanner 2004], [Wanner 

et al.  2006]. In this section, we will summarize the work done in [Wanner 2004], [Wanner et al.  

2006], then we will also mention another research on automatic extraction of lexical functions 

[Alonso Ramos et al. 2008] based on an approach different from the work in [Wanner 2004] and 

[Wanner et al.  2006]. We conclude this section with three statements, or hypotheses, made in 

[Wanner et al.  2006]. 

3.5.1. Research in [Wanner 2004] and [Wanner et al.  2006] 

In 2004, L. Wanner proposed to view the task of LF detection as automatic classification of 

collocations according to LF typology. To fulfill this task, the nearest neighbor machine learning 

technique was used. Datasets included Spanish verb-noun pairs annotated with nine LFs: 

CausFunc0, Caus2Func1, IncepFunc1, FinFunc0, Oper1, ContOper1, Oper2, Real1, Real2.  Verb-

noun pairs were divided in two groups. In the first group, nouns belonged to the semantic field of 

emotions; in the second groups nouns were field-independent. As a source of information for 

building the training and test sets, hyperonymy hierarchy of the Spanish part of EuroWordNet 

was used. The words in the training set were represented by their hyperonyms, Basic Concepts 

and Top Concepts. The average F-measure of about 70% was achieved in these experiments. 



The best result for field-independent nouns was F-measure of 76.58 for CausFunc0 with the 

meaning ‘cause the existence of the situation, state, etc.’ The Causer is the subject of utterances 

with CausFunc0.  

In [Wanner et al. 2006], four machine learning methods were applied to classify Spanish verb-

noun collocations according to LFs, namely Nearest Neighbor technique, Naïve Bayesian 

network, Tree-Augmented Network Classification technique and a decision tree classification 

technique based on the ID3-algorithm. As in [Wanner 2004], experiments were carried out for 

two groups of verb-noun collocations: nouns of the first group belonged to the semantic field of 

emotions; nouns of the second group were field-independent. Lexical functions were also 

identical with [Wanner 2004] as well as data representation. The best results for field-

independent nouns were shown by ID3 algorithm (F-measure of 0.76) for Caus2Func1 with the 

meaning ‘cause something to be experienced / carried out / performed’, and by the Nearest 

Neighbor technique (F-measure of 0.74) for Oper1 with the meaning ‘perform / experience / 

carry out something’. The Causer is the subject of utterances with Caus2Func1, and the Agent is 

the direct object of the verb which is the value of Cuas2Func1. In utterances with Oper1, the 

Agent is the subject.   

As we are interested in experimented with verb-noun collocations where the nouns are have 

various semantics, i.e., the nouns are field-independent, Tables 2—5 summarizes the results for 

field-independent nouns only in [Wanner 2004] and [Wanner et al. 2006].  Table 2 gives the 

meaning of lexical functions used in experiments only with field-independent nouns [Wanner 

2004], examples in Spanish with literal translation in English; #Tr stands for the number of 

examples of a given LF in the training set; #T stands for the number of examples of a given LF 

in the test set; #Tt stands for the total number of examples of a given LF in the training set and in 

the test set. Table 3 lists LFs with respective number of examples in [Wanner et al. 2006] for 

verb-noun combinations with field-independent nouns. Table 4 presents the results reported in 

the referenced paper. Table 5 shows the results in [Wanner et al. 2006]; the values of precision, 

recall and F-measure are given in the following format: <precision> | <recall> | <F-measure>. 

Not all four machine learning methods in Table 4 were applied to all LFs; if experiments were 

not made for a particular method and LF, N/A is put instead of precision, recall, and F-measure.  

Table 2. Data in [Wanner 2004] 

Name Meaning Examples in Spanish 
Lit. translation in 

English 
#Tr #T #Tt 

Oper1 experience, 

perform, carry out 

something 

dar golpe 

presentar una demanda 

hacer campaña 

give a blow 

present a demand 

make a campaign  

35 15 50 



 dictar la sentencia dictate a sentence 

Oper2 undergo, be 

source of 

 

someterse a un análisis 

 

afrontar un desafío 

hacer examen 

tener la culpa 

submit oneself to 

analysis  

face a challenge  

make exam  

have guilt 

33 15 48 

CausFunc0 cause the 

existence of the 

situation, state, 

etc. 

dar la alarma 

celebrar elecciones 

provocar una crisis 

publicar una revista 

give the alarm  

celebrate elections 

provoke a crisis  

publish a magazine  

38 15 53 

Real1 act accordingly to 

the situation, use 

as forseen  

 

ejercer la autoridad 

utilizar el teléfono 

hablar la lengua 

cumplir la promesa 

exercise authority 

use a telephone  

speak a language 

keep a promise  

37 15 52 

Real2 react accordingly 

to the situation  

 

responder a objeción  

 

satisfacer un requisito  

 

atender la solicitud 

 

rendirse a persuasión              

respond to an  

objection  

satisfy a 

requirement  

attend an 

application 

surrender to 

persuasion   

38 15 53 

 

Table 3. Data in [Wanner et al. 2006] 

LF Number of Examples 

CausFunc0 53 

Oper1 87 

Oper2 48 

Real1 52 

Real2 53 

 

Table 4. Results in [Wanner 2004] 

F-measure/LF CausFunc0 Oper1 Oper2 Real1 Real2 

field-independent nouns 76.58 60.93 75.85 74.06 58.32 

 

 

Table 5. Results in [Wanner et al. 2006] 

Machine learning technique 
LF 

NN NB TAN ID3 

CausFunc0 0.59 | 0.79 | 0.68 0.44 | 0.89 | 0.59 0.45 | 0.57 | 0.50 N/A 

Caus2Func1 N/A N/A N/A 0.53 | 0.65 | 0.50 

FinFunc0 N/A N/A N/A 0.53 | 0.40 | 0.40 

IncepFunc1 N/A N/A N/A 0.40 | 0.48 | 0.40 

Oper1 0.65 | 0.55 | 0.60 0.87 | 0.64 | 0.74 0.75 | 0.49 | 0.59 0.52 | 0.51 | 0.50 

Oper2 0.62 | 0.71 | 0.66 0.55 | 0.21 | 0.30 0.55 | 0.56 | 0.55 N/A 

ContOper1 N/A N/A N/A 0.84 | 0.57 | 0.68 

Real1 0.58 | 0.44 | 0.50 0.58 | 0.37 | 0.45 0.78 | 0.36 | 0.49 N/A 

Real2 0.56 | 0.55 | 0.55 0.73 | 0.35 | 0.47 0.34 | 0.67 | 0.45 N/A 



3.5.2. Research in [Alonso Ramos et al. 2008] 

[Alonso Ramos et al. 2008] propose an algorithm for extracting collocations following the 

pattern “support verb + object” from FrameNet corpus of examples [Ruppenhofer et al. 2006] 

and checking if they are of the type Opern. This work takes advantage of syntactic, semantic and 

collocation annotations in the FrameNet corpus, since some annotations can serve as indicators 

of a particular LF. The authors tested the proposed algorithm on a set of 208 instances. The 

algorithm showed accuracy of 76%. The researchers conclude that extraction and semantic 

classification of collocations is feasible with semantically annotated corpora. This statement 

sounds logical because the formalism of lexical function captures the correspondence between 

the semantic valency of the keyword and the syntactic structure of utterances where the keyword 

is used in a collocation together with the value of the respective LF.  

3.5.3. Three Hypothesis Stated in [Wanner et al. 2006] 

[Wanner et al. 2006] experiment with the same type of lexical data as in [Wanner 2004], i.e. 

verb-noun pairs. The task is to answer the question: what kind of collocational features are 

fundamental for human distinguishing among collocational types. The authors view collocational 

types as LFs, i.e. a particular LF represents a certain type of collocations. Three hypotheses are 

put forward as possible solutions, and to model every solution, an appropriate machine learning 

technique is selected.  Below we list the three hypotheses and the selected machine learning 

techniques.  

1. Collocations can be recognized by their similarity to the prototypical sample of each 

collocational type; this strategy is modeled by the Nearest Neighbor technique. 

2. Collocations can be recognized by similarity of semantic features of their elements (i.e., base 

and collocate) to semantic features of elements of the collocations known to belong to a 

specific LF; this method is modeled by Naïve Bayesian network and a decision tree 

classification technique based on the ID3-algorithm. 

3. Collocations can be recognized by correlation between semantic features of collocational 

elements; this approach is modeled by Tree-Augmented Network Classification technique. 

It should be mentioned, that having proposed three hypotheses, the authors have not yet 

demonstrated their validity by comparing the performance of many machine learning techniques 

known today, but applied only four learning algorithms to illustrate that three human strategies 

mentioned above are practical. This will be considered in more detail in Chapter 7. 



3.6. Automatic Detection of Semantic Relations    

There has been some research done on semantic relations in word combinations, for example, 

one that deals with automatic assignment of semantic relations to English noun-modifier pairs in 

[Nastase and Szpakowicz 2003, Nastase et al. 2006]. Though in our work, verb-noun 

combinations are treated, we believe that the principles of choosing data representation and 

machine learning techniques for detection of semantic relations between a noun and a modifier 

can also be are used to detect semantic relations in verb-noun pairs. The underlying idea is the 

same: learning the meaning of word combinations. In [Nastase and Szpakowicz 2003, Nastase et 

al. 2006], the researchers examined the following relations: causal, temporal, spatial, 

conjunctive, participant, and quality. They used two different data representations: the first is 

based on WordNet relations, the second, on contextual information extracted from corpora. They 

applied memory-based learning, decision tree induction and Support Vector Machine. The 

highest F-measure of 0.847 was achieved by C5.0 decision tree to detect temporal relation based 

on WordNet representation.   

 



Chapter 4.   Data  

We have created a unique lexical resource of Spanish lexical functions in order to compile 

training sets for machine learning experiments.  

4.1. Data for the Training Sets 

4.1.1. Lexical Resources  

Lexical resources are widely used in natural language processing and their role is difficult to 

overestimate. Lexical resources vary significantly in language coverage and linguistic 

information they include, and have many forms: word lists, dictionaries, thesauri, ontologies, 

glossaries, concordances, etc. For Spanish, this diversity of forms can be illustrated with the 

following lexicographic works: A Medieval Spanish Word List [Oelschläger 1940], Diccionario 

de la Lengua Española (Dictionary of the Spanish Language) [RAE 2001], Streetwise Spanish 

Dictionary/Thesaurus [McVey and Wegmann 2001], Spanish part of EuroWordNet [Vossen 

1998], an electronic lexical onthology, Glosario de voces comentadas en ediciones de textos 

clásicos [Fontecha 1941], Concordancia electrónica de la Biblia online (for Reina Valera 

version, 1960) [CEB]. Machine readable resources are of special interest, since they comprise an 

integral part of computer systems aimed at automatic language treatment and language 

generation.  

Though computerized lexicography has achieved a significant progress over last years, 

compilation of high quality dictionaries still requires a lot of manual work. In such a multi-

faceted area as computational linguistics, it is difficult sometimes to find an adequate lexical 

resource (and for the language you need) for a specific research task or application. One way to 

solve this problem is to develop computational procedures which can adjust existing resources to 

the demands of a researcher. However, this is not always effective. Certainly, the best solution of 

this problem is to compile a new lexical resource, but this is not always feasible in view of its 

cost.  

We present a list of most frequent Spanish verb-noun pairs which contains semantically 

annotated collocations and free word combinations. It is a machine readable lexical resource 

where each verb-noun pair is associated with the following linguistic data:  

1. whether a pair is a free word combination or a collocation;  

2. if a verb-noun pair is a collocation, it is marked with lexical functions;  



3. word senses of the Spanish WordNet [Vossen 1998, SpWN] are assigned to both elements 

of the verb-noun pair.   

4.1.2. Work on Lexical Resources 

In this Section, we give a number of lexical resources that contain lexical functions. Almost all 

of them are not specialized dictionaries of lexical functions, but include lexical functions 

together with other linguistic information.  

The concept of lexical function was originally proposed by researchers of the Russian 

semantic school. Lexical functions have been applied there for description of lexica and machine 

translation. A dictionary in Russian compiled by Apresjan [referenced in Apresjan 2004] for the 

machine translation system ETAP includes more that 100 lexical functions with definitions and 

examples. For instance, for the verbal lexical function Oper1, the dictionary contains several 

hundreds of samples.   

Lexical functions are used to describe the word’s combinatory power in Explanatory 

Combinatorial Dictionaries compiled for Russian [Mel’čuk and Zholkovskij 1984] and for 

French [Mel’čuk et al. 1984, 1988]. For every word, its lexical entry includes a list of lexical 

functions applicable to it with their respective values. For French, an on-line dictionary, the 

DiCo, is referenced in [Wanner 2004] but we could not access it on the web.  

For Spanish, there exists a dictionary of collocations, Diccionario de colocaciones del Español  

[DiCE] [Alonso Ramos 2003] annotated with lexical functions, but the DiCE is limited only to 

nouns belonging to the semantic field of emotions. [Sanromán 1998, 2003] compiled collections 

of Spanish collocations also for emotion nouns classified in terms of lexical functions. [Wanner 

2004], [Wanner et al. 2006] used Sanromán’s collections for machine learning experiments, and 

for the same purpose, compiled additional lists of Spanish verb-noun collocations annotated with 

lexical functions. In the additional lists nouns were semantically field independent. The overall 

number of LF instances in the latter lists were 256 [Wanner 2004] and 293 [Wanner et al. 2006]. 

Unfortunately, these lists are no longer available in full.  

4.1.3. Description of the Lexical Resource  

 Compilation  

Firstly, the Spanish Web Corpus [SpWC] was chosen as a source of verb-noun pairs with the 

pattern verb + direct object. All such verb-noun pairs used in the Spanish Web Corpus five or 

more times, were extracted automatically from the said corpus by the Sketch Engine [Kilgarriff 



et al. 2004], a web-based program for corpus processing. Fig. 1 displays the interface of the 

Sketch Engine where several corpora are listed including the Spanish Web Corpus. The obtained 

list contained 83,982 verb-noun pairs, and it was ranked by frequency.  

Fig 1. Sketch Engine with the Spanish Web Corpus. 

 

 

Secondly, one thousand pairs were taken from the upper part of the list, i.e. most frequent 

verb-noun pairs. 

Thirdly, in the list of one thousand pairs, erroneous combinations were marked with the label 

ERROR. Erroneous pairs included, for instance, past participle or infinitive instead of noun, or 

contained symbols like --, « , © instead of words. How did errors emerge? The automatic 

extraction procedure was set to search for combinations with the pattern verb + direct object in 

the corpus. This procedure needs part of speech (POS) and lemma information, and such data is 

supplied by TreeTagger, software used to annotate the Spanish Web Corpus with POS and 

lemmas. The TreeTagger is a leading tool applied for POS tagging and lemmatisation, it 

achieves high accuracy but still is error-prone. Due to errors made by the TreeTagger, the set of 

extracted verb-noun pairs contained fallacious combinations. For the sake of preserving the 



original design of automatically extracted set, these incorrect combinations were not removed 

from the list but identified as wrong. The total number of erroneous pairs was 61, so after their 

removal the list contained 939 pairs.     

Fourthly, collocational verb-noun pairs were annotated with lexical functions. The rest of the 

pairs were annotated as free word combinations using the label FWC.  

Lastly, all verbs and nouns in the list were disambiguated with word senses from the Spanish 

WordNet, an electronic lexicon structured the same way as WordNet for English. For some verb-

noun pairs, relevant senses were not found in the above mentioned dictionary, and the number of 

such pairs was 39. For example, in the combinaiton dar cuenta, give account, the noun cuenta 

means razón, satisfacción de algo (reason, satisfaction of something). This sense of cuenta is 

taken from Diccionario de la Lengua Española (Dictionary of the Spanish Language) [RAE 

2001]. Unfortunately, this sense is absent in the Spanish WordNet so the expression dar cuenta 

was left without sense annotation. All such words were annotation N/A, i.e. not available.  

The annotated list was formatted as a table and saved in an MS Excel file. Fig. 2 shows the 

process of the compilation of the lexical resource schematically.  

Fig. 2. The process of lexical resource compilation.  

 

  

Contents of the lexical resource 

A partial representation of the list is given in Table 6; Table 7 lists all lexical functions found 

in the list of 1000 most frequent verb-noun pairs, their frequencies in the Spanish Web Corpus, 

and the number of examples for each of them.  

 

 

 



Table 6. Partial representation of the lexical resource 

LF/ 

FWC/ 

ERROR 

VERB 

Verb  

Sense 

Number 

NOUN 

Noun  

Sense 

Number 

FREQ 

Oper1 dar 2 cuenta N/A 9236 

CausFunc0 formar 2 parte 1 7454 

Oper1 tener 1 lugar 4 6680 

Oper1 tener 1 derecho 1 5255 

CausFunc1 hacer 2 falta N/A 4827 

CausFunc1 dar 9 lugar 4 4180 

Oper1 hacer 15 referencia 2 3252 

Func0 hacer N/A año 2 3211 

Oper1 tener 1 problema 7 3075 

Func0 hacer N/A tiempo 1 3059 

IncepOper1 tomar 4 decisión 2 2781 

Oper1 tener 1 acceso 3 2773 

Oper1 tener 1 razón 2 2768 

Caus2Func1 llamar 8 atención 1 2698 

Oper1 tener 1 sentido 1 2563 

ERROR haber ERROR estado ERROR 2430 

FWC hacer 6 cosa 3 2374 

Oper1 tener 3 miedo 1 2226 

ERROR haber ERROR hecho ERROR 2168 

Table 7. Lexical functions with their respective frequency in corpus  

and the number of instances in the list of verb-noun pairs 

LF Freq # LF Freq # 

Oper1                 

FWC                    

CausFunc1             

CausFunc0             

ERROR                  

Real1                  

Func0                 

IncepOper1             

Oper2                   

Caus2Func1              

ContOper1               

Manif                   

Copul                   

CausPlusFunc0           

Func1                   

PerfOper1               

CausPlusFunc1           

Real2                    

FinOper1 

165319 

70211 

45688 

40717 

26316 

19191 

17393 

11805 

8967 

8242 

5354 

3339 

2345 

2203 

1848 

1736 

1548 

1547 

1476 

280 

202 

90 

112 

61 

61 

25 

25 

30 

16 

16 

13 

9 

7 

4 

4 

5 

3 

6 

PerfFunc0               

Caus1Oper1              

Caus1Func1              

IncepFunc0               

PermOper1                 

CausManifFunc0            

CausMinusFunc0            

Oper3                     

LiquFunc0                 

IncepReal1               

Real3                     

PlusOper1                

CausPerfFunc0             

AntiReal3                

MinusReal1                

AntiPermOper1            

ManifFunc0               

CausMinusFunc1            

FinFunc0 

1293 

1280 

1085 

1052 

910 

788 

746 

520 

514 

437 

381 

370 

290 

284 

265 

258 

240 

229 

178 

1 

2 

3 

3 

3 

2 

3 

1 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 



4.2. Data for the Test Sets 

To build the test set, we extracted all verb-noun pairs from a corpus other than the corpus used to 

construct the training sets. So the data for test sets was mined from the Spanish Treebank 

Cast3LB [Civit and Martí 2004]. The number of all verb-noun pairs extracted from Cast3LB was 

5181. We constructed four test sets, including, respectively, 100%, 75%, 50%, and 25% of all 

verb-noun pairs taken from Treebank Cast3LB.  

Fig. 3. A partial representation of the list of verb-noun pairs used for building the test set.  

v tener 1 

n aire 1 

v tener 1 

n aire 2 

... 

v tener 9 

n aire 10 

v tener 9 

n aire 11 

v tener 9 

n aire 12 

v salir 1 

n error 1 

v salir 1 

n error 2 

v salir 1 

n error 3 

v salir 1 

n error 4 

v salir 1 

n error 5 

v salir 1 

n error 6 

... 

We did not disambiguate verb-noun pairs for the test sets manually. Instead, for each verb-

noun, we built all possible verb-noun combinations of all senses in the Spanish WordNet. As an 

example, let us consider the pair representar papel, lit. represent role. The verb representar has 

12 senses in the Spanish WordNet, and the noun papel, 5. This gives totally 60 combinations of 

representar and papel (12 multiplied by 5). The initial list for the test set included 5,181 verb-

noun pairs which resulted in totally 96,079 instances in the test set.  A partial representation of 

the list is given in Fig. 3. 

 



Chapter 5. A New Method of Meaning Representation  

5.1. Data Representation 

Each verb-noun pair in the training set and in the test set is represented as a set of all 

hyperonyms of the noun and all hyperonyms of the verb. The noun and the verb of the verb-noun 

pair were considered as zero-level hyperonyms and thus were included in the set of hyperonyms.  

5.1.1. Hyperonyms and Hyponyms 

 

In linguistics, a hyponym is a word or phrase whose meaning is included within the meaning of 

another word, its hyperonym (spelled hypernym in natural language processing literature). To put 

it simpler, a hyponym shares a type-of relationship with its hyperonym. For example, restaurant, 

rest house, planetarium, observatory, packinghouse, outbuilding, Pentagon are all hyponyms of 

building (their hyperonym), which is, in turn, a hyponym of construction.  

In computer science, the relationship of hyperonymy is often termed an "is-a" relationship. For 

example, the phrase Restaurant is a building can be used to describe the hyponymic relationship 

between restaurant and building. 

Thus, hyperonymy is the semantic relation in which one word is the hyperonym of another 

one.  

5.1.2. Spanish WordNet as a Source of Hyperonyms  

The Spanish Wordnet follows the EuroWordNet [Vossen 1998] framework and is structured in 

the same way as the American WordNet for English [Miller 1998] in terms of synsets (sets of 

synonymous words) with basic semantic relations between them.  



Fig. 4. The Spanish WordNet, hyperonyms for gato, cat. 

 

Fig. 5. The Spanish WordNet, hyperonyms for gato, cat (continued). 

 

 

Spanish nouns and verbs are organized into synonym sets, each representing one underlying 

lexical concept. Different relations, for example, hyperonym relations, link the synonym sets.  

Since all verbs and nouns have been disambiguated, hyperonyms can be found for each word 

that has been annotated with its sense of the Spanish WordNet [SpWN]. Hyperonyms were 

extracted automatically from the database of the dictionary referenced above. Fig. 4 and Fig. 5 

display the interface of the Spanish WordNet as it is seen on the web. In the interface, we see 

hyperonyms of gato, cat.  



5.1.3. Hyperonyms as a Meaning Representation  

A difference between data representation in our experiments and data sets used in [Wanner et al. 

2006] should be noted here. In the paper just referenced, every word in the training set was 

accompanied by its synonyms and hyperonyms, its own Base Concepts (BC) and the BCs of its 

hyperonyms, its own Top Concepts (TC) and the TCs of its hyperonyms taken from the Spanish 

part of the EuroWordNet [Vossen 1998]. We included only hyperonyms in our training sets. 

Though in this case the data is annotated with less information, i.e. only with hyperonyms, or in 

other words, only hyperonyms are used to represent the meaning of verb-noun pairs, we hope 

that hyperonyms would be sufficient to distinguish between lexical functions. Up to now, there 

has not been any research done that compares different data representations for the task of 

predicting lexical functions of verb-noun pairs. Here we can remember the original intent of 

WordNet compilers [Miller 1998] who claimed that the meaning of any word can be described 

sufficiently well by semantic relations only, like “is-a-kind-of” semantic relation of hyperonym 

hierarchy. Later, WordNet authors admitted that their previous assumption had been wrong and 

glosses were added to distinguish synonym sets. Though practical significance of glosses is 

generally accepted, we intent to study how well the meaning of lexical functions can be 

distinguished if only hyperonym information is taken into account. Further research is needed to 

investigate how information other that hyperonym taxonomy, for example, that of semantic 

ontologies, changes the performance of machine learning algorithms.  

5.2. Linguistic Description of Training Sets and Test Sets 

5.2.1. Lexical Functions Chosen for Experiments 

Our choice of lexical functions depends on the number of examples that each lexical function has 

in the lexical resource of Spanish lexical functions created by us and described in Section 4.1. 

We have selected LFs that have the number of examples sufficient for machine learning 

experiments. [Wanner 2004] and [Wanner et al.2006] experimented with the following number 

of LF examples: the biggest number of examples that this researcher had in the training set was 

87 for Oper1 and the least number of examples was 33 for Oper2. This data can be seen in 

Section 3.5.1.    

 

 



 

Table 8. Lexical functions chosen for the experiments 

Collocation: LF value + keyword LF and # of 

examples 
Meaning 

Spanish English translation 

Oper1  

280 

 

Lat. operare – ‘to do, 

perform’. Experience 

(if K is an emotion), 

carry out K. 

alcanzar un objetivo 

aplicar una medida 

corregir un error 

satisfacer una 

necesidad 

achieve a goal 

apply a measure 

correct a mistake 

satisfy a necessity  

CausFunc0 
112 

Lat. causare – ‘to 

cause’. Do something 

so that K begins 

occurring.  

encontrar respuesta 

establecer un sistema 

hacer campaña 

producir un efecto  

find an answer  

establish a system  

conduct a campaign  

produce an effect  

CausFunc1 
90 

A person/object, 

different from the 

agent of K, does 

something so that K 

occurs and has effect 

on the agent of K.  

abrir camino 

causar daño 

dar respuesta  

producir un cambio  

open the way  

cause damage 

give an answer 

produce a change  

Real1 
61 

Lat. realis – ‘real’. To 

fulfill the requirement 

of K, to act according 

to K. 

contestar una pregunta 

cumplir el requisito 

solucionar un 

problema  

utilizar la tecnología 

answer a question  

fulfill the requirement 

solve a problem  

use technology  

Func0 
25 

Lat. functionare – ‘to 

function’. K exists, 

takes place, occurs.  

el tiempo pasa  

hace un mes  

una posibilidad cabe  

la razón existe  

time flies  

a month ago  

there is a possibility 

the reason exists   

Oper2 
30 

Undergo K, be source 

of K 

aprender una lección 

obtener una respuesta 

recibir ayuda 

sufrir un cambio 

learn a lesson 

get an answer  

receive help 

suffer a change  

IncepOper1 
25 

Lat. incipere – ‘to 

begin’. Begin to do, 

perform, experience, 

carry out K.   

adoptar una actitud  

cobrar importancia  

iniciar una sesión 

tomar posición 

take an attitude  

acquire importance 

start a session 

obtain a position  

ContOper1 
16 

Lat. continuare – ‘to 

continue’. Continue to 

do, perform, 

experience, carry out 

K. 

guardar silencio 

mantener el equilibrio 

seguir un modelo 

llevar una vida 

(ocupada) 

keep silence 

keep one’s balance 

follow an example 

lead a (busy) life  

Table 8 presents LFs that we have chosen for our experiments. For each LF, we give the 

number of examples, its meaning, and sample verb-noun combinations.  

In the lexical resource, we have annotated free word combinations with the tag FWC. The 

number of FWC is 261. We considered free word combinations as a lexical function FWC in its 

own right and experimented how machine learning algorithms can predict this class of word 

combinations. Therefore, the total number of LFs we experimented with is 9.  

Remember, that in the training set and test set, each verb-noun combination is represented as a 

set of all hyperonyms of the noun and all hyperonyms of the verb. To construct this 

representation, the number of sense for every verb and noun must be identified. But sometimes, 

an appropriate sense was absent in the Spanish WordNet. Such words were tagged with 

abbreviation N/A (not available) instead of the number of word sense. In the training set, we 

included only verb-noun combinations that are disambiguated with word senses of the Spanish 



WordNet. In Table 8, the numbers of examples include only these verb-noun pairs in which all 

the words are disambiguated with the Spanish WordNet. 

The total number of examples for all 9 lexical functions is 900.  

5.2.2. Training Sets 

For each of 9 LF chosen for experiments, we built a training set, so we had 9 training sets. All 

training sets included the same list of 900 verb-noun combinations. The only difference between 

training sets was the annotation of examples as positive and negative. As an example, let us 

consider the training set for Oper1. In the list of 900 verb-noun pairs, there are 266 examples of 

Oper1, so these examples are marked as positive in the training set, and all the rest of verb-noun 

combinations whose number is 634 (900 – 266 = 634) were marked as negative examples. This 

procedure was applied to each training set.  

5.2.3. Test Sets 

The test sets were built independently of the training set. 5181 verb-noun combinations for the 

test set were extracted from the Spanish Treebank Cast3LB [Civit and Martí 2004]. Four test sets 

were constructed, including, respectively, 100%, 75%, 50%, and 25% of all verb-noun pairs 

taken from Treebank Cast3LB. Words in the test set were not annotated with lexical functions. 

Table 9 gives the number of verb-noun pairs in all four test sets.  

Table 9. Number of verb-noun combination in the test sets  

Test set Number of 

verb-noun combinations 

100% 5181 

75% 3886 

50% 2590 

25% 1295 
 

 

 

 

 

 

 



Chapter 6. Methodology  

6.1. Machine Learning Algorithms  

Our approach is based on supervised machine learning algorithms as implemented in the WEKA 

version 3-6-2 toolset [WEKA], [Hall et al. 2009], [Witten and Frank 2005]. We performed two 

groups of experiments. In the first group of experiments, we evaluated the prediction of LFs 

meanings on the training sets using 10-fold cross-validation technique. In the second group of 

experiments, the same meanings were predicted for the instances of an independent test set. 

Table 10 lists all 68 machine learning algorithms we experimented with.  

Table 10. Machine learning algorithms used in the experiments 

Algorithm Algorithm Algorithm 

AODE                                  ClassificationViaClustering           VFI     

AODEsr                                 ClassificationViaRegression            ConjunctiveRule                       

BayesianLogisticRegression             CVParameterSelection                 DecisionTable                        

BayesNet                               Dagging                           JRip                                

HNB                                    Decorate                                NNge                                 

NaiveBayes                            END                             OneR                                  

NaiveBayesSimple                      EnsembleSelection                      PART                                

NaiveBayesUpdateable                 FilteredClassifier                     Prism                             

WAODE Grading                                 Ridor                            

LibSVM                         LogitBoost                              ZeroR 

Logistic                          MultiBoostAB                           ADTree                       

RBFNetwork                    MultiClassClassifier                  BFTree                             

SimpleLogistic                  MultiScheme                           DecisionStump               

SMO                               OrdinalClassClassifier              FT                                   

VotedPerceptron                  RacedIncrementalLogitBoost    Id3                              

Winnow                             RandomCommittee                        J48                                 

IB1                                     RandomSubSpace                       J48graft                         

IBk                                    RotationForest                         LADTree                           

KStar                                   Stacking                                RandomForest                         

LWL  StackingC                            RandomTree                          

AdaBoostM1                             ThresholdSelector                    REPTree                               

AttributeSelectedClassifier           Vote  SimpleCart  

Bagging                             HyperPipes                         

 

We evaluated the performance of the selected algorithms by comparing precision, recall, and 

F-measure (values for predicting the positive class). The precision is the proportion of the 

examples which truly have class x among all those which were classified as class x. The recall is 

the proportion of examples which were classified as class x, among all examples which truly 

have class x.  

The F-measure is the harmonic mean of precision and recall:  



RecallPrecision

RecallPrecision
2F

+

×
×= . 

6.1.1. WEKA Data Mining Toolkit 

WEKA (Waikato Environment for Knowledge Analysis) is well-known software for machine 

learning and data mining developed at the University of Waikato. This program is written in 

Java. WEKA is an open-source workbench distributed under the GNU-GPL license. For machine 

learning experiments, we have used WEKA version 3-6-2 [WEKA, WM]. WEKA workbench 

has a graphical user interface that leads the user through data mining tasks and has data 

visualization tools that help understand the models.  

6.1.2. Stratified 10-Fold Cross-validation Technique  

For evaluating the prediction of machine learning algorithms on the training set, we have used 

stratified 10-fold cross-validation technique. The simplest form of evaluating the performance of 

classifiers is using a training set and a test set which are mutually independent. This is referred to 

as hold-out estimate. 

We have chosen a more elaborate evaluation method, i.e. cross-validation. Here, a number of 

folds n is specified. The dataset is randomly reordered and then split into n folds of equal size. In 

each iteration, one fold is used for testing and the other n-1 folds are used for training the 

classifier. The test results are collected and averaged over all folds. This gives the cross-

validation estimate of the accuracy. The folds can be purely random or slightly modified to 

create the same class distributions in each fold as in the complete dataset. In the latter case the 

cross-validation is called stratified. We have applied the stratified option of 10-fold cross-

validation method.   

6.2. Representing Data for Machine Learning Techniques  

6.2.1. Training Sets  

In Section 5.4, we have given a linguistic description of the training set and the test set. We have 

mentioned that each verb-noun pairs was represented as a set of all hyperonyms of the noun and 

all hyperonyms of the verb.  

However, the machine learning techniques can access data only if it is represented in the 

Attribute-Relation File Format (ARFF).  

A dataset in ARFF format is a collection of examples, each one of class 

weka.core.Instance. Remember, that WEKA is written in Java. Each Instance consists of a 



number of attributes, any of which can be nominal (one of a predefined list of values), numeric 

(a real or integer number) or a string (an arbitrary long list of characters, enclosed in ”double 

quotes”). In our case, all attributes are nominal.  

For each verb-noun pair, we used binary feature representation. Every hyperonym is 

represented as a nominal attribute which can take one of two values: “1” if it is a hyperonym of 

any word in a given verb-noun pair, and “0” if it is not. The fact that a verb-noun combination 

belongs or does not belong to a particular LF is identified by the class attribute with two possible 

values: “yes” for positive examples of a particular LF and “no” for negative ones.  

All training sets include 900 verb-noun pairs represented by hyperonyms. This gives 798 

features to represent the nouns, and 311 features to represent the verbs. Total number of features 

that are hyperonyms is 1109. There is also one class attribute; therefore, each training set 

includes 1110 attributes. Verb-noun pairs in the training set are represented as vectors of length 

1110: 

v1, v2, ..., v798, n1, n2, ..., n311, LF, 

where vn, nk can be 0 or 1, and LF is a class attribute having the value yes for positive instances 

of LF for which classification is done, and no for negative instances. A partial representation of 

the training set in the ARFF format is given in Fig. 6. 

Fig. 6. A partial representation of the training set in the ARFF format. 

@relation Oper1  

@attribute n00001740 {0,1} % entidad_1 

@attribute n00002086 {0,1} % ser_vivo_1  

@attribute n00003731 {0,1} % agente_causal_1 causa_4 

... 

@attribute v01128460 {0,1} % causar_5 producir_4 ocasionar_1 

@attribute v01130277 {0,1} % hacer_2 

@attribute v01131926 {0,1} % dar_9 

... 

@attribute category {yes,no} 

 

@data 

1,0,0,0,1,0,0,1,0,0,0,0,0,0,...,0,0,0,yes % v_hacer_15 n_mención_1 

... 

0,0,0,0,0,0,0,0,0,0,0,0,0,1,...,0,0,0,no % v_abrir_5 n_camino_5 

 

In Fig. 6, after the tag @relation, we define the internal name of the dataset. Nominal 

attributes are defined with the tag @attribute. The record @data marks the beginning of the 

data section.  The data section consists of comma-separated values for the attributes – one line 

per example. In Fig. 6 we show only two examples: one positive and one negative. All records 

beginning with @attribute as well as all strings in the data section are accompanied by a 

comment starting with symbol % in ARFF. For attribute entries, comments include words of the 

synset specified by its number after the record @attribute. For data strings, comment includes 



the verb-noun pair represented by this string. The pair is annotated with POS and word senses. 

Comments were added for human viewing of data.   

The process of training set compilation explained above can be represented as fulfilled 

according to the algorithm shown in Fig. 7. The training sets (as well as the test sets) were 

compiled automatically used the programs whose code is given in Appendix 4.  

Fig. 7. Algorithm of compiling the training sets. 

Algorithm: constructing data sets  

Input: a list of 900 Spanish verb-noun collocations annotated with 8 lexical functions 

Output: 8 data sets – one for each lexical function 

For each lexical function  

Create an empty data set and assign it the name of the lexical function.  

For each collocation in the list of verb-noun collocations  

  Retrieve all hyperonyms of the noun. 

  Retrieve all hyperonyms of the verb. 

  Make a set of hyperonyms: 

  {noun, all hyperonyms of the noun, verb, all hyperonyms of the verb}. 

  If a given collocation belongs to this lexical function 

            assign ‘1’ to the set of hyperonyms, 

  Else   assign ‘0’ to the set of hyperonyms. 

  Add the set of hyperonyms to the data set. 

Return the data set.  

 

6.2.2. Test Sets  

Section 5.4.2 describes characteristics of the training sets used to evaluate the selected machine 

learning algorithms by 10-fold cross-validation method. That is, the training set is used to build a 

model on the learning stage and then the model is tested 10 times on parts of the same training 

set.  

When the performance of the machine learning techniques is evaluated on an independent test 

set, the test set format must be compatible with the training test format. It means that the training 

set must contain all the attributes which are included in the test set. Since the test set has a lot of 

words other than the training set, the number of attributes is much bigger than in the case of 10-

fold cross-validation.  

Therefore, the list of attributes is the same in the training set and in the test set, when the 

performance of the algorithms is validated on an independent test set. Table 11 gives 

characteristics of the training set and the test sets. In Table 11, verb-noun pairs are actual verb-

noun combinaitons extracted from Spanish Treebank Cast3LB, and instances are combinations 

of all senses of the verbs and all senses of the nouns that are found in the Spanish WordNet. For 

more details, see Section 3.2. 



Table 11. Characteristics of data sets 

Test 

set 

# of verb-noun pairs from Spanish 

Treebank Cast3LB 

# of instances in the 

test set 

# of attributes in the training set 

and the test set 

100% 5181 96079 10544 

75% 3886 73021 9495 

50% 2590 48904 8032 

25% 1295 22254 5857 

 

6.3. Classification Procedure  

Fig. 8 presents the classification procedure schematically.  

Fig. 8. The classification procedure.  

 

 

  

Now, we will explain the classification procedure using the WEKA graphical user interface.  

First, the training set is downloaded and WEKA shows various characteristics of the data in 

Explorer, a part of the interface developed for the purpose of analyzing data in the data set. This 

stage is demonstrated in Fig.9.  



Fig. 9. Characteristics of data viewed in WEKA Explorer.   

 

Secondly, a classifier is chosen for data classification. This step can be vied in Fig. 10.  

Fig. 10. Selection of the classifier. 

    

 Thirdly, the chosen classifier starts working and after finishing the learning and the test 

stages, it outputs various estimates of its performance. In our experiments, we used the values of 

precision, recall and F-measure for „yes“ class, or the positive class, to evaluate the performance 

of the classifiers. A classifier’s output is demonstrated in Fig. 11.  



Fig. 11. Output of the selected classifier. 

 
While for initial experiments the included graphical user interface is quite sufficient, for in-

depth usage the command line interface is recommended, because it offers some functionality 

which is not available via the graphical user interface (GUI). When data is classified with the 

help of GUI, the default heap memory size is 16—64 MB. For our data sets, this is too little 

memory. The heap size of java engine can be increased via  

—Xmx1024m for 1GB in the command line. Also, via the command line using the  

–cp option we set CLASSPATH so that includes weka.jar.  

Taking the above advantages into account, we operated WEKA through the command line 

using the following options for the algorithm PART of class rules taken as an example:  

set classpath=%classpath%;C:\Archivos de programa\Weka-3-6\weka.jar 

set classpath=%classpath%;C:\Archivos de programa\Weka-3-6\rules.jar 

set classpath=%classpath%;C:\Archivos de programa\Weka-3-6\PART.jar 

java -Xmx1024m weka.classifiers.rules.PART -t training_set.arff -d part.model 

 

java -Xmx1024m weka.classifiers.rules.PART -l part.model -T test_set.arff -p 

0 >> result1.txt 2> $$1.tmp 

The first three lines of the above example show how CLASSPATH is set for WEKA and the 

chosen classifier in particular. The fourth line tells the classifier to learn on the training set and to 

save the model created for the training data in a file with the extension model. The last line 

commands the classifier to test the learnt model on the test set and save the results of prediction 



in a file. To preserve error messages of the classifier for further debug, the standard error stream 

(2>) can be directed to a file and saved in it.  

 



Chapter 7. Experimental Results  

7.1. Algorithm Performance Evaluation on the Training Set 

In Table 12, we present the main results obtained in our experiments. For each LF, we list three 

machine learning algorithms that have shown the best performance. The symbol # stands for the 

number of examples in the respective training set; P stands for precision, R stands for recall, F 

stands for F-measure. The baseline is explained in Section 7.1.1.  

Table 12. Best results showed by algorithms on the training set of lexical functions 

LF # Algorithm P R F Baseline 

BayesianLogisticRegression 0.879 0.866 0.873 

Id3 0.879 0.861 0.870 

Oper1 280 

SMO 0.862 0.866 0.864 

0.311 

JRip 0.747 0.705 0.725 

EnsembleSelection 0.744 0.659 0.699 

CausFunc0 

 

112 

REPTree 0.750  0.648 0.695  

0.124 

J48 0.842 0.696 0.762 

FilteredClassifier 0.842 0.696 0.762 

CausFunc1 90 

END 0.842 0.696 0.762 

0.100 

Prism 0.735 0.832 0.781 

BayesianLogisticRegression 0.788 0.553 0.650 

Real1 61 

SMO 0.722 0.553 0.627 

0.068 

BFTree 0.667 0.727 0.696 

Id3 0.571 0.727 0.640 

Func0 

 

25 

AttributeSelectedClassifier 0.636 0.636 0.636 

0.028 

PART   0.923   0.571     0.706       

AttributeSelectedClassifier 0.923    0.571 0.706     

Oper2 

 

30 

END 0.923  0.571  0.706      

0.033 

Prism   0.750  0.800   0.774  

NNge 0.923 0.600 0.727 

IncepOper1 

 

25 

SMO 0.813 0.650 0.722 

0.028 

SimpleLogistic 0.909 0.769  0.833  

DecisionTable 0.909   0.769  0.833 

ContOper1 

 

16 

AttributeSelectedClassifier 0.833   0.769 0.800  

0.018 

Prism 0.639 0.702 0.669 

BayesianLogisticRegression 0.658 0.629 0.643 

FWC 261 

SMO 0.656 0.623 0.639 

0.290 

Total:      900 Average best:      0.758    

 

7.1.1. Baseline 

Often, in classification experiments, the baseline is the performance of ZeroR classifier. ZeroR is 

a trivial algorithm that always predicts the majority class. It happens that the majority class in 

our training sets is always the class of negative instances. Even in the case of the LF which has 

the largest number of positive instances in the training set (280 positive examples of Oper1), the 

number of negative instances is still larger (900 – 280 = 620 negative examples of Oper1). 



Therefore, the ZeroR does not classify any test instances as positives, which gives always recall 

of 0 and undefined precision. Thus ZeroR is too bad a baseline to be considered. 

However, the baseline can be a random choice of a positive or a negative answer to the 

question “Is this collocation of this particular lexical function?” In such a case we deal with the 

probability of a positive and negative response. Since we are interested in only assigning the 

positive answer to a collocation, we calculate the probability of “yes” class for eight lexical 

functions in the experiments according to the formula: probability of “yes” = 1 / (the number of 

all examples / the number of positive examples of a given lexical function). These probabilities 

will be results of a classifier that assigns the class “yes” to collocations at random. Since we will 

compare the probabilities of the random choice with the results obtained in our experiments, we 

present the former as numbers within the range from 0 to 1 in Table 13 as well as in Table 12.  

Table 13. Probability of selecting “yes” class at random 

Lexical 

function 

Number 

of 

examples 

Probability 

of the class 

“yes” 

Oper1 280 0.311 

CausFunc0 112 0.124 

CausFunc1 90 0.100 

Real1 61 0.068 

Func0 25 0.028 

Oper2 30 0.033 

IncepOper1 25 0.028 

ContOper1 16 0.018 

FWC 261 0.290 

7.1.2. Three Best Machine Learning Algorithms for Each Lexical Function 

As it is seen from Table 12, no single classifier is the best one for detecting all LFs. For each LF, 

the highest result is achieved by a different classifier. However, Prism reaches the highest F-

score for both IncepOper1 and FWC, though recall that FWC (free word combinations) is not a 

lexical function but is considered as an independent class along with LFs. The maximum F-

measure of 0.873 is achieved by BayesianLogisticRegression classifier for Oper1. The lowest 

best F-measure of 0.669 is shown by Prism for FWC. The average F-measure (calculated over 

only the nine best results, one for each LF) is 0.758. 



We observed no correlation between the number of instances in the training set and the results 

obtained from the classifiers. For example, a low result is shown for the class FWC which has 

the largest number of positive examples. On the contrary, the second top result is achieved for 

LF ContOper1, with the smallest number of positive examples. The minimum F-measure is 

obtained for FWC whose number of positive examples (261) is a little less than the largest 

number of positive examples (Oper1 with 280 examples) but the detection of Oper1 was the best. 

For comparison, Table 14 gives the state of the art results reported in [Wanner et al. 2006] for 

LF classification using machine learning techniques. Out of nine LFs mentioned in [Wanner et 

al. 2006] we give in Table 14 only those five that we used in our experiments, i.e., that are 

represented in Table 12. The numbers of our results are rounded to include two figures after the 

point, since the results of [Wanner et al. 2006] are represented in this manner.  Also, as we have 

explained in Section 3.5.1 that [Wanner et al. 2006] reports the results for two different datasets: 

one for a narrow semantic field (that of emotions) and another for a field-independent (general) 

dataset. Since our dataset is also general, comparing them with a narrow-field dataset would not 

be fair, so in Table 14 we only give the field-independent figures from [Wanner et al. 2006]. 

Table 14. State of the art results for some LFs taken from [Wanner et al. 2006]  

NN NB ID3 TAN Our 
LF 

P R F P R F P R F P R F F 

Oper1 0.65 0.55 0.60 0.87 0.64 0.74 0.52 0.51 0.51 0.75 0.49 0.59 0.87 

Oper2 0.62 0.71 0.66 0.55 0.21 0.30 N/A 0.55 0.56 0.55 0.71 

ContOper1 N/A N/A 0.84 0.57 0.70 N/A 0.83 

CausFunc0 0.59 0.79 0.68 0.44 0.89 0.59 N/A 0.45 0.57 0.50 0.73 

Real1  0.58 0.44 0.50 0.58 0.37 0.45 N/A 0.78 0.36 0.49 0.78 

Best average: 0.66                                                                                       Average: 0.78 

 

Not all methods have been applied in [Wanner et al. 2006] for all LFs; if a method was not 

applied for a particular LF, the corresponding cells are marked as N/A. In this table, NN stands 

for the Nearest Neighbor technique, NB for Naïve Bayesian network, ID3 is a decision tree 

classification technique based on the ID3-algorithm, and TAN for the Tree-Augmented Network 

Classification technique; P, R, and F are as in Table 12. In fact [Wanner et al. 2006] did not give 

the value of F-measure, so we calculated it using the formula in Section 6.1. The last column 

repeats the best F-measure results from Table 12, for convenience of the reader. For each LF, the 

best result from [Wanner et al. 2006], as well as the overall best result (including our 

experiments), are marked in boldface.  

As seen from Table 14, for all LFs our experiments gave significantly higher figures than 

those reported in [Wanner et al. 2006]. The best average F-measure from [Wanner et al. 2006] is 

0.66, while our experiments demonstrate the best average F-measure of 0.75 (calculated from 

Table 12) and the average F-measure is 0.78. However, the comparison is not fair because 



different datasets have been used: the exact dataset used in [Wanner et al. 2006] is unfortunately 

not available anymore
1 
, ours is available from [LFs]. 

7.1.3. Algorithm Performance on the Training Set 

In Tables 15—23, we present the results of performance of 68 machine learning algorithms on 9 

training sets, i.e., one training set for each of 9 LFs chosen for the experiments. As in previous 

tables, P stands for precision, R stands for recall and F stand for F-measure. All algorithms are 

ranked by F-measure.  

Table 15. Algorithm performance ranked by F-measure on the training set for Oper1  

Algorithm  Precision Recall F-measure 

bayes.BayesianLogisticRegression             0.879 0.866 0.873 

trees.Id3                               0.879 0.861 0.870 

functions.SMO                               0.862 0.866 0.864 

trees.FT                                    0.858 0.866 0.862 

trees.LADTree                            0.873 0.851 0.862 

trees.SimpleCart                          0.873 0.851 0.862 

functions.SimpleLogistic                 0.872 0.847 0.859 

meta.ThresholdSelector                    0.835 0.876 0.855 

meta.EnsembleSelection                      0.871 0.837 0.854 

trees.BFTree                              0.871 0.837 0.854 

trees.ADTree                        0.859 0.847 0.853 

rules.JRip                                 0.859 0.842 0.850 

meta.AttributeSelectedClassifier           0.851 0.847 0.849 

meta.LogitBoost                              0.862 0.837 0.849 

meta.Bagging                             0.854 0.842 0.848 

functions.Logistic                          0.787 0.916 0.847 

meta.MultiClassClassifier                  0.787 0.916 0.847 

meta.END                             0.842 0.847 0.844 

meta.FilteredClassifier                     0.842 0.847 0.844 

meta.OrdinalClassClassifier              0.842 0.847 0.844 

rules.PART                                 0.857 0.832 0.844 

trees.J48                                  0.842 0.847 0.844 

trees.J48graft                          0.841 0.837 0.839 

rules.DecisionTable                         0.854 0.812 0.832 

trees.REPTree                                0.832 0.832 0.832 

meta.RotationForest                         0.850 0.812 0.830 

meta.ClassificationViaRegression            0.804 0.832 0.818 

rules.NNge                                  0.794 0.842 0.817 

rules.Ridor                             0.827 0.807 0.817 

meta.Decorate                                0.781 0.847 0.812 

functions.VotedPerceptron                 0.856 0.767 0.809 

meta.Dagging                           0.801 0.817 0.809 

meta.RandomCommittee                        0.742 0.827 0.782 

rules.Prism                              0.735 0.832 0.781 

trees.RandomForest                          0.735 0.822 0.776 

meta.RandomSubSpace                       0.913 0.624 0.741 

misc.VFI   0.764 0.688 0.724 

bayes.HNB                                    0.841 0.629 0.720 

bayes.BayesNet                               0.694 0.743 0.718 

bayes.WAODE 0.734 0.698 0.716 

                                                           
1 Personal communication with L. Wanner. 



bayes.AODE                                  0.757 0.678 0.715 

bayes.NaiveBayes                            0.742 0.683 0.711 

bayes.NaiveBayesSimple                      0.742 0.683 0.711 

bayes.NaiveBayesUpdateable                 0.742 0.683 0.711 

trees.RandomTree                           0.662 0.718 0.689 

functions.RBFNetwork                    0.758 0.619 0.681 

lazy.LWL     0.811 0.574 0.672 

bayes.AODEsr                                 0.691 0.599 0.642 

misc.HyperPipes                        0.583 0.693 0.633 

lazy.IB1                                     0.540 0.728 0.620 

lazy.IBk                                    0.519 0.757 0.616 

lazy.KStar                                   0.556 0.683 0.613 

meta.AdaBoostM1                             0.914 0.366 0.523 

functions.Winnow                            0.450 0.401 0.424 

meta.MultiBoostAB                           0.976 0.203 0.336 

rules.OneR                                   0.976 0.203 0.336 

trees.DecisionStump                        0.976 0.203 0.336 

rules.ConjunctiveRule                       0.857 0.208 0.335 

meta.ClassificationViaClustering           0.314 0.134 0.188 

functions.LibSVM                         0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 

Table 16. Algorithm performance ranked by F-measure on the training set for CausFunc0 

Algorithm  Precision Recall F-measure 

rules.JRip                                 0.747 0.705 0.725 

meta.EnsembleSelection                      0.744 0.659 0.699 

trees.REPTree                                0.750 0.648 0.695 

meta.ClassificationViaRegression            0.693 0.693 0.693 

trees.SimpleCart                          0.727 0.636 0.679 

trees.LADTree                            0.674 0.682 0.678 

trees.BFTree                              0.733 0.625 0.675 

meta.Bagging                             0.726 0.602 0.658 

functions.SMO                               0.675 0.614 0.643 

trees.ADTree                        0.718 0.580 0.642 

trees.FT                                    0.655 0.625 0.640 

rules.Ridor                             0.694 0.568 0.625 

meta.AttributeSelectedClassifier           0.746 0.534 0.623 

trees.Id3                               0.618 0.625 0.621 

meta.RotationForest                         0.712 0.534 0.610 

meta.END                             0.730 0.523 0.609 

meta.FilteredClassifier                     0.730 0.523 0.609 

meta.OrdinalClassClassifier              0.730 0.523 0.609 

trees.J48                                  0.730 0.523 0.609 

functions.Logistic                          0.552 0.659 0.601 

meta.MultiClassClassifier                  0.552 0.659 0.601 

rules.DecisionTable                         0.653 0.557 0.601 

rules.Prism                              0.577 0.612 0.594 

bayes.BayesianLogisticRegression             0.662 0.534 0.591 

meta.Decorate                                0.602 0.568 0.585 

functions.SimpleLogistic                 0.672 0.511 0.581 

rules.PART                                 0.605 0.557 0.580 

meta.RandomCommittee                        0.630 0.523 0.571 

trees.RandomForest                          0.677 0.477 0.560 



meta.LogitBoost                              0.702 0.455 0.552 

rules.NNge                                  0.595 0.500 0.543 

meta.ThresholdSelector                    0.597 0.489 0.538 

trees.J48graft                          0.745 0.398 0.519 

bayes.BayesNet                               0.537 0.500 0.518 

misc.VFI   0.443 0.580 0.502 

functions.VotedPerceptron                 0.614 0.398 0.483 

meta.Dagging                           0.784 0.330 0.464 

misc.HyperPipes                        0.395 0.557 0.462 

bayes.WAODE 0.690 0.330 0.446 

trees.RandomTree                           0.507 0.398 0.446 

lazy.KStar                                   0.485 0.364 0.416 

bayes.AODEsr                                 0.365 0.477 0.414 

lazy.IBk                                    0.452 0.375 0.410 

meta.RandomSubSpace                       0.735 0.284 0.410 

lazy.IB1                                     0.468 0.330 0.387 

rules.OneR                                   0.697 0.261 0.380 

bayes.NaiveBayes                            0.621 0.205 0.308 

bayes.NaiveBayesSimple                      0.621 0.205 0.308 

bayes.NaiveBayesUpdateable                 0.621 0.205 0.308 

bayes.AODE                                  0.824 0.159 0.267 

functions.Winnow                            0.217 0.341 0.265 

functions.RBFNetwork                    0.625 0.114 0.192 

bayes.HNB                                    0.571 0.091 0.157 

meta.ClassificationViaClustering           0.092 0.091 0.091 

meta.AdaBoostM1                             0.500 0.011 0.022 

functions.LibSVM                         0 0 0 

lazy.LWL     0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Grading                                 0 0 0 

meta.MultiBoostAB                           0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ConjunctiveRule                       0 0 0 

rules.ZeroR   0 0 0 

trees.DecisionStump                        0 0 0 

Table 17. Algorithm performance ranked by F-measure on the training set for CausFunc1  
Algorithm  Precision Recall F-measure 

trees.J48                                  0.842 0.696 0.762 

meta.FilteredClassifier                     0.842 0.696 0.762 

meta.END                             0.842 0.696 0.762 

meta.OrdinalClassClassifier              0.842 0.696 0.762 

functions.SimpleLogistic                 0.828 0.696 0.756 

meta.LogitBoost                              0.828 0.696 0.756 

meta.AttributeSelectedClassifier           0.774 0.696 0.733 

rules.DecisionTable                         0.833 0.652 0.732 

rules.JRip                                 0.783 0.681 0.729 

trees.FT                                    0.742 0.710 0.726 

trees.LADTree                            0.818 0.652 0.726 

trees.SimpleCart                          0.804 0.652 0.72 

trees.BFTree                              0.811 0.623 0.705 

trees.Id3                               0.700 0.710 0.705 

rules.NNge                                  0.742 0.667 0.702 

rules.PART                                 0.696 0.696 0.696 

trees.REPTree                                0.808 0.609 0.694 

trees.J48graft                          0.851 0.580 0.690 

meta.Bagging                             0.792 0.609 0.689 



bayes.BayesianLogisticRegression             0.726 0.652 0.687 

meta.RotationForest                         0.833 0.58 0.684 

rules.Ridor                             0.804 0.594 0.683 

functions.SMO                               0.697 0.667 0.681 

meta.Dagging                           0.800 0.580 0.672 

functions.VotedPerceptron                 0.769 0.580 0.661 

lazy.LWL     0.796 0.565 0.661 

meta.AdaBoostM1                             0.796 0.565 0.661 

meta.MultiBoostAB                           0.796 0.565 0.661 

rules.ConjunctiveRule                       0.796 0.565 0.661 

rules.OneR                                   0.796 0.565 0.661 

trees.ADTree                        0.796 0.565 0.661 

trees.DecisionStump                        0.796 0.565 0.661 

meta.EnsembleSelection                      0.78 0.565 0.655 

rules.Prism                              0.612 0.695 0.651 

meta.ClassificationViaRegression            0.741 0.580 0.650 

meta.Decorate                                0.571 0.696 0.627 

trees.RandomForest                          0.720 0.522 0.605 

meta.RandomCommittee                        0.615 0.580 0.597 

lazy.IBk                                    0.500 0.493 0.496 

trees.RandomTree                           0.452 0.478 0.465 

lazy.IB1                                     0.492 0.435 0.462 

bayes.WAODE 0.632 0.348 0.449 

lazy.KStar                                   0.483 0.406 0.441 

meta.ThresholdSelector                    0.329 0.667 0.440 

meta.RandomSubSpace                       0.778 0.304 0.438 

functions.Logistic                          0.306 0.696 0.425 

meta.MultiClassClassifier                  0.306 0.696 0.425 

bayes.BayesNet                               0.438 0.406 0.421 

bayes.AODEsr                                 0.375 0.478 0.42 

misc.VFI   0.343 0.507 0.409 

misc.HyperPipes                        0.286 0.522 0.369 

functions.RBFNetwork                    0.462 0.174 0.253 

functions.Winnow                            0.163 0.348 0.222 

meta.ClassificationViaClustering           0.081 0.087 0.084 

bayes.AODE                                  0.429 0.043 0.079 

bayes.HNB                                    0.429 0.043 0.079 

bayes.NaiveBayes                            0.333 0.043 0.077 

bayes.NaiveBayesSimple                      0.333 0.043 0.077 

bayes.NaiveBayesUpdateable                 0.333 0.043 0.077 

functions.LibSVM                         0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 

Table 18. Algorithm performance ranked by F-measure on the training set for Real1  

Algorithm Precision Recall F-measure 

rules.Prism                              0.735 0.832 0.781 

bayes.BayesianLogisticRegression             0.788 0.553 0.650 

functions.SMO                               0.722 0.553 0.627 

trees.FT                                    0.650 0.553 0.598 

rules.NNge                                  0.614 0.574 0.593 

trees.Id3                               0.600 0.574 0.587 

trees.LADTree                            0.733 0.468 0.571 

meta.LogitBoost                              0.833 0.426 0.563 



rules.DecisionTable                         0.750 0.447 0.560 

rules.JRip                                 0.750 0.447 0.560 

functions.SimpleLogistic                 0.864 0.404 0.551 

trees.J48graft                          0.864 0.404 0.551 

trees.BFTree                              0.769 0.426 0.548 

functions.Logistic                          0.440 0.702 0.541 

meta.MultiClassClassifier                  0.440 0.702 0.541 

rules.PART                                 0.677 0.447 0.538 

meta.END                             0.714 0.426 0.533 

meta.FilteredClassifier                     0.714 0.426 0.533 

meta.OrdinalClassClassifier              0.714 0.426 0.533 

trees.J48                                  0.714 0.426 0.533 

trees.SimpleCart                          0.714 0.426 0.533 

meta.Bagging                             0.857 0.383 0.529 

misc.VFI   0.473 0.553 0.510 

trees.ADTree                        0.679 0.404 0.507 

meta.AttributeSelectedClassifier           0.588 0.426 0.494 

meta.RandomCommittee                        0.613 0.404 0.487 

meta.Decorate                                0.453 0.511 0.480 

meta.ThresholdSelector                    0.409 0.000 0.478 

trees.RandomForest                          0.600 0.383 0.468 

misc.HyperPipes                        0.488 0.447 0.467 

meta.EnsembleSelection                      0.727 0.340 0.464 

trees.REPTree                                0.667 0.340 0.451 

meta.RotationForest                         0.778 0.298   0.431 

meta.ClassificationViaRegression     0.486 0.362 0.415 

rules.Ridor                             0.813 0.277 0.413 

lazy.LWL     0.636 0.298 0.406 

meta.AdaBoostM1                             0.636 0.298 0.406 

meta.MultiBoostAB                           0.636 0.298 0.406 

rules.ConjunctiveRule                       0.636 0.298 0.406 

trees.DecisionStump                        0.636 0.298 0.406 

lazy.KStar                                   0.436 0.362 0.395 

lazy.IBk                                    0.367 0.383 0.375 

trees.RandomTree                           0.367 0.383 0.375 

lazy.IB1                                     0.390 0.340 0.364 

meta.RandomSubSpace                       0.889 0.170 0.286 

bayes.BayesNet                               0.357 0.213 0.267 

functions.Winnow                            0.211 0.340 0.260 

bayes.AODEsr                                 0.211 0.319 0.254 

functions.VotedPerceptron                 0.467 0.149 0.226 

rules.OneR                                   0.500 0.128 0.203 

bayes.WAODE 0.571 0.085 0.148 

meta.ClassificationViaClustering           0.071 0.106 0.085 

bayes.NaiveBayes                            0.333 0.021 0.040 

bayes.NaiveBayesSimple                      0.333 0.021 0.040 

bayes.NaiveBayesUpdateable                 0.333 0.021 0.040 

bayes.AODE                                  0 0 0 

bayes.HNB                                    0 0 0 

functions.LibSVM                         0 0 0 

functions.RBFNetwork                    0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Dagging                           0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 



Table 19. Algorithm performance ranked by F-measure on the training set for Func0  

Algorithm  Precision Recall F-measure 

trees.BFTree                              0.667 0.727 0.696 

trees.Id3                               0.571 0.727 0.640 

meta.AttributeSelectedClassifier           0.636 0.636 0.636 

meta.END                             0.636 0.636 0.636 

meta.FilteredClassifier                     0.636 0.636 0.636 

meta.OrdinalClassClassifier              0.636 0.636 0.636 

misc.HyperPipes                        0.636 0.636 0.636 

trees.J48                                  0.636 0.636 0.636 

lazy.LWL     0.750 0.545 0.632 

meta.AdaBoostM1                             0.750 0.545 0.632 

meta.LogitBoost                              0.750 0.545 0.632 

rules.OneR                                   0.750 0.545 0.632 

trees.DecisionStump                        0.750 0.545 0.632 

misc.VFI   0.583 0.636 0.609 

bayes.BayesianLogisticRegression             0.667 0.545 0.600 

meta.ClassificationViaRegression            0.667 0.545 0.600 

rules.JRip                                 0.667 0.545 0.600 

trees.ADTree                        0.667 0.545 0.600 

meta.MultiBoostAB                           0.833 0.455 0.588 

functions.SMO                               0.538 0.636 0.583 

trees.LADTree                            0.538 0.636 0.583 

rules.DecisionTable                         0.600 0.545 0.571 

rules.PART                                 0.600 0.545 0.571 

meta.RotationForest                         0.714 0.455 0.556 

rules.Ridor                             0.545 0.545 0.545 

functions.SimpleLogistic                 0.625 0.455 0.526 

trees.SimpleCart                          0.625 0.455 0.526 

rules.NNge                                  0.500 0.545 0.522 

trees.FT                                    0.667 0.364 0.471 

trees.J48graft                          0.667 0.364 0.471 

functions.Logistic                          0.368 0.636 0.467 

meta.MultiClassClassifier                  0.368 0.636 0.467 

rules.Prism                              0.364 0.571 0.444 

trees.RandomTree                           0.375 0.545 0.444 

lazy.IBk                                    0.333 0.455 0.385 

meta.Bagging                             0.600 0.273 0.375 

meta.EnsembleSelection                      0.600 0.273 0.375 

trees.REPTree                                0.600 0.273 0.375 

meta.RandomCommittee                        0.500 0.273 0.353 

lazy.IB1                                     0.333 0.364 0.348 

meta.ThresholdSelector                    0.308 0.364 0.333 

trees.RandomForest                          0.429 0.273 0.333 

lazy.KStar                                   0.300 0.273 0.286 

functions.RBFNetwork                    0.500 0.182 0.267 

bayes.AODEsr                                 0.120 0.545 0.197 

functions.VotedPerceptron                 1.000 0.091 0.167 

meta.RandomSubSpace                       1.000 0.091 0.167 

rules.ConjunctiveRule                       1.000 0.091 0.167 

meta.Decorate                                0.103 0.273 0.150 

functions.Winnow                            0.048 0.091 0.063 

bayes.AODE                                  0 0 0 

bayes.BayesNet                               0 0 0 

bayes.HNB                                    0 0 0 

bayes.NaiveBayes                            0 0 0 

bayes.NaiveBayesSimple                      0 0 0 

bayes.NaiveBayesUpdateable                 0 0 0 

bayes.WAODE 0 0 0 

functions.LibSVM                         0 0 0 



meta.ClassificationViaClustering           0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Dagging                           0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 

Table 20. Algorithm performance ranked by F-measure on the training set for Oper2 

Algorithm  Precision Recall F-measure 

rules.PART                                 0.923 0.571 0.706 

meta.AttributeSelectedClassifier           0.923 0.571 0.706 

meta.END                             0.923 0.571 0.706 

meta.FilteredClassifier                     0.923 0.571 0.706 

meta.OrdinalClassClassifier              0.923 0.571 0.706 

trees.J48                                  0.923 0.571 0.706 

meta.LogitBoost                              0.857 0.571 0.686 

meta.RandomCommittee                        0.722 0.619 0.667 

trees.LADTree                            0.667 0.667 0.667 

rules.JRip                                 0.786 0.524 0.629 

trees.SimpleCart                          0.909 0.476 0.625 

trees.FT                                    0.667 0.571 0.615 

trees.BFTree                              0.733 0.524 0.611 

bayes.BayesianLogisticRegression             0.632 0.571 0.600 

rules.NNge                                  0.632 0.571 0.600 

functions.SMO                               0.688 0.524 0.595 

rules.Prism                              0.545 0.632 0.585 

functions.SimpleLogistic                 0.900 0.429 0.581 

meta.EnsembleSelection                      0.900 0.429 0.581 

rules.DecisionTable                         0.900 0.429 0.581 

rules.OneR                                   0.900 0.429 0.581 

trees.J48graft                          0.900 0.429 0.581 

trees.REPTree                                0.900 0.429 0.581 

trees.Id3                               0.542 0.619 0.578 

meta.ClassificationViaRegression            0.714 0.476 0.571 

trees.ADTree                        0.714 0.476 0.571 

meta.Bagging                             0.818 0.429 0.563 

functions.VotedPerceptron                 0.889 0.381 0.533 

rules.Ridor                             0.692 0.429 0.529 

meta.RotationForest                         0.727 0.381 0.500 

lazy.KStar                                   0.476 0.476 0.476 

trees.RandomTree                           0.407 0.524 0.458 

meta.RandomSubSpace                       0.857 0.286 0.429 

lazy.IBk                                    0.370 0.476 0.417 

trees.RandomForest                          0.538 0.333 0.412 

meta.ThresholdSelector                    0.333 0.524 0.407 

functions.Logistic                          0.302 0.619 0.406 

meta.MultiClassClassifier                  0.302 0.619 0.406 

misc.HyperPipes                        0.323 0.476 0.385 

misc.VFI   0.303 0.476 0.370 

bayes.AODEsr                                 0.245 0.571 0.343 

meta.Decorate                                0.256 0.476 0.333 

lazy.IB1                                     0.286 0.381 0.327 

meta.Dagging                           1.000 0.190 0.320 

meta.MultiBoostAB                           0.667 0.095 0.167 

functions.Winnow                            0.067 0.143 0.091 

rules.ConjunctiveRule                       1.000 0.048 0.091 



meta.AdaBoostM1                             0.500 0.048 0.087 

trees.DecisionStump                        0.500 0.048 0.087 

lazy.LWL     0.333 0.048 0.083 

meta.ClassificationViaClustering           0.050 0.095 0.066 

bayes.AODE                                  0 0 0 

bayes.BayesNet                               0 0 0 

bayes.HNB                                    0 0 0 

bayes.NaiveBayes                            0 0 0 

bayes.NaiveBayesSimple                      0 0 0 

bayes.NaiveBayesUpdateable                 0 0 0 

bayes.WAODE 0 0 0 

functions.LibSVM                         0 0 0 

functions.RBFNetwork                    0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 

Table 21. Algorithm performance ranked by F-measure on the training set for IncepOper1 

Algorithm  Precision Recall F-measure 

rules.Prism                              0.750 0.800 0.774 

rules.NNge                                  0.923 0.600 0.727 

functions.SMO                               0.813 0.650 0.722 

functions.SimpleLogistic                 0.857 0.600 0.706 

bayes.BayesianLogisticRegression             0.917 0.550 0.687 

trees.LADTree                            0.917 0.550 0.687 

trees.Id3                               0.846 0.550 0.667 

trees.FT                                    0.786 0.550 0.647 

misc.VFI   0.733 0.550 0.629 

meta.LogitBoost                              0.769 0.500 0.606 

meta.RandomCommittee                        0.818 0.450 0.581 

meta.AttributeSelectedClassifier           0.667 0.500 0.571 

meta.END                             0.667 0.500 0.571 

meta.FilteredClassifier                     0.667 0.500 0.571 

meta.OrdinalClassClassifier              0.667 0.500 0.571 

rules.DecisionTable                         0.667 0.500 0.571 

trees.BFTree                              0.667 0.500 0.571 

trees.J48                                  0.667 0.500 0.571 

rules.JRip                                 0.625 0.500 0.556 

trees.RandomForest                          0.889 0.400 0.552 

trees.ADTree                        0.692 0.450 0.545 

rules.PART                                 0.556 0.500 0.526 

lazy.LWL     0.727 0.400 0.516 

trees.SimpleCart                          0.727 0.400 0.516 

trees.RandomTree                           0.600 0.450 0.514 

meta.RandomSubSpace                       0.778 0.350 0.483 

trees.REPTree                                0.700 0.350 0.467 

misc.HyperPipes                        0.636 0.350 0.452 

meta.Decorate                                0.343 0.600 0.436 

lazy.KStar                                   0.750 0.300 0.429 

functions.Logistic                          0.324 0.600 0.421 

meta.MultiClassClassifier                  0.324 0.600 0.421 

lazy.IBk                                    0.600 0.300 0.400 

meta.RotationForest                         0.714 0.250 0.370 

functions.VotedPerceptron                 0.625 0.250 0.357 

lazy.IB1                                     0.625 0.250 0.357 



trees.J48graft                          0.625 0.250 0.357 

meta.ThresholdSelector                    0.296 0.400 0.340 

rules.Ridor                             0.500 0.250 0.333 

bayes.AODEsr                                 0.233 0.500 0.317 

meta.ClassificationViaRegression            0.571 0.200 0.296 

meta.Bagging                             0.600 0.150 0.240 

meta.AdaBoostM1                             0.500 0.100 0.167 

meta.MultiBoostAB                           0.500 0.100 0.167 

rules.OneR                                   0.500 0.100 0.167 

trees.DecisionStump                        0.500 0.100 0.167 

meta.EnsembleSelection                      0.400 0.100 0.160 

rules.ConjunctiveRule                       0.500 0.050 0.091 

meta.ClassificationViaClustering           0.016 0.050 0.024 

bayes.AODE                                  0 0 0 

bayes.BayesNet                               0 0 0 

bayes.HNB                                    0 0 0 

bayes.NaiveBayes                            0 0 0 

bayes.NaiveBayesSimple                      0 0 0 

bayes.NaiveBayesUpdateable                 0 0 0 

bayes.WAODE 0 0 0 

functions.LibSVM                         0 0 0 

functions.RBFNetwork                    0 0 0 

functions.Winnow                            0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Dagging                           0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 

Table 22. Algorithm performance ranked by F-measure on the training set for ContOper1 

Algorithm  Precision Recall F-measure 

functions.SimpleLogistic                 0.909 0.769 0.833 

rules.DecisionTable                         0.909 0.769 0.833 

meta.AttributeSelectedClassifier           0.833 0.769 0.800 

meta.END                             0.833 0.769 0.800 

meta.FilteredClassifier                     0.833 0.769 0.800 

meta.OrdinalClassClassifier              0.833 0.769 0.800 

rules.JRip                                 0.833 0.769 0.800 

rules.PART                                 0.833 0.769 0.800 

trees.BFTree                              0.833 0.769 0.800 

trees.J48                                  0.833 0.769 0.800 

trees.SimpleCart                          0.833 0.769 0.800 

functions.Logistic                          0.733 0.846 0.786 

meta.MultiClassClassifier                  0.733 0.846 0.786 

meta.Bagging                             0.900 0.692 0.783 

rules.Prism                              0.750 0.818 0.783 

rules.Ridor                             0.90 0.692 0.783 

functions.SMO                               0.818 0.692 0.750 

meta.LogitBoost                              0.818 0.692 0.750 

rules.NNge                                  0.818 0.692 0.750 

trees.FT                                    0.818 0.692 0.750 

trees.Id3                               0.818 0.692 0.750 

trees.LADTree                            0.818 0.692 0.750 

meta.EnsembleSelection                      0.889 0.615 0.727 

meta.RandomSubSpace                       0.889 0.615 0.727 

lazy.LWL     0.800 0.615 0.696 



trees.ADTree                        0.800 0.615 0.696 

trees.REPTree                                0.800 0.615 0.696 

bayes.BayesianLogisticRegression          0.778 0.538 0.636 

meta.ClassificationViaRegression            0.857 0.462 0.600 

meta.MultiBoostAB                           0.857 0.462 0.600 

rules.OneR                                   0.857 0.462 0.600 

trees.DecisionStump                        0.857 0.462 0.600 

trees.RandomForest                          0.857 0.462 0.600 

functions.VotedPerceptron                 0.750 0.462 0.571 

meta.RandomCommittee                        0.750 0.462 0.571 

meta.AdaBoostM1                             0.833 0.385 0.526 

meta.RotationForest                         0.833 0.385 0.526 

meta.ThresholdSelector                    0.714 0.385 0.500 

trees.J48graft                          0.714 0.385 0.500 

lazy.IBk                                    0.625 0.385 0.476 

meta.Decorate                                0.345 0.769 0.476 

trees.RandomTree                           0.556 0.385 0.455 

lazy.KStar                                   0.667 0.308 0.421 

rules.ConjunctiveRule                       1.000 0.231 0.375 

lazy.IB1                                     0.600 0.231 0.333 

misc.VFI   0.227 0.385 0.286 

bayes.AODEsr                                 0.143 0.538 0.226 

misc.HyperPipes                        0.150 0.231 0.182 

meta.Dagging                           0.500 0.077 0.133 

functions.RBFNetwork                    0.333 0.077 0.125 

functions.Winnow                            0.095 0.154 0.118 

bayes.AODE                                  0 0 0 

bayes.BayesNet                               0 0 0 

bayes.HNB                                    0 0 0 

bayes.NaiveBayes                            0 0 0 

bayes.NaiveBayesSimple                      0 0 0 

bayes.NaiveBayesUpdateable                 0 0 0 

bayes.WAODE 0 0 0 

functions.LibSVM                         0 0 0 

meta.ClassificationViaClustering           0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 

Table 23. Algorithm performance ranked by F-measure on the training set for FWC 

Algorithm  Precision Recall F-measure 

rules.Prism                              0.639 0.702 0.669 

bayes.BayesianLogisticRegression             0.658 0.629 0.643 

functions.SMO                               0.656 0.623 0.639 

bayes.BayesNet                               0.609 0.667 0.637 

meta.RandomCommittee                        0.639 0.635 0.637 

trees.Id3                               0.627 0.635 0.631 

trees.FT                                    0.642 0.610 0.626 

meta.Decorate                                0.627 0.591 0.608 

misc.VFI   0.542 0.692 0.608 

rules.NNge                                  0.628 0.585 0.606 

bayes.WAODE 0.634 0.579 0.605 

lazy.IBk                                    0.577 0.635 0.605 

meta.RotationForest                         0.701 0.516 0.594 

trees.RandomForest                          0.625 0.566 0.594 



trees.RandomTree                           0.611 0.572 0.591 

trees.LADTree                            0.608 0.566 0.586 

lazy.KStar                                   0.599 0.572 0.585 

lazy.IB1                                     0.571 0.585 0.578 

meta.EnsembleSelection                      0.731 0.478 0.578 

trees.ADTree                        0.636 0.528 0.577 

meta.Bagging                             0.700 0.484 0.572 

trees.REPTree                                0.607 0.535 0.569 

functions.SimpleLogistic                 0.718 0.465 0.565 

meta.ClassificationViaRegression            0.612 0.516 0.560 

trees.BFTree                              0.688 0.472 0.560 

bayes.AODEsr                                 0.525 0.597 0.559 

rules.PART                                 0.609 0.509 0.555 

functions.VotedPerceptron                 0.627 0.497 0.554 

trees.SimpleCart                          0.622 0.497 0.552 

bayes.NaiveBayes                            0.626 0.484 0.546 

bayes.NaiveBayesSimple                      0.626 0.484 0.546 

bayes.NaiveBayesUpdateable                 0.626 0.484 0.546 

rules.DecisionTable                         0.626 0.484 0.546 

bayes.AODE                                  0.647 0.472 0.545 

misc.HyperPipes                        0.440 0.711 0.543 

meta.Dagging                           0.719 0.434 0.541 

rules.JRip                                 0.610 0.472 0.532 

functions.Logistic                          0.449 0.560 0.499 

meta.MultiClassClassifier                  0.449 0.560 0.499 

meta.ThresholdSelector                    0.435 0.585 0.499 

functions.RBFNetwork                    0.625 0.409 0.494 

meta.END                             0.714 0.377 0.494 

meta.FilteredClassifier                     0.714 0.377 0.494 

meta.OrdinalClassClassifier              0.714 0.377 0.494 

meta.RandomSubSpace                       0.714 0.377 0.494 

trees.J48                                  0.714 0.377 0.494 

meta.AttributeSelectedClassifier           0.687 0.358 0.471 

trees.J48graft                          0.746 0.333 0.461 

lazy.LWL     0.557 0.371 0.445 

bayes.HNB                                    0.718 0.321 0.443 

rules.Ridor                             0.654 0.321 0.430 

meta.AdaBoostM1                             0.581 0.340 0.429 

trees.DecisionStump                        0.550 0.346 0.425 

meta.MultiBoostAB                           0.552 0.333 0.416 

functions.Winnow                            0.374 0.447 0.407 

meta.LogitBoost                              0.638 0.277 0.386 

rules.ConjunctiveRule                       0.551 0.239 0.333 

rules.OneR                                   0.419 0.164 0.235 

meta.ClassificationViaClustering           0.188 0.132 0.155 

functions.LibSVM                         0 0 0 

meta.CVParameterSelection                 0 0 0 

meta.Grading                                 0 0 0 

meta.MultiScheme                           0 0 0 

meta.RacedIncrementalLogitBoost    0 0 0 

meta.Stacking                                0 0 0 

meta.StackingC                            0 0 0 

meta.Vote         0 0 0 

rules.ZeroR   0 0 0 



 7.1.4. Analysis of the Results 

� Three Hypothesis in [Wanner et al. 2006] and Our Results 

In Section 3.5.3, we have mentioned three hypotheses expressed in [Wanner et al. 2006]. 

These hypotheses are three possible methods of how humans recognize and learn collocations. 

Now we formulate these three hypothetic methods and comment them using our results.  

Method 1. Collocations can be recognized by their similarity to the prototypical sample of 

each collocational type; this was modeled by Nearest Neighbor technique. WEKA implements 

the nearest neighbor method in the following classifiers: NNge, IB1, IBk and KStar [Witten and 

Frank, 2005]. NNge belongs to the class rules; classifiers of this type are effective on large 

data sets, and our training sets include many examples (900) and possess high dimensionality. 

NNge is an algorithm that generalizes examples without nesting or overlap. NNge is an 

extension of Nge, which performs generalization by merging examples exemplars, forming 

hyper-rectangles in feature space that represent conjunctive rules with internal disjunction. NNge 

forms a generalization each time a new example is added to the database, by joining it to its 

nearest neighbor of the same class. Unlike Nge, it does not allow hyper-rectangles to nest or 

overlap. This is prevented by testing each prospective new generalization to ensure that it does 

not cover any negative examples, and by modifying any generalizations that are later found to do 

so. NNge adopts a heuristic that performs this post-processing in a uniform fashion. The more 

details about this algorithm can be found in [Roy 2002].  

In spite of its advantages, NNge does no perform very well on predicting LFs. The only LF 

which NNge predicts well is IncepOper1 with the meaning ‘to begin doing something’ (F-

measure of 0.727). For the rest 8 LFs NNge does not show high results: for Oper1 the value of F-

measure is 0.817, for ContOper1 it is 0.750, for CausFunc1 the value of F-measure is 0.702, for 

FWC it is 0.606, for Oper2 it is 0.600, for Real1 it is 0.593, for CausFunc0 it is 0.543, for Func0 it 

is 0.522. The average F-measure for all nine LFs is 0.651.  

Classifiers IB1, IBk and KStar, also based on the nearest neighbor algorithm, belong to the 

class lazy. It means that their learning time is very short, in fact learning in its full sense does not 

take place in these algorithms. An unseen example is compared with all instances annotated with 

LFs, and the LF whose instance is closer to the unseen example, is assigned  to the latter. On our 

training sets, IB1, IBk and KStar show worse performance than NNge. Here we give average 

values of F-measure for IB1, IBk and KStar. The average value of F-measure for Oper1 is 0.616, 

for FWC it is 0.589, for CausFunc1 it is 0.466, for ContOper1 it is 0.410, for Oper2 it is 0.407, for 

CausFunc0 it is 0.404, for IncepOper1 it is 0.395, for Real1 it is 0.378, for Func0 it is 0.340. The 



average F-measure for all nine LFs is 0.445.  It means that it is difficult to find a very distinctive 

prototypical LF instance that could indeed distinguish the meaning of a particular LF.  

IncepOper1 is an exception here, and the distance between the examples of IncepOper1 and the 

examples of all the rest of LF is significantly bigger that the distance between the examples of 

IncepOper1. But for 8 LFs, our results demonstrate that Method 1 does not produce high quality 

results. 

Method 2. Collocations can be recognized by similarity of semantic features of collocational 

elements to semantic features of elements of collocations known to belong to a specific LF; this 

was modeled by Naïve Bayesian network and a decision tree classification technique based on 

the ID3-algorithm. We tested three WEKA Naïve Bayesian classifiers – NaiveBayes, 

NaiveBayesSimple, and NaiveBayesUpdateable [Witten and Frank, 2005]. All three classifiers 

show low results for Oper1 (F-measure of 0.711), FWC (F-measure of 0.546), CausFunc0 (F-

measure of 0.308), CausFunc1 (F-measure of 0.077), Real1 (F-measure of 0.040). These three 

Bayesian classifiers failed to predict Func0, Oper2, IncepOper1, ContOper1; their result for these 

LFs is 0.  Bayesian classifiers are based on the assumption that attributes used to represent data 

are independent. As the results show, this is not the case with our training sets. Indeed, the 

features used to represent verb-noun combinations are hyperonyms of the verb and hyperonyms 

of the noun. Hyperonyms are organized in a hierarchy, and are placed in a fixed order in the 

branches of their taxonomy, so that the position of each hyperonym depends on the location of 

other hyperonyms in the same branch. Moreover, it seems that in verb-noun pairs, the verb 

depends on the noun since they both form a collocation but not a free word combination where 

there is no lexical dependency between the constituents. These are the reasons why Bayesian 

algorithms perform poorly on LFs. Since Bayesian methods intent to model human recognition 

of collocational relations, it can be concluded, that our results for Bayesian classifiers do not 

support the hypothesis of learning collocations by similarity of semantic features of collocational 

elements to semantic features of elements of collocations known to belong to a specific LF. 

Now let is consider another machine learning algorithm that model the same method of 

collocation recognition, ID3 algorithm. This algorithm is implemented in WEKA as Id3 

classifier of the class trees.  It shows the top result for CausFunc1 as compared with the 

performance of the other classifiers for predicting the same LF, (F-measure of 0.762), the second 

best result for predicting Oper1 (F-measure of 0.870), another second best result for ContOper1 

(F-measure of 0.800). For Oper2 the value of F-measure is 0.706, for IncepOper1 it is 0.667, for 

Func1 the value of F-measure is 0.636, for FWC it is 0.631, for CausFunc0 the value of F-

measure is 0.621, for Real1 it is 0.587. The average F-measure for all nine LFs is 0.698. This 



classifier gives average results close to the results of NNge of Method 1 but which still are rather 

low. However, for Oper1 and ContOper1 the results are quite satisfactory. It means that the 

semantic features of these two lexical function which in our case are hyperonyms, distinguish 

sufficiently well these two lexical functions from the rest seven LFs.  

Method 3. The third method was modeled by Tree-Augmented Network (TAN) Classification 

technique. As it is seen from results in [Wanner et al. 2006] demonstrated in Table 5, the nearest 

neighbor algorithm gives better results in terms of recall than TAN. So it can be concluded that 

there are more evidence in favor of Method 2 than Method 3. We did not apply TAN method in 

our experiments.     

� Best Machine Learning Algorithms  

Now we consider the best algorithm for each LF chosen for our experiments.  

Oper1: the Best Algorithm is BayesianLogisticRegression  

For Oper1, BayesianLogisticRegression has shown precision of 0.879, recall of 0.866, and F-

measure of 0.873.  

Logistic Regression is an approach to learning functions of the form f : X → Y, or P(Y|X) in 

the case where Y is discrete-valued, and X = {X1 ...Xn} is any vector containing discrete or 

continuous variables. In the case of our training data, the variables are discrete. X is a variable 

for the attributes, and Y is a Boolean variable which corresponds to the class attribute in the 

training set. Logistic Regression assumes a parametric form for the distribution P(Y|X), then 

directly estimates its parameters from the training data. Logistic Regression is trained to choose 

parameter values that maximize the conditional data likelihood. The conditional data likelihood 

is the probability of the observed Y values in the training data, conditioned on their 

corresponding X values. 

CausFunc0: the Best Algorithm is JRip 

For CausFunc0, JRip has shown precision of 0.747, recall of 0.705, and F-measure of 0.725.  

JRip (Extended Repeated Incremental Pruning) implements a propositional rule learner, 

“Repeated Incremental Pruning to Produce Error Reduction” (RIPPER), as proposed in [Cohen 

1995]. JRip is a rule learner alike in principle to the commercial rule learner RIPPER.  

CausFunc1: the Best Algorithm is J48 

For CausFunc1, J48 has shown precision of 0.842, recall of 0.696, and F-measure of 0.762.  



J48 is a rule base classifier algorithm that generates C4.5 decision trees. J48 is the C4.5 clone 

implemented in the WEKA data mining library. In its turn, C4.5 implements ID3 algorithm. The 

basic ideas behind ID3 are the following. Firstly, in the decision tree each node corresponds to a 

non-categorical attribute and each arc to a possible value of that attribute. A leaf of the tree 

specifies the expected value of the categorical attribute for the records described by the path 

from the root to that leaf. Secondly, in the decision tree at each node should be associated the 

non-categorical attribute which is most informative among the attributes not yet considered in 

the path from the root.  Thirdly, entropy is used to measure how informative is a node. C4.5 is an 

extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning 

of decision trees, rule derivation, etc. 

Real1: the Best Algorithm is Prism  

For Real1, Prism has shown precision of 0.735, recall of 0.832, and F-measure of 0.781.  

Prism is a rule based classification algorithms It is based on the inductive rule learning and 

uses separate-and-conquer strategy. It means, that a rule that works for many instances in the 

class is identified first, then the instances covered by this rule are excluded from the training set 

and the learning continues on the rest of the instances. These learners are efficient on large, noisy 

datasets. Our training sets included 900 instances represented as vectors of the size 1109 

attributes, and rule induction algorithms performed very well. 

Func0: the Best Algorithm is BFTree 

For Func0, BFTree has shown precision of 0.667, recall of 0.727, and F-measure of 0.696.  

BFTree is a best-first decision tree learner and it is a learning algorithm for supervised 

classification learning [19]. Best-first decision trees represent an alternative approach to standard 

decision tree techniques such as C4.5 algorithm since they expand nodes in best-first order 

instead of a fixed depth-first order. 

Oper2: the Best Algorithm is PART 

For Oper2, PART has shown precision of 0.923, recall of 0.571, and F-measure of 0.706.  

PART is a rule base classifier that generates partial decision trees rather that forming one 

whole decision tree in order to achieve the classification.  

IncepOper1: the Best Algorithm is Prism  

For IncepOper1, Prism has shown precision of 0.750, recall of 0.800, and F-measure of 0.774.  



Since Prism is also the best classifier for Real1, it has been described above. We remind, that 

for Real1, Prism has shown precision of 0.735, recall of 0.832, and F-measure of 0.781. 

IncepOper1 has the meaning ‘to begin doing what is designated by the noun, and Real1 means ‘to 

act according to the situation designated by the noun’. The meaning of IncepOper1is 

distinguished better because the semantic element ‘begin’ is very different from ‘act’ which is 

more general and has more resemblance with the meaning ‘perform’ (Oper1) or ‘cause to exist’ 

(CausFunc0, CausFunc1).    

ContOper1: the Best Algorithm is SimpleLogistic  

For ContOper1, SimpleLogistic has shown precision of 0.909, recall of 0.769, and F-measure of 

0.833.  

Simple logistic regression finds the equation that best predicts the value of the Y variable (in 

our case, the class attribute) for each value of the X variable (in our training data, values of 

attributes that represent hyperonyms). What makes logistic regression different from linear 

regression is that the Y variable is not directly measured; it is instead the probability of obtaining 

a particular value of a nominal variable. The algorithm calculates the probability of Y applying 

the likelihood ratio method. This method uses the difference between the probability of obtaining 

the observed results under the logistic model and the probability of obtaining the observed 

results in a model with no relationship between the independent and dependent variables.  

FWC: the Best Algorithm is Prism  

For FWC, Prism has shown precision of 0.639, recall of 0.702, and F-measure of 0.669.  

Since Prism is also the best classifier for Real1, it has been described above. Prism has the top 

result for IncepOper1 as well. Still, for free word combinations, Prism show weaker results that 

for predicting IncepOper1 and Real1. We remind that for IncepOper1, Prism has shown precision 

of 0.750, recall of 0.800, and F-measure of 0.774; and for Real1, this algorithm has shown 

precision of 0.735, recall of 0.832, and F-measure of 0.781. 

The meaning of free word combinations is less distinguishable since their semantic content is 

very diverse in comparison with the meaning of lexical functions.  

7.2. Algorithm Performance Evaluation on the Test Set 

Some of the algorithms that showed best results for predicting LFs were evaluated on an 

independent test set built as described in Section 4.2, Section 5.4.3,  and Section 6.2.2. Tables 

24, 25 present the results for these algorithms. We listed the values of precision, recall and f-



measure for each classifier in this way: <precision>|<recall>|<f-measure>; BLR in the column 

Algorithm stands for BayesianLogisticRegression. As we explain below, the test sets had such a 

big size that some classifiers failed to make predictions within a reasonable time period. For such 

classifiers, we put N/A instead of metrics as for the other classifiers.  

Table 24. Algorithm performance on the test set 

Test set size 
Meaning Algorithm 

100% 75% 

PART 0.261|0.864|0.400      0.304|0.864|0.382 

SimpleCart N/A N/A Oper1 

BLR 0.178|0.830|0.293 0.212|0.818|0.337 

JRip 0.231|0.662|0.342 0.189|0.662|0.294 

SimpleCart N/A 0.168|0.662|0.268 CausFunc0 

LADTree 0.285|0.676|0.401 0.168|0.676|0.269 

FT N/A N/A 

SMO 0.331|0.793|0.467 0.567|0.793|0.661 IncepOper1 

NNge 0.302|0.724|0.426 0.567|0.724|0.636 

Ridor 0.799|0.480|0.600 0.993|0.480|0.647 

REPTree 0.581|0.480|0.526 0.820|0.480|0.606 ContOper1 

LWL N/A N/A 

 

It was mentioned in Section 4.2, that since we did not disambiguate verb-noun pairs in the test 

sets, for each pair we build the number of instances equal to the number of senses for the verb 

multiplied by the number of senses for the noun. Remember, that this has given us 96079 

instances and 10544 attributes in 100% test set, 73021 instances and 9495 attributes in 75% test 

set, 48904 instances and 8032 attributes in 50% test set, and 22254 instances and 5857 attributes 

in 25% test set. SimpleCart, FT, LWL had difficulties in predicting the value of the class variable 

on test sets of sizes more than 25%. Among these three algorithms, SimpleCart was better 

because this algorithm was effective enough to process a 75% and 50% set.   SimpleCart and FT 

are decision tree algorithms, and LWL is a nearest-neighbor instance-based learner. Note, that 

almost all the best classifiers that could process a full-size test set, belong to the class rules. 

BayesianLogisticRegression also performs well and the only algorithm of the class trees that did 

not experience time problems was LADTree.   

Table 25. Algorithm performance on the test set 

Test set size 
Meaning Algorithm 

50% 25% 

PART 0.245|0.864|0.382 0.162|0.852|0.272 

SimpleCart 0.405|0.864|0.551 0.281|0.852|0.423 Oper1 

BLR 0.205|0.818|0.328 0.145|0.807|0.246 

JRip 0.189|0.662|0.294 0.174|0.662|0.276 

SimpleCart 0.203|0.662|0.311 0.177|0.662|0.279 CausFunc0 

LADTree 0.144|0.676|0.237 0.177|0.676|0.281 

FT N/A 0.409|0.724|0.523 IncepOper1 

SMO 0.464|0.793|0.585 0.404|0.793|0.535 



NNge 0.603|0.724|0.658 0.451|0.724|0.556 

Ridor 0.958|0.480|0.640 1.000|0.480|0.649 

REPTree 0.694|0.480|0.567 0.667|0.480|0.558 ContOper1 

LWL N/A 1.000|0.480|0.649 

 

As it is seen from Tables 24, 25, the best precision was shown by Ridor. This method (Ridor = 

RIpple-DOwn Rule learner) have been developed for knowledge acquisition where it is hard to 

add a new rule and be sure that it would not cause the inconsistency of the rules generated 

before. Ridor algorithm is different from covering algorithms for constructing the rule set; 

instead it generates exceptions for the existing rules that work within the confines of these rules 

thus not affecting other rules. Then it iterates on the exceptions for the best solution. This 

scheme allowed the classifier to reach 100% precision. Unfortunately, it can not boast the best 

recall which is only 0.649 for ContOper1 on a 25% test set. Still, it is the second best recall in our 

experiments on test sets. The top recall is 0.658 shown by NNge for the meaning BEGIN on a 

50% test set.  

Another algorithm that gives the best precision of 100% is LWL when performing predictions 

for the meaning ContOper1 on a 25% test set. But, like Ridor, it shows the same low recall of 

0.658. However, a high precision of Ridor and LWL makes them appropriate for fulfilling the 

tasks where precision is of special importance, for example, for automatic construction of 

dictionaries.  

 



Chapter 8. Computational Applications of Lexical Functions 

8.1. Important Properties of Lexical Functions with Respect to Applications  

 

1. LFs are universal. It means that a significantly little number of LFs (about 70) represent 

the fundamental semantic relations between words in the vocabulary of any natural 

language (paradigmatic relations) and the basic semantic relations which syntactically 

connected word forms can obtain in the text (syntagmatic relations). 

2. LFs are idiomatic. LFs are characteristic for idioms in many natural languages. An 

example is the lexical function Magn which means ‘a great degree of what is denoted by 

the key word’. In English, it is said to sleep soundly and to know firmly, not the other way 

round: *to sleep firmly or *to know soundly. But in Russian the combination krepko spat’ 

(literally to sleep firmly) is quite acceptable although it is not natural in English. 

3. LFs can be paraphrased. For example, the LFs Oper and Func can form combinations with 

their arguments which are synonymous to the basic verb like in the following utterances: 

The government controls prices – The government has control of prices – The government 

keeps prices under control – The prices are under the government’s control. Most 

paradigmatic lexical functions (synonyms, antonyms, converse terms, various types of 

syntactic derivatives) can also substitute for the keyword to form synonymous sentences.  

4. LFs are diverse semantically. Sometimes the values of the same LF from the same key 

word are not synonymous. This is especially characteristic of the LF Magn. We can 

describe a great degree of knowledge in the following three ways: a) as deep or profound; 

b) as firm; c) as broad or extensive. Although all these adjectives are valid values of the 

Magn, the three groups should somehow be distinguished from each other because the 

respective adjectives have very different scopes in the semantic representation of the 

keyword. Deep and profound characterize knowledge with regard to the depth of 

understanding; firm specifies the degree of its assimilation; broad and extensive refer to 

the amount of acquired knowledge. It was proposed in [Apresjan et al. 2003] that in order 

to keep such distinctions between different values of the same LFs in the computerized 

algebra of LFs it is sufficient to ascribe to the standard name of an LF the symbol NS 

(non-standardness) plus a numerical index and maintain the correspondences between the 



two working languages by ascribing the same names to the respective LFs in the other 

language. 

8.2. Lexical Functions in Word Sense Disambiguation  

Syntagmatic LFs can be used to resolve syntactic and lexical ambiguity. Both types of ambiguity 

can be resolved with the help of LFs Oper, Func and Real. LFs like Magn (with the meaning 

‘very’, intensifier), Bon (with the meaning ‘good’), Figur (with the meaning ‘metaphoric 

expression typical of the key word’) among others, can be used to resolve lexical ambiguity.  

8.2.1. Syntactic Ambiguity  

Syntactic ambiguity and its resolution with the help of LFs is explained in this section by means 

of an example. Let us consider such English phrases as support of the parliament or support of 

the president. The word support is object in the first phrase, but it is subject (agent) in the second 

phrase. Syntactically, both phrases are identical: support + the preposition of + a noun, this is the 

sourse of syntactic ambiguity, and for that reason both phrases may mean both: ‘support given 

by the parliament (by the president)’, which syntactically is the subject interpretation with the 

agentive syntactic relation between support and the subordinated noun, and ‘support given to the 

parliament (to the president)’ which syntactically is the object interpretation with the first 

completive syntactic relation between support and the subordinated noun. This type of ambiguity 

is often extremely difficult to resolve, even within a broad context. LF support verbs can be 

successfully used to disambiguate such phrases because they impose strong limitations on the 

syntactic behaviour of their keywords in texts.  

Now let us view the same phrases in a broader context. The first example is The president 

spoke in support of the parliament, where the verb to speak in is Oper1 the noun support. Verbs 

of the Oper1 type may form collocations with their keyword only on condition that the keyword 

does not subordinate directly its first actant. The limitation is quite natural: Oper1 is by definition 

a verb whose grammatical subject represents the first actant of the keyword. Since the first actant 

is already represented in the sentence in the form of the grammatical subject of Oper1, there is no 

need to express it once again. This is as much as to say that the phrase The president spoke in 

support of the parliament can only be interpreted as describing the support given to the 

parliament, with parliament fulfilling the syntactic function of the complement of the noun 

support. 



On the other hand, verbs of the Oper2 type may form such collocations only on condition that 

the keyword does not subordinate directly its second actant. Again, the limitation is quite natural: 

Oper2 is by definition a verb whose grammatical subject represents the second actant of the 

keyword. Since the second actant is already represented in the sentence in the form of the 

grammatical subject of Oper2, there is no need to express it once again. So in the second example 

we consider in this section, The president enjoyed (Oper2) the support of the parliament, the 

phrase the support of the parliament implies the support given to the president by the parliament, 

with parliament fulfilling the syntactic function of the agentive dependent of the noun support.  

In cases of syntactic ambiguity, syntactically identical phrases are characterized by different 

lexical functions which in this case serve as a tool of disambiguation.  

8.2.2. Lexical Ambiguity  

LFs are also useful in resolving lexical ambiguity. For the sake of brevity, we shall give only one 

illustrative example. The Russian expression provodit' razlichie and its direct English equivalent 

to draw a distinction can be analyzed as composed of OPER1 + its keyword. Taken in isolation, 

the Russian and the English verbs are extremely polysemous, and choosing the right sense for 

the given sentence becomes a formidable problem. Provodit', for example, has half a dozen 

senses ranging from ‘spend’ via ‘perform’ to ‘see off’, while draw is a polysemic verb for which 

dictionaries list 50 senses or more. However, in both expressions the mutual lexical attraction 

between the argument of the LF and its value is so strong that, once the fact of their co-

occurrence is established by the parser, we can safely ignore all other meanings and keep for 

further processing only the one relevant here.  

8.3. Lexical Functions in Computer-Assisted Language Learning  

One of the purposes in developing software for language learning is to acquire lexicon. It has 

been proposed (for example, in [Diachenko 2006]) to organize learning in the form of linguistic 

games. There are games that operate on a word dictionary, but in order to learn collocations, a 

lexical function dictionary can be used whose advantage is that it includes the linguistic material 

on word combinations which is absent in word dictionaries. Below an example of a game 

oriented to lexical functions is given.  

Game “Lexical Function” 

In the game “LF”, the user needs to supply values of a concrete LF for each given argument. 

The user chooses the LF she is going to play with and enters the number of questions. The 



system gathers the material for the game by random selection of arguments from the dictionary. 

The system also shows the user the definition of the LF and two examples. 

According to the difficulty of learning, all LFs were divided into 3 levels. 

While some LF values have a compound format and may include the argument itself or 

pronouns, the system generates hints for such values. For example, CausFact0 (with the meaning 

‘to cause something to function according to its destination) for clock (in the sense of ‘time-

measuring instrument) is wind up (a watch) / start (a watch). For this value the hint will look like 

this:  

“— (a watch)”  

CausFact0 of imagination is fire (somebody's imagination). The hint will look like this  

“— (somebody) (imagination)”. 

If the user cannot supply an answer, the system shows him the list of correct answers. 

8.4. Lexical Functions in Machine Translation  

Two important properties of LFs mentioned in Section 8.1., i.e. their semantic universality and 

cross-linguistic idiomaticity, make them an ideal tool for selecting idiomatic translations of set 

expressions in a MT system. The way it can be done is explained by an example of prepositions 

in English and Spanish. 

As is well known, locative prepositions used to form prepositional phrases denoting places, 

sites, directions, time points, periods, intervals etc. reveal great versatility within one language 

and incredibly fanciful matching across languages. If we were to account properly for the 

discrepancies existing between the uses of these prepositions, say, in English and Spanish, we 

would have to write too detailed translation rules involving complicated semantic and pragmatic 

data. However, a large part of the task may be achieved with the help of LFs. 

Consider the following correspondences between English and Russian that may be easily 

found with the help of the LFs Dir (preposition denoting a movement toward the location 

expressed by the key word): 

Dir (city) = to (the city), Dir (cuidad) = a (la cuidad) 

Dir (friend) = to (my friend), Dir (amiga) = con (mi amiga) 



In order to ensure the production of these equivalents in machine translation, we must only 

identify the arguments and the value of the LF during parsing and substitute the correct value 

from the target language dictionary during generation. 

Implementation Example 

A module that annotates word combinations with lexical functions (such word combinations will 

be collocations, see Section 3.4) represented in Fig. 12, can be included in any machine 

translation system based on interlingua like UNL. UNL is a project of multilingual personal 

networking communication initiated by the University of United Nations based in Tokyo 

[Uchida et al. 2006]. 

Fig. 12. Lexical Function Module of a Machine Translation System. 

 

 

 

 

 

 

 



Chapter 9. Result Analysis with Respect to our Contribution 

to Linguistic Research  

Linguistics as a scientific study of human language intends to describe and explain it. However, 

validity of a linguistic theory is difficult to prove due to volatile nature of language as a human 

convention and impossibility to cover all real-life linguistic data. In spite of these problems, 

computational techniques and modeling can provide evidence to verify or falsify linguistic 

theories. As a case study, we conducted a series of computer experiments on a corpus of Spanish 

verb-noun collocations using machine learning methods, in order to test a linguistic point that 

collocations in the language do not form an unstructured collection but are language items 

related via what we call collocational isomorphism, represented by lexical functions of the 

Meaning-Text Theory. Our experiments allowed us to verify this linguistic statement. Moreover, 

they suggested that semantic considerations are more important in the definition of the notion of 

collocation than statistical ones. 

9.1. Computer Experiments in Linguistics  

Computer experiments play a very important role in science today. Simulations on computers 

have not only increased the demand for accuracy of scientific models, but have helped the 

researcher to study regions which can not be accessed in experiments or would demand very 

costly experiments.      

Our computational experiments made on the material of Spanish verb-noun collocations like 

seguir el ejemplo, follow the example, satisfacer la demanda, meet the demand, tomar una 

decisión, make a decision, can contribute to verify if the linguistic statement specified in Section 

9.2 is true. Out results also make it possible to derive another important inference on the nature 

of collocation presented in Section 9.4.   

It should be added here that testing a linguistic hypothesis on computer models not only 

demonstrates validity or rejection of the hypothesis, but also motivates the researcher to search 

for more profound explanations or to explore new approaches in order to improve computational 

operation. Thus, starting from one linguistic model, the researcher can evaluate it and then go 

further, sometimes into neighboring spheres of linguistic reality, in her quest of new solutions, 

arriving at interesting conclusions. One of the original intents of our research was to test one 



linguistic model experimentally. If we develop a computer program on the premise of a certain 

linguistic model and this program accomplishes its task successfully, then the linguistic model 

being the basis of the program is thus verified. The results we obtained not only produced 

evidence for verifying a  linguistic model or statement we make in the next section, but they also 

made it possible to get more insight into the nature of collocation which has been a controversial 

issue in linguistics for many years.   

9.2. Linguistic Statement: our Hypothesis  

Collocations are not a stock or a “bag” of word combinations, where each combination exists as 

a separate unit with no connection to the others, but they are related via collocational 

isomorphism represented as lexical functions.  

9.2.1. Collocational Isomorphism  

Considering collocations of a given natural language, it can be observed that collocations are not 

just a “bag” of word combinations, as a collection of unrelated items where no association could 

be found, but there are lexical relations among collocations, and in particular, we study the 

lexical relation which may be called ‘collocational isomorphism’. It has some resemblance to 

synonymy among words which is the relation of semantic identity or similarity. Collocational 

isomorphism is not a complete equality of the meaning of two or more collocations, but rather a 

semantic and structural similarity between collocations.  

What do we mean by semantic and structural similarity between collocations? For 

convenience of explanation, we will comment on the structural similarity of collocations first. 

The latter is not a novelty, and a detailed structural classification of collocations (for English) 

was elaborated and used to store collocational material in the well-known dictionary of word 

combinations The BBI Combinatory Dictionary of English (Benson et al. 1997). However, we 

will exemplify collocational structures with Spanish data, listing some typical collocates of the 

noun alegría, joy:  

verb + noun: sentir alegría, to feel joy  

adjective + noun: gran alegría, great joy 

preposition + noun: con alegría, with joy  

noun + preposition: la alegría de (esa muchacha), the joy of (this girl).  

The above examples are borrowed from the dictionary of Spanish collocations entitled 

Diccionario de colocaciones del Español [Alonso Ramos 2003], a collection of collocations in 



which the bases are nouns belonging to the semantic field of emotions. So collocations have 

structural similarity when they share a common syntactic structure.  

We say that two or more collocations are similar semantically if they possess a common 

semantic content. In Table 26, we present collocations with the same syntactic structure, namely, 

‘verb + noun’. For these collocations, the meaning is given for us to see what semantic element 

can be found that is common to all of them.   

Table 26. Verb-noun collocations and their meaning 

Spanish 

collocation 

English literal 

translation 

Translation into 

natural English 

Meaning of 

collocation 

English 

translation 

hacer uso 

dar un abrazo 

prestar atención 

tener interés  

tomar la medida 

make use 

give a hug 

lend attention  

have interest 

take measure  

make use 

give a hug  

pay attention 

take interest 

take action  

usar 

abrazar 

fijarse  

interesarse 

actuar  

use 

hug 

pay attention 

be interested 

act 

Table 27. Verb-noun collocations grouped according to their common semantic pattern 

Semantic pattern Spanish collocations 
English literal 

translation 

Translation into 

natural English 

create an entity or 

process 

escribir un libro 

elaborar un plan 

construir la sociedad 

dar vida 

write a book 

elaborate a plan 

construct a society  

give life  

write a book 

develop a plan 

build a society  

give life  

intensify a property 

or attribute  

aumentar el riesgo 

elevar el nivel 

desarrollar la 

capacidad 

mejorar la condición 

increase the risk  

lift the level 

develop a capacity  

improve a condition  

increase the risk 

raise the level  

develop a capacity  

improve a condition  

reduce a property or 

attribute  

disminuir la 

probabilidad 

reducir el consumo 

bajar el precio 

limitar los derechos 

lessen the probability 

reduce consumption 

lower the price  

limit rights  

lower chances  

reduce consumption 

bring down the price 

restrict rights  

begin to realize an 

action or  begin to 

manifest an attribute 

iniciar la sesión 

tomarla  palabra 

asumir el papel 

adoptar una actitud 

initiate a session  

take the word  

assume a role  

adopt the attitude  

start a session  

take the floor  

assume a role  

take the attitude  

preserve a property 

or process 

mantener el equilibrio 

guardar silencio 

seguir el modelo 

llevar una vida 

maintain the balance 

keep silence   

follow a model  

carry a life 

keep the balance  

keep quiet  

follow an example 

lead a life   

It may be noted that the meaning of all collocations in Table 26 is generalized as ‘do, carry out 

or realize what is denoted by the noun’, in other words, that these collocations are built 

according to the semantic pattern ‘do the noun’. In turn, observing the meaning of the nouns, we 

see that their semantics can be expressed in general terms as ‘action’ (uso, abrazo, medida) or 

‘psychological attribute’ (atención, interés), so the resulting semantic pattern of the collocations 

in Table 26 is ‘do an action / manifest a psychological attribute’. Since these collocations share 



common semantics and structure, we may say that they are isomorphic, or that they are tied to 

one another by the relation we termed above as ‘collocational isomorphism’. Table 27 gives 

more examples of isomorphic collocations.  

9.2.2. Collocational Isomorphism Represented as Lexical Functions 

Several attempts to conceptualize and formalize semantic similarity of collocations have been 

made. As far back as in 1934, the German linguist W. Porzig claimed that on the syntagmatic 

level, the choice of words is governed not only by grammatical rules, but by lexical 

compatibility, and observed semantic similarity between such word pairs as dog – bark, hand – 

grasp,  food – eat, cloths – wear [Porzig 1934]. The common semantic content in these pairs is 

‘typical action of an object’.  Research of J. R. Firth [Firth 1957] drew linguists’ attention to the 

issue of collocation and since then collocational relation has been studied systematically. In the 

article of J. H. Flavell and E. R. Flavell [Flavell and Flavell 1959] and in the paper by Weinreich 

[Weinreich 1969], there were identified the following meanings underlying collocational 

isomorphism: an object and its typical attribute (lemon – sour), an action and its performer (dog 

– bark), an action and its object (floor – clean), an action and its instrument (axe – chop), an 

action and its location (sit – chair, lie – bed), an action and its causation (have – give, see – 

show), etc. Examples from the above mentioned writings of Porzig, Flavell and Flavell, 

Weinreich are borrowed from [Apresjan 1995: 44].  

The next step in developing a formalism representing semantic relations between the base and 

the collocate as well as semantic and structural similarity between collocations was done by I. 

Mel’čuk. Up to now, his endeavor has remained the most fundamental and theoretically well-

grounded attempt to systematize collocational knowledge. This scholar proposed a linguistic 

theory called the Meaning-Text Theory, which explained how meaning, or semantic 

representation, is encoded and transformed into spoken or written texts [Mel’čuk 1974]. His 

theory postulates that collocations are produced by a mechanism called lexical function. Lexical 

function is a mapping from the base to the collocate; it is a semantically marked correspondence 

that governs the choice of the collocate for a particular base. About 70 lexical functions have 

been identified in [Mel’čuk 1996]; each is associated with a particular meaning according to 

which it receives its name. Table 28 demonstrates a correspondence between semantic patterns 

of collocations and lexical functions. 

 

 



Table 28. Semantic patterns represented as lexical functions 

Semantic pattern  

and examples 

Complex lexical function 

representation 

Complex lexical function 

description  

create an entity or process 

escribir un libro 

dar vida 

CausFunc0(libro) = excribir 

CausFunc0(vida) = dar 

CausFunc0 = cause an entity or 

process to function.   

intensify a property or attribute  

aumentar el riesgo 

elevar el nivel 

CausPlusFunc1(riesgo) = 

aumentar 

CausPlusFunc1(nivel) = elevar 

CausPlusFunc1 = cause that a 

property or attribute manifest 

itself to a larger degree.  

reduce a property or attribute  

disminuir la probabilidad 

reducir el consumo 

CausMinusFunc1(probabilidad) 

= disminuir 

CausMinusFunc1(consumo) = 

reducir 

CausMinusFunc1 = cause that a 

property or attribute manifest 

itself to a lesser degree. 

begin to realize an action or  

begin to manifest an attribute  

iniciar la sesión 

adoptar una actitud 

IncepOper1(sesión) = iniciar 

IncepOper1(actitud) = adoptar  

IncepOper1 = cause that an 

action begin to be realized or an 

attribute begin to manifest itself. 

preserve a property or process  

mantener el equilibrio 

guardar silencio 

ContOper1(probabilidad) = 

disminuir 

ContOper1(probabilidad) = 

disminuir 

ContOper1 = cause that an 

action continue to be realized or 

an attribute continue to manifest 

itself. 

Now we are going to see if computer experiments can supply evidence to the existence of 

collocational isomorphism as defined by lexical functions. The idea is to submit a list of 

collocations to the computer and see if it is able to distinguish collocations belonging to different 

lexical functions. If a machine can recognize lexical functions, then it is a strong testimony to 

their existence.   

9.3. Discussion of Our Results: Testing the Linguistic Statement  

One of the purposes of this work is to provide evidence for the linguistic statement made in the 

beginning of Section 9.2. Now let us review it in the light of our experimental results. The 

statement affirms that collocations are not a stock, or a “bag” of word combinations, where each 

combination exists as a separate unit with no connection to others, but they are related via 

collocational isomorphism represented as lexical functions.  

What evidence have we obtained concerning lexical functions? We presented a sufficient 

number of collocations annotated with lexical functions to the computer that learned 

characteristic features of each function. It was demonstrated that the computer was able to assign 

lexical functions to unseen collocations with a significant average accuracy of 0.759. Is it 

satisfactory? We can compare our result with computer performance on another task of natural 

language processing: word sense disambiguation, i.e., identifying the intended meanings of 

words in context. Today, automated disambiguating systems reach the accuracy of about 0.700 

and this is considered a substantial achievement. As an example of such works see [Zhong and 

Tou Ng 2010]. Therefore, our result is weighty enough to be a trustworthy evidence for the 

linguistic statement under discussion. 



In Section 9.1 we stated, that if we develop a computer program on the premise of a certain 

linguistic model and this program accomplishes its task successfully, then the linguistic model 

being the basis of the program is thus verified. In our experiments, we have observed that 

machine learning methods are able to detect lexical functions of collocations. Thus lexical 

functions as a linguistic concept get evidence received in computational experiments which can 

be repeated on the same data as well as on new data. It means that the formalism of lexical 

functions is a legitimate model of collocational isomorphism described in Section 9.2.1.  

9.4. Discussion of Our Results Concerning the Nature of Collocation: Statistical vs. 

Semantic Approach  

What knowledge is necessary and sufficient for the computer to analyze and generate texts in 

natural language? And what type of knowledge should it be? Up to now, the two foremost 

approaches in natural language processing have been the statistical approach and the symbolic 

one. Our results demonstrated that rule-based methods outperformed statistical methods in 

detecting lexical functions. It means that collocations are analyzed better by rules than by 

frequency counts; that rules tell us more of what collocations are than frequency counts do; that 

collocations can be recognized better semantically than statistically.  

The fact that the semantic aspect of collocation outweighs the statistical one has an important 

effect on the definition of collocations. Definition of a concept must contain necessary and 

sufficient criteria for distinguishing this concept from other concepts. The debate over the most 

relevant criterion for defining collocations has already lasted over a long period. Should this 

criterion be statistical or semantic? [Wanner 2004] gives a good concise overview of this debate. 

The statistical definition of collocation, i.e. based on probabilistic knowledge, says that 

collocation is the syntagmatic association of lexical items, quantifiable, textually, as the 

probability that there will occur, at n removes (a distance of n lexical items) from an item x, the 

items a, b, c ... [Halliday 1961:276]. The semantic definition of collocation explains how the 

collocational meaning is formed: a collocation is a combination of two words in which the 

semantics of the base is autonomous from the combination it appears in, and where the collocate 

adds semantic features to the semantics of the base [Mel’čuk 1995]. For example, in the phrase 

She fell to the floor, all the words are used in their typical sense and the verb to fall means to 

drop oneself to a lower position, but when it is said She fell in love, we understand that the same 

verb is not used in its typical, full meaning, but attains a different sense ‘begin to experience 

something’. WordReference Online Dictionary
5
 gives a description of this sense: pass suddenly 



and passively into a state of body or mind. To illustrate the definition, the dictionary provides the 

following examples: to fall into a trap, She fell ill, They fell out of favor, to fall in love, to fall 

asleep, to fall prey to an imposter, fall into a strange way of thinking. This meaning of fall is 

more abstract as compared with its typical meaning given in [SpWN] ‘descend in free fall under 

the influence of gravity’, e.g., The branch fell from the tree.  Fall reveals its characteristic 

meaning in free word combinations, and its more abstract sense, in collocations. What do we 

mean by more abstract sense? An abstract sense is not independent, it is not complete, but rather 

can be called a “semantic particle” whose function is not to express the full semantics, but to add 

semantic features to the base of collocation.     

To explain what is meant by “adding semantic features to the base”, let us make an analogy 

with semantics of grammatical categories which is also very abstract. The verb be in its function 

as an auxiliary verb does not express any meaning except abstract grammatical categories of 

time, aspect, and person. In the sentence This castle was built in the 15th century, the verb build 

carries the meaning of an action, and what be does is adding semantic features to the verb, i.e. 

that this action took place in past, it is passive, not active, and was applied to a single object, 

because the grammatical number of be is singular. Likewise, fall does not express an event, or a 

state, but to the word denoting an event or state ‘adds’ the semantic feature ‘begin to occur’.  

According to the semantic definition of collocation, the latter differs from free word 

combinations in the way it constructs its semantics. While the semantics of a free word 

combination is the sum of the meanings of its elements, collocational meaning is formed by 

adding more abstract semantic features expressed by the collocate to the full meaning of the 

base.  

Our experiments showed that collocations are recognized better using rules, or conceptual 

knowledge. It means that the basic criterion for distinguishing collocations from free word 

combinations is semantic, so there is a good evidence and reason to build definition of 

collocation on the semantic, not statistical, criterion.  

 



Chapter 10. Conclusions  

 

1. Our experiments have shown that verb-noun collocations can be classified according 

to semantic taxonomy of lexical functions using WEKA learning toolset. We have 

shown that it is feasible to apply machine learning methods for predicting the meaning 

of unseen Spanish verb-noun collocations. 

2. Verb-noun pairs were represented as sets of hyperonyms for both the verb and the 

noun. As our experiments have shown, hyperonyms of the Spanish WordNet function 

sufficiently well as features distinguishing between the meanings we chosen to be 

predicted by classifiers. Therefore, this representation can be used for the task of 

automatic extraction of lexical functions. With this we re-confirmed that the set of 

hyperonyms can be used to describe lexical meaning and discriminate word senses. 

3. According to 10-fold cross-validation technique, the best performance was 

demonstrated by bayes.BayesianLogisticRegression algorithm for detecting the lexical 

function Oper1 and by SimpleLogistic classifier for detecting the lexical function 

ContOper1. Both algorithms can be applied for high quality semantic annotation of 

verb-noun collocations based on the taxonomy of lexical functions.  

4. According to evaluation of algorithms on an independent test set, the best performance 

was shown by Ridor and LWL algorithms for detecting the lexical function 

ContOper1. These algorithms can be used for high quality annotation of verb0noun 

collocations with this lexical function.  

5. The best f-measure achieved in our experiments is 0.873 using the training set and 10-

fold cross-validation technique. This is significantly higher than the previously 

reported result of 0.740 for F-measure, though the comparison is not fair because we 

looked for the meaning which is similar to the meaning predicted in [Wanner et al. 

2006], but not the same one. The highest F-measure achieved in the experiments on an 

independent test set was only 0.658. This could be explained by the fact that the best 

ratio between the training set and the test set has not yet been found by us. More 

experiments on test sets of various sizes are needed. 

6. We have tested if the three hypothesis stated in [Wanner et al. 2006] were valid and 

well-grounded. These hypothesis claim that collocations can be recognized: first, by 

their similarity to the prototypical sample of each collocational type (this strategy is 



modeled by the Nearest Neighbor technique); second, by similarity of semantic 

features of their elements (i.e., base and collocate) to semantic features of elements of 

the collocations known to belong to a specific LF (this method is modeled by Naïve 

Bayesian network and a decision tree classification technique based on the ID3-

algorithm); and third, by correlation between semantic features of collocational 

elements (this approach is modeled by Tree-Augmented Network Classification 

technique). Our research has shown that there machine learning methods other than 

mentioned in the three hypotheses that can be used for high quality annotation of verb-

noun collocations of lexical funciton. To these methods the following algorithms 

belong: JRip, J48, Prism, PART, SimpleLogistic, Ridor.    
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Appendices                                                

 Appendix 1. Glossary 

Relation Definition 1 - that feature or attribute of things which is involved 

in considering them in comparison or contrast with each other; the 

particular way in which one thing is thought of in connexion with 

another, any connexion, correspondence, or association, which can 

be conceived as naturally existing between things. (The Shorter 

Oxford English Dictionary on Historical Principles, 3
rd
 edition, 

Oxford, At the Clarendon Press, 1959) 

Definition 2 - an aspect or quality (as resemblance) that connects 

two or more things or parts as being or belonging or working 

together or as being of the same kind, specif: a property (as one 

expressing by is equal to, is less than, or is the brother of) that holds 

between an ordered pair of objects. (Webster’s Ninth New Collegiate 

Dictionary, Merriam-Webster Inc. Publishers, Springfield, 

Massachusetts, USA, 1991)  

Definition 3 - a connection between two or more things. (Longman 

Dictionary of Contemporary English, 3
rd
 edition, Longman 

Dictionaries, 1995) 

Definition 4 - the way in which two or more concepts, objects, or 

people are connected; a thing’s effect on or relevance to another. 

(The New Oxford Dictionary of English, Clarendon Press, Oxford, 

1998)  

Definition 5 - the way in which two or more things are connected. 

(Oxford Advanced Learner’s Dictionary, A.S.Hornby, 6
th
 edition, 

Oxford University Press, 2000)  

Definition 6 - an aspect or quality, e.g. resemblance, that connects 

two or more things and enables them to be considered together in a 

meaningful way. (The Penguin English Dictionary, 2
nd
 edition, 

Penguin Books, 2003) 

Definition 7 - an abstraction belonging to or characteristic of two 

entities or parts together. (WordNet 2.1) 

Wordform the phonological or orthographic sound or appearance of a word 

that can be used to describe or identify something; "the inflected 

forms of a word can be represented by a stem and a list of inflections 

to be attached" (WordNet 3.0) http://www.thefreedictionary.com 

 

Lexical form an abstract unit representing a set of wordforms differing only in 

inflection and not in core meaning.  

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

 



Meaning a notion in semantics classically defined as having two 

components: reference, anything in the referential realm denoted by a 

word or expression, and sense, the system of paradigmatic and 

syntagmatic relationships between a lexical unit and other lexical 

units in a language. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

Lexical unit a form-meaning composite that represents a lexical form and single 

meaning of a lexeme. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

Lexeme the minimal unit of language which has a semantic interpretation 

and embodies a distinct cultural concept, it is made up of one or more 

form-meaning composites called lexical units. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

Lexical 

relation 

a culturally recognized pattern of association that exists between 

lexical units in a language. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

Paradigmatic 

lexical relation 

a culturally determined pattern of association between lexical units 

that share one or more core semantic components, belong to the same 

lexical category, fill the same syntactic position in a syntactic 

construction, and have the same semantic function. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

“In general, paradigmatic relations subsume all contrast and 

substitution relations that may hold between lexical units in specific 

contexts. For example, the lexemes school and student are 

paradigmatically related in such pairs of phrases as to go to school 

and to be a student, and so also are the lexemes young and tall in 

young student and tall student. A paradigmatic relation, in general, 

does not automatically imply a semantic relation.” [Wanner 1996] 

Semantic 

component 

a potentially contrastive part of the meaning of a lexical unit. E.g., 

contrastive semantic component distinguishes one lexical unit from 

another as “male” is the contrastive semantic component 

distinguishing man from woman, and boy from girl; shared semantic 

component occurs in each member of a group of lexical units as 

“human” is a shared component for man, woman, boy, and girl. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

Lexical 

category 

a syntactic category for elements that are part of the lexicon of a 

language. These elements are at the word level. Also known as part 

of speech, word class, grammatical category, grammatical class. 

Lexical categories may be defined in terms of core notions or 

‘prototypes’. Given forms may or may not fit neatly in one of the 

categories. The category membership of a form can vary according to 

how that form is used in discourse. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

Prototype of 

any category 

the member or set of members of a category that best represents 

the category as a whole. Not everything fits perfectly in a category. 

Categories are defined by an intersection of properties that make up 

their members. Members that have all the properties are the prototype 

members. Those that contain some, but not all, of the properties are 

less prototypical. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 



Syntax (from Ancient Greek συν- syn-, "together", and τάξις táxis, 

"arrangement") is the study of the principles and rules for 

constructing sentences in natural languages. In addition to referring 

to the discipline, the term syntax is also used to refer directly to the 

rules and principles that govern the sentence structure of any 

individual language, as in "the syntax of Modern Irish." 

http://en.wikipedia.org/wiki/Syntax 

 

Syntactic 

category 

either a phrasal category, such as noun phrase or verb phrase, 

which can be decomposed into smaller syntactic categories, or a 

lexical category, such as noun or verb, which cannot be further 

decomposed. The three criteris ised in defining syntactic categories 

are the type of meaning it expresses, the type of affixes it takes, the 

structure in which it occurs. 

http://en.wikipedia.org/wiki/Syntactic_category 

Grammatical 

category 

person, number, tense, aspect, mood, gender, case, voice... 

Grammatical 

class 

transitive and intransitive verbs; count and mass nouns... 

Grammatical 

relations 

subject, direct object, indirect object... 

Functional 

categories 

agent, patient, instrument...; topic, comment...; definite NP 

Syntagmatic 

lexical relation 

a culturally determined pattern of association between pairs of 

lexical units (A1-B1, A2-B2, A3-B3...) where the two members of 

each pairs (A1 and B1) have compatible semantic components, are in 

a fixed syntactic and semantic relationship to each other, and are 

typically associated with each other, and corresponding members of 

each pair (A1, A2, A3...) belong to the same lexical category, fill the 

same syntactic position in a syntactic construction, and have the same 

semantic function. 

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms 

Syntagmatic 

relations 

(or co-occurence relations) hold between lexical units that can 

appear together, i.e. that co-occur, in the same phrase or clause. 

[Wanner 1996] 

Token each running word in the text. Thus a text of length a hundred 

words contains a hundred tokens. [Sinclair et al. 2004] 

Lexical 

semantic 

relations 

semantic relations between concepts [Chiu et al. 2007] 

 

 
 

 

 



Appendix 2. Definitions of Collocation 
 

Additional information is given as to the source of definition, the criterion used to distinguish 

collocations from free word combinations, and some comments on definitions.  

 

Author Definition Criterion for a 

word combination to 

be considered a 

collocation 

Comments 

[Firth 1957]  Collocations of a 

given word are 

statements of the 

habitual or customary 

places of that word. 

Lexical criterion: 

a word is used in a 

fixed position with 

respect to a given 

word. 

Statistical 

criterion: frequency 

of word co-

occurrence. 

[Firth 1957] first 

introduced the term 

‘collocation’ from 

Latin collocatio which 

means ‘bringing 

together, grouping’.  

Firth believes that 

speakers make 

‘typical’ common 

lexical choices in 

collocational 

combinations.  

Collocation is a 

concept in Firth’s 

theory of meaning: 

“Meaning by 

collocation is an 

abstraction at the 

syntagmatic level and 

is not directly 

concerned with 

the conceptual or 

idea approach to the 

meaning of words. 

One of the meanings 

of night is its 

collocability with 

dark, and of dark, of 

course, collocation 

with night.” 

 



[Halliday 

1961] 

Collocation is the 

syntagmatic 

association of lexical 

items, quantifiable, 

textually, as the 

probability that there 

will occur, at n 

removes (a distance of 

n lexical items) from 

an item x, the items a, 

b, c ... 

Lexical criterion: 

a word is used a 

fixed position with 

respect to a given 

word. 

Statistical 

criterion: high co-

occurrence 

frequency. 

If a lexical item is 

used in the text, then 

it’s collocate has the 

highest probability of 

occurrence at some 

distance from the 

lexical item.   

Collocations cut 

across grammar 

boundaries: e.g. he 

argued strongly and 

the strength of his 

argument are 

grammatical 

transformations of the 

initial collocation 

strong argument.  

[Hausmann 

1984, 1985] 

Collocations are 

binary word-

combinations, consist 

of words with limited 

combinatorial 

capacity, they are 

semi-finished products 

of language, affine 

combinations of 

striking habitualness.  

In a collocation one 

partner determines, 

another is determined. 

In other words: 

collocations have a 

basis and a co-

occurring collocate. 

 

Lexical criterion: 

the lexical choice of 

the collocate 

depends on the 

basis.  

Word combinations 

are classified word-

combinations 

according to the 

features fixed vs. non-

fixed, and in this 

classification 

collocations are 

belong to the category 

of non-fixed affine 

combinations.  

Internal structure of 

collocation: 

collocation 

components have 

functions of a basis 

and a collocate, and 

the basis (not the 

speaker) ‘decides’ 

what the collocate will 

be.   

 



[Benson 

1985] 

Collocation is a 

group of words that 

occurs repeatedly, i. e. 

recurs, in a language. 

Recurrent phrases can 

be divided into 

grammatical 

collocations and 

lexical collocations. 

Grammatical 

collocations consist of 

a dominant element 

and a preposition or a 

grammatical 

construction: fond of, 

(we reached) an 

agreement that... 

Lexical collocations 

do not have a 

dominant word, their 

components are 

"equal": to come to an 

agreement, affect 

deeply, weak tea. 

 

Functional 

criterion: 

collocations are 

classified according 

to function of 

collocational 

elements. 

Statistical 

criterion: high co-

occurrence 

frequency. 

Broad 

understanding of 

collocation. 

Classification of 

collocations according 

to their compositional 

structure.  

[Benson 

1989]  

Collocations should 

be defined not just as 

‘recurrent word 

combinations’, [but 

as] ‘ARBITRARY 

recurrent word 

combinations’ 

 

Lexical criterion: 

arbitrariness and 

recurrency  

‘Arbitrary’ as 

opposed to ‘regular’ 

means that 

collocations are not 

predictable and cannot 

be translated word by 

word.   



[Van Roey 

1990] 

Collocation is “that 

linguistic phenomenon 

whereby a given 

vocabulary item 

prefers the company 

of another item rather 

than its ‘synonyms’ 

because of constraints 

which are not on the 

level of syntax or 

conceptual meaning 

but on that of usage.” 

Statistical 

criterion: high co-

occurrence 

frequency in 

corpora. 

Van Roey 

summarizes statistical 

view stated by 

Halliday in terms of 

expression or ‘usage’. 

A collocate can thus 

simply be seen as any 

word which co-occurs 

within an arbitrary 

determined distance 

or span of a central 

word or node at the 

frequency level at 

which the researcher 

can say that the co-

occurrence is not 

accidental. This 

approach is also 

textual in that it relies 

solely on the ability of 

the computer program 

to analyze large 

amounts of computer-

readable texts.  

 

[Cowie 

1993] 

Collocations are 

associations of two or 

more lexemes (or 

roots) recognized in 

and defined by their 

occurrence in a 

specific range of 

grammatical 

constructions.  

 

Structural 

criterion: 

collocations are 

distinguished by 

patterns  

Collocations are 

classified into types 

according to their 

grammatical patterns.  



[Howarth 

1996] 

 

 

 

 

 

 

 

 

 

 

 

[Howarth 

1996] contd. 

In his lexical 

continuum model, 

collocations as 

composite units are 

placed on a sliding 

scale of meaning and 

form from relatively 

unrestricted 

(collocations) to 

highly fixed (idioms). 

Restrictive 

collocations are fully 

institutionalised 

phrases, memorized as 

wholes and used as 

conventional form-

meaning pairings.  

 

Syntactic 

criterion: 

commutability – the 

extent to which the 

elements in the 

expression can be 

replaced or moved 

(make/reach/take 

decision vs. shrug 

one’s shoulders). 

 

 

 

 

 

Semantic 

criterion: motivation 

– the extent to which 

the semantic origin 

of the expression is 

identifiable (move 

the goalposts = to 

change conditions 

for success vs. shoot 

the breeze = to 

chatter, which is an 

opaque idiom).  

 

Classification 

includes 4 types of 

expressions with no 

reference to frequency 

of occurrence:  

free collocation: 

blow a trumpet = to 

play a trumpet, 

restrictive 

collocation: blow a 

fuse = to destroy a 

fuse/to get angry, 

figurative idiom: 

blow your own 

trumpet = to sell 

oneself excessively, 

pure idiom: blow 

the gaff = to reveal a 

concealed truth.  

 

The problem with 

this classification is 

that is difficult to 

determine what is 

meant by 

‘syntactically fixed’, 

‘unmotivated’ or 

‘opaque’. This is seen 

in the ambiguous 

example of to blow a 

fuse. 

 

[Sinclair  

et al. 2004] 

Collocation is the 

co-occurrence of two 

items in a text within a 

specified environment. 

Significant collocation 

is regular collocation 

between two items, 

such that they co-

occur more often than 

their respective 

frequencies. Casual 

collocations are “non-

significant” 

collocations.  

 

Lexical criterion: 

recurrency of co-

occurrence 

Statistical 

criterion: high co-

occurrence 

frequency 

The degree of 

significance for an 

association between 

items is determined by 

such statistic tests as 

Fischer’s Exact Test 

or Poisson Test.  



[Mel’čuk 

1995] 

Collocation is a 

combination of two 

lexical items in which 

the semantics of one 

of the lexical items 

(the base) is 

autonomous from the 

combination it appears 

in, and where the other 

lexical item (the 

collocate) adds 

semantic features to 

the semantics of the 

base. [Gledhill 2000] 

explains that for 

Mel’čuk a collocation 

is a semantic function 

operating between two 

or more words in 

which one of the 

words keeps its 

‘normal’ meaning.  

Semantic 

criterion: 

the meaning of a 

collocation is not 

inferred from the 

meaning of the base 

combined with 

meaning of the 

collocate.   

Semantics of a 

collocation is not the 

meaning of the base + 

the meaning of the 

collocate, but rather 

the meaning of the 

base + some 

additional meaning 

that are included in 

the meaning of the 

base. 

‘...the concept of 

collocation is 

independent of 

grammatical 

categories: the 

relationship which 

holds between the 

verb argue and the 

adverb strongly is the 

same as that holding 

between the noun 

argument and the 

adjective strong.’ 

[Fontenelle 1994]  

 



Appendix 3. Syntagmatic Verb-Noun Lexical Functions 

 

Examples in English Examples in Spanish Lexical function name and 

description 

Lexical function 

variant LF 

Argument 

Collocation:  

LF value + LF 

argument 

LF Argument Collocation:  

LF value + LF 

argument 

Oper1 
‘perform, do, 

act’ 

support 

resistance 

order  

 

to lend support 

to put up resistance 

to give order  

apoyo 

resistencia 

orden 

dar apoyo 

oponer resistencia 

dar la orden  

 

 

Operi 

Lat. operari ‘do, carry out, 

perform, experience’. The 

keyword of Operi is the name of 

an action, an activity, a state, a 

property, a relation, i.e. a noun 

whose meaning is or includes a 

predicate in the logical sense of 

the term this presupposing 

actants.   

 

Oper2 
‘undergo, meet’ 

support 

resistance  

order  

to receive support 

to meet resistance 

to receive order  

apoyo 

resistencia 

orden  

recibir apoyo 

encontrar resistencia 

recibir la orden  

Func0 
‘happen, take 

place’ 

 

snow 

silence 

smell 

falls 

reigns 

lingers 

vieto 

silencio 

accidente 

el viento sopla 

el silencio reina 

el accidente ocurre  

 

 

Funci 

Lat. functionare ‘function’. 

The keyword of Funci is the name 

of an action, an activity, a state, a 

property, a relation, i.e. a noun 

whose meaning is or includes a 

predicate in the logical sense of 

the term this presupposing 

actants.   

Func1 
‘originate from’ 

blow 

proposal  

support 

comes [from N] 

comes, stems [from 

N] 

come [from] 

golpe  

propuesta 

 

apoyo 

un golpe se produce 

una propuesta se 

presenta 

apoyo se presta 

 



Func2 
‘concern, apply 

to’ 

blow  

proposal  

analysis 

falls [upon N] 

concerns [N] 

concerns 

golpe 

propuesta 

 

analisis 

el golpe cae 

la propuesta consiste 

en N 

analisis explica 

 

Laborij(k) 

Lat. laborari ‘to work, toil, 

process’ – a verb connecting L 

and participant(s). 

 

Labor12 
a verb 

connecting the first 

participant as 

grammatical 

subject with the 

second participant 

as direct object and 

with L as indirect 

object 

control 

respect 

punishment 

to keep N under 

control 

to treat N with respect 

to subject N to 

punishment 

alegría 

cariño 

celebrar algo con 

alegría 

tratar algo con cariño 

IncepOper1 fire [shoot] 

popularity 

despair  

to open fire on N 

to acquire popularity 

to sink into despair 

admiración  

 

amistad 

cariño 

contagiarse de 

admiración 

contraer la amistad 

cobrar cariño a N 

IncepOper2 power 

control 

fall under the power 

of N 

to get under N’s 

control 

  

Incep 

Lat. incipere ‘begin’ – a 

phrasal verb  

IncepFunc1 
‘N begins to be 

experienced’ 

despair 

hatred 

anger 

despair creeps over/in  

N 

hatred stirs up N 

anger arises 

desesperación 

odio 

ira 

desesperación entra 

en N 

odio se apodera de N 

ira envade N 

Cont 

Lat. continuare ‘continue’ – a 

phrasal verb  

ContOper1 

‘continue to 

experience’ 

enthusiasm  

hope 

anger 

maintain enthusiasm 

hope burns 

anger boiled over in 

N 

 

 

entusiasmo 

esperanza  

odio 

guardar entusiasmo 

guardar esperanza 

conservar odio 



ContOper2 attention  to hold attention   

ContOper12 animosity feel animosity 

towards/against N 

enemistad mantener el 

enemistad 

ContFunc0 offer 

odor 

the offer stands 

the odor lingers  

 

  

ContFact0 luck her luck holds 

 

  

FinOper1 power 

patience 

to lose one’s power 

over N 

to lose patience 

alegría 

amistad  

cariño 

perder la alegría 

perder la amistad 

perder cariño 

FintOper2 
‘cease to be the 

object of 

somebody’s L’ 

credit to lose credit with N admiración perder la admiración 

de N 

FinFunc0 

‘N ceases to be 

experienced’ 

anger 

hatred 

enthusiasm  

anger defuses 

hatred ceases 

enthusiasm wanes 

aprención 

odio 

entusiasmo 

aprención se disipa 

odio desaparece 

entusiasmo se 

desvanece 

Fin 

Lat. finire ‘cease’ – a phrasal 

verb  

FinFunc1 love his love vanished into 

thin air 

admiración la admiración ha 

desaparecido en N 

CausOper1 opinion 

despair 

to lead N to the 

opinion  

to throw N into 

despair 

admiración llenar a N de 

admiración 

CausOper2 control 

 

attention 

to put N under X’s 

control 

to call N to X’s 

attention 

  

Caus 

Lat. causare ‘cause’ 

‘do something so that a 

situation begins occurring’ 

Caus1Oper2 control to bring N under 

one’s control  

  



CausFunc0 
‘cause the 

existence of N’ 

crisis  

difficulty  

election 

to bring about the 

crisis 

to create a difficulty 

to hold elections 

alarma 

elecciones 

crisis 

dar la alarma 

celebrar elecciones 

provocar una crisis 

 

Caus1Func2 suspicion 

attention 

to sow suspicions 

to show attention to N 

cariño 

sospecha 

depositar el cariño en 

N 

apuntar la sospecha 

hacia N 

Caus2Func1 
‘cause N to be 

experienced’ 

hope 

surprise  

anger 

to raise the hope in N 

to give surprise  

to provoke anger 

horror 

sorpresa 

odio 

causar horror 

dar sorpresa 

despertar odio 

 

Caus2Func2 attention 

friendship  

to grab N’s attention 

to seek frienship 

admiración 

amistad 

cariño 

atraer admiración 

concitar la amistad 

atraerse el cariño de 

N 

 

CausReal1 suspicion to fall under suspicion sospecha corroborar la 

sospecha 

Caus1Manif admiration 

joy  

friendship  

to produce admiration 

to show joy 

to enjoy friendship 

admiración  

alegría 

amistad 

confesar admiración 

exteriorizar la alegría 

demostrar amistad  

CausDegrad joy  

fire 

strength 

joy was vanishing  

the fire is dying down 

my strength is failing 

alegría empañar la alegría 

PermFunc1   gana dejar a N con las 

ganas 

Perm1Fact0 anger 

desire 

to let go N’s anger 

to give in to the desire 

alegría dejarse llevar por la 

alegría 

Perm 

Lat. permittere ‘permit, allow’ 

‘do nothing which would cause 

that a situation stops occurring’  

nonPerm1Fact laugh 

impulse 

tear 

to suppress a laugh 

to check an impulse 

to hold back a tear 

alegría  

dolor 

gana 

contener la alegría 

contener el dolor 

reprimir las ganas 



Perm1Manif strength  

impatience 

tact 

to display N’s 

strength 

to exhibit impatience 

to show tact 

sospecha dar rienda suelta a la 

sospecha 

nonPerm1Manif smile 

hatred 

laughter  

to conceal a smile 

to hide N’s hatred 

to stifle N’s laughter 

admiración 

alegría 

celos 

ocultar la admiración 

disimular la alegría 

reprimir los celos 

LiquOper2 

 

liability 

debt 

duty 

to exempt from 

liability 

to release from debts 

to release N from N’s 

duties 

sospecha alejar a N de toda 

sospecha 

Liqu1Func0 

‘put an end to’ 

support 

obstacle 

meeting 

withdraw support 

remove the obstacle 

end the meeting 

alegría 

amistad 

celos 

apagar la alegría 

romper la amistad 

atajar los celos 

LiquFunc1 custom 

shyness  

the custom is 

vanishing 

to get better of N’s 

shyness 

alegría  

celos 

gana 

minar la alegría a N 

quitar los celos a N 

quitar las ganas a N 

Liqu 

Lat. liquidare ‘liquidate’ 

‘do something so that a 

situation stops occurring’ 

LiquFunc2 attention to divert N’s attention 

from N 

sospecha alejar la sospecha de 

N 

Reali 
Lat. realis ‘real’. The gloss is 

‘to fulfill the requirement of L’, 

‘to do with L what you are 

supposed to with L’, or ‘L fulfils 

its requirement’. The values are 

fulfillment verbs, differs from 

Facti and Labrealij with respect 

Real1 
‘use L according 

to its destination’ 

‘do with regard 

to X that which is 

normally expected 

of first participant’ 

 

duty 

obligation 

principle  

do one’s duty 

fulfill the obligation 

follow a principle 

amistad 

cariño 

celos 

conceder amistad a 

alguien 

dar cariño 

consumirse en los 

celos 



Real2 
‘do with regard 

to X that which is 

normally expected 

of second 

participant‘ 

challenge  

examination 

insult  

accept a challenge 

pass an examination 

avenge an insult  

cariño 

examen  

ofensa  

recibir cariño de 

alguien 

aprobar el examen 

vengar la ofensa 

Fact0 

 

hope 

movie 

suspicion 

his hope comes true 

the movie is on 

the suspicion is 

confirmed 

  

Fact1 

 

suspicion 

hope  

arouse suspicion  

stir up hope 

alegría 

celos 

dolor 

la alegría domina a 

algien 

los celos me abrasan 

el dolor le punzó 

 

Facti 
Lat. factum ‘fact’. The gloss is 

‘to fulfill the requirement of L’, 

‘to do with L what you are 

supposed to with L’, or ‘L fulfils 

its requirement’. The values are 

fulfillment verbs, differs from 

Reali and Labrealij with respect 

to its syntax only. 

Fact2 suspicion 

hope   

fall under suspicion  

cherish hope 

cariño el cariño rodea a 

alguien 

Labreal12  
 

gallows 

saw 

reserve 

to string up N on the 

gallows 

to cut N with the saw 

to hold N in reserve 

horca 

sierra 

cariño 

ejecutar en la horca a 

N 

la sierra corta N 

rodear a N de cariño 

Labrealij  
It is a hybrid of Labor and 

Real. The gloss is ‘to fulfill the 

requirement of L’, ‘to do with L 

what you are supposed to with 

L’, or ‘L fulfils its requirement’. 

The values are fulfillment verbs, 

differs from Facti and Reali with 

respect to its syntax only. 

Labreal13 shame 

health  

to burn with shame 

to waste N’s health 

celos consumir a N de celos 

Involv 

Lat. involvere ‘drag along’ – a 

verb meaning ‘to involve Y’, ‘to 

concern Y’; it links L and the 

name of a non-participant Y 

which is affected or acted upon 

by the situation L’  

 light 

snowstorm 

 

smell   

light floods the room 

the snowstorm caught 

him in N=place 

the smell filled the 

room 

  



Manif 

Lat. manifestare ‘manifest’ – 

verb meaning ‘L manifests itself 

or becomes apparent in Y’  

 amazement 

joy  

scorn 

amazement lurks in 

his eyes 

joy explodes in them 

scorn is dripping from 

every word 

dolor 

enemistad 

orgullo 

el dolor se refleja 

la enemistad se 

manifesta 

el orgullo resplandece 

ProxOper1 despair 

disaster 

tears 

to be on the edge of 

despair 

to be on the brink of 

disaster 

to be on the verge of 

tears 

  Prox 

Lat. proximare ‘approach’ – 

verb meaning ‘to be about to do 

something, to be on the verge of 

something’ 

ProxFunc0 thunderstorm thunderstorm brews   

Prepar1Real1 friendship  to propose friendship 

to N 

amistad ofrecer amistad a N 

Prepar1Real2 plane to board a plane   

Prepar 

Lat. praeparare ‘prepare’ – 

verb meaning ‘to prepare N for 

..., to get N ready for normal use 

or functioning’ 
PreparFact0 car 

program 

 

table 

to fill up the car 

to load a program into 

a computer 

to lay the table  

  

Degrad 

Lat. degradare ‘lower, 

degrade’ – verb meaning ‘to 

degrade, to become permanently 

worse or bad’ 

 milk 

clothes 

teeth 

milk goes sour 

clothes wear off 

teeth decay 

alegría 

ropa  

dientes 

la alegría se frustra 

Son 

Lat. sonare ‘sound’ – verb 

meaning ‘to emit characteristic 

sound’  

 dog 

banknotes  

waterfall 

the dog barks 

banknotes rustle  

the waterfall roars  

 

 

 

perro 

billetes  

cascada 

el perro ladra 



Obstr eyes 

negotiations 

economy  

eyes blur 

negotiations are 

stalled 

economy stagnates  

  

Obstr2 breath 

speech  

N is short of breath 

N stutters, stammers, 

mumbles 

  

Obstr 

Lat. obstruere ‘obstruct’ – verb 

meaning ‘to function with 

difficulty’; alphabetical 

superscripts specify the aspect of 

obstruction.    

 

Obstr
stat 

‘stat’ = ‘with 

respect to vertical 

position’ 

body 

knees 

the body crumples 

his knees give way  

  

Stop voice 

heart1 

heart2 

his voice breaks  

his heart is stopping  

her heart broke   

  Stop 

Lat. stuppare ‘stop up, plug’ – 

verb meaning ‘to stop 

functioning’ Stop2 breath N loses his breath  

 

  

Excess engine 

sweat 

the engine races 

sweat rolls down 

across N’s forehead  

  

Excess2 heart1 N has palpitations   

Excess
motor

 
‘motor’ = ‘with 

respect to 

movements’ 

eyes 

heart1 

the eyes pop out on 

stalks 

the heart pounds, 

races 

  

Excess2
motor

  teeth 

sweat 

N grinds his teeth 

N is bathed in sweat  

  

Excess
color 

‘color’ = ‘with 

respect to color’  

cheeks cheeks glow   

Excess 

Lat. excessus (past participle of 

excédere) ‘exceed’ – verb 

meaning ‘to function in an 

abnormally excessive way’; 

alphabetical superscripts specify 

the aspect of excessive 

functioning.   

Excess1
color

 cheeks to be red-cheeked   



Excess
dim 

‘dim’ = ‘with 

respect to 

dimension/size’ 

eyes the eyes are like 

saucers in X’s head 

  

Excess
fulg 

‘fulg’ = ‘with 

respect to 

brightness’ 

eyes eyes flash/glitter   

Excess
trem 

‘dim’ = ‘with 

respect to 

dimension/size’ 

hands his hand were shaking   

Excess
t0 

‘t
0
’ = ‘with 

respect to 

temperature’ 

cheeks her cheeks burnt    

Obstr(1)-

Sympt23(2) 

1=breath, 

2=anger 

1=speech, 

2=anger 

N chokes with anger 

 

N sputters with anger  

1=respiración, 

2=cólera 

 

sofocarse de cólera 

 

 

Stop(1)-

Sympt1(2) 

1=speech, 

2=amazement  

//N is dumbstruck  1=habla, 

2=susto 

enmudecer del susto, 

el susto le hizo 

enmudecer 

Excess
motor

(1)-

Sympt1(2) 

1=hair, 

2=fear 

1=eyes, 

2=amazement 

N’s hair stands on end 

N’s eyes start from 

their sockets 

1=pelo,  

2=susto 

1=ojos, 

2=espanto 

ponérsele a uno los 

pelos de punta 

estar con los ojos 

fuera de las órbitas 

Sympt 

Lat. symptoma ‘a symptom of’ 

– a verbal expression meaning 

‘symptom of’, it denotes a bodily 

reaction that is a symptom of an 

emotional or physical state.  

Excess
motor

(1)-

Sympt213(2) 

1=mouth, 

2=amazement 

N opens N’s mouth 

wide with amazement 

1=cuerpo, 

2=dolor 

1=pecho, 

2=orgullo 

doblarse del dolor 

 

henchir el pecho 



Excess
motor

(1)-

Sympt13(2) 

1=mouth, 

2=astonishment 

1=mouth, 

2=surprise 

N’s jaw drops in 

astonishment 

the mouth hangs open 

in surprise 

 

1=corazon, 

2=alegría 

1=palmas, 

2=alegría 

el corazon da un 

vuelco de alegría 

dar palmas de alegría 

AntiReal1 cancer to win over N’s 

cancer 

dolor  

sospecha 

aguantar el dolor 

desmentir la sospecha 
Anti 

Lat. antonymum – antonym, 

i.e. an LF returning for L a 

lexical unit L´ such that the 

meanings ‘L’ and ‘’ differ by a 

negation of an internal element of 

one of them. 

AntiReal2 examination 

piece of 

advice 

application 

to fail an examination 

to reject a piece of 

advice 

to turn down an 

application 

examen  

consejo 

solicitud  

reprobar el examen  

desoír el consejo 

rechazar la solicitud 

Result 

Lat. resultare ‘result’ – a verb 

meaning ‘to be the expected 

result of’. 

ResultOper3 proposal to have the proposal    



Appendix 4. Program Source Code (Perl) 

Step 1. Reading the original data Excel file containing the Corpus of Spanish 

Verb-Noun Lexical Functions. 
 

# PROGRAM DESCRIPTION  

# Reads the Excel file containing the Corpus of Sanish Verb-Noun  

# Lexical Functions and outputs a text file where each line looks 

like this: 

# v_formar 2 n_parte 1 CausFunc0, where v stands for verb,  

# n stands for noun, the numbers which follow the words formar and 

parte  

# are numbers of their senses in the Spanish WordNet   

 

#!/usr/bin/perl -w 

use strict; 

use 5.010; 

use Win32::OLE qw(in with); 

use Win32::OLE::Const 'Microsoft Excel'; 

 

$Win32::OLE::Warn = 3; # die on errors... 

 

# open new Excel application  

my $Excel = Win32::OLE->GetActiveObject('Excel.Application') 

    || Win32::OLE->new('Excel.Application', 'Quit');   

 

# open Excel file 

my $Book = $Excel->Workbooks->Open 

("C:/Lexical Resources/Corpus of Spanish Verb-Noun Lexical 

Functions.xls");  

 

# select worksheet number 1 (you can also select a worksheet by 

name) 

my $Sheet = $Book->Worksheets($ARGV[0]); 

 

warn "Processing $ARGV[0]\n"; 

 

my %POS = ( 

        VERB => "v_", 

        NOUN => "n_", 

        ADJECTIVE => "a_", 

        ADVERB => "r_" 

); 

my %prefix = ( 

        2 => ($POS{$Sheet->Cells(1,2)->{'Value'}} or die),  

        4 => ($POS{$Sheet->Cells(1,4)->{'Value'}} or die) 

); 

for my $row (2..1001) 

{        

        for my $col (2..5, 1) 

        { 

                # skip empty cells 

                die "Empty cell: (row, col) = ($row, $col)" unless 

defined $Sheet->Cells($row,$col)->{'Value'}; 

                # print out the contents of a cell   

                print +($prefix {$col} // ""), $Sheet-

>Cells($row,$col)->{'Value'}, " "; 

        } 

 printf "\n"; 



} 

$Book->Close; 

 

 

Step 2. Mark verb-noun combinations as positive or negative examples for the 

lexical function chosen for the classification procedure.  
 

# PROGRAM DESCRIPTION 

# Reads the text file generated at Step 1 and outputs a text file 

where  

# each line looks like this:  

# v_formar 2 n_parte 1 no % CausFunc0 

# where v stands for verb, # n stands for noun, the numbers which 

follow  

# the words formar and parte are numbers of their senses in the 

Spanish    

# WordNet and no means that this is a negative example for the 

lexical 

# function chosen for the classification procedure (which is 

definitely  

# not CausFunc0). 

 

#!perl -w 

use strict; 

use 5.010; 

my $f = $ARGV [0];  # the name of the LF chosen  

# for the classification procedure 

 

while (<STDIN>) 

{ 

        chomp; 

        next if /^ *$/; 

        next if /N\/A/; 

        next if /ERROR/; 

        die unless my ($line, $func) = /(.*) ([^ ]+) *$/; 

        say $line, " ", ($func =~ /^$f/) ? "yes" : "no", " % ", 

$func; 

} 

Step 3. Prepare a wordlist. 
 

# PROGRAM DESCIPTION  

# Reads the text file generated at Step 1 and outputs a text file  

# where lines look like these:  

# v formar 2 

# n parte 1 

# and where v stands for verb, n stands for noun and the numbers are 

those  

# of the respective senses of words in the Spanish WordNet 

 

#!perl -w 

use strict; 

use 5.010; 

 

while (<>) 

{ 

        chomp; 

        next if /^ *$/; 

        next if /N\/A/; 



        next if /ERROR/; 

        die unless my ($pos1, $word1, $sense1, $pos2, $word2, 

$sense2) = /^([^ ]+)_([^ ]+) +([0-9]+) +([^ ]+)_([^ ]+) +([0-9]+)/; 

        # next unless my ($pos1, $word1, $sense1, $pos2, $word2, 

$sense2) = /^([^ ]+)_([^ ]+) +([0-9]+) +([^ ]+)_([^ ]+) +([0-9]+)/; 

 

        say "$pos1 $word1 $sense1"; 

        say "$pos2 $word2 $sense2"; 

} 

Step 4. Find hyperonyms in the Spanish WordNet.  
 

# PROGRAM DESCRIPTION 

# Reads the text file generated at Step 3 and the Spanish WordNet  

# and outputs a text file where each line looks like these:  

# v_formar_2|v01787769|v01788486 

# n_parte_1|n00013018|n00018916|n09945970 

# where v stands for verb, n stands for noun, the numbers which 

follow  

# the words formar and parte are numbers of their senses in the 

Spanish    

# WordNet, codes like v01787769 are hyperonym synset IDs in the 

Spanish  

# WordNet and | is a separator, so for each word all hyperonyms  

# are extracted from the SpanishWordNet  

 

#!perl -w 

use strict; 

use 5.010; 

 

my $wndir = $ARGV[0]; 

my %hypernym; 

open F, "$wndir/esWN-200611-relation"; # a file of the Spanish 

WordNet 

 

while (<F>) 

{ 

        # has_hyponym|n|06125829|n|50005897|99 

        push @{$hypernym {"$3$4"}}, "$1$2"  

    if /^has_hyponym\|(\w)\|(\d+)\|(\w)\|(\d+)\|/; 

} 

close F; 

my %synset; 

   

open F, "$wndir/esWN-200611-variant"; # a file of the Spanish 

WordNet 

 

while (<F>) 

{ 

        # v|00005575|parpadear_ligeramente|1|99|- 

        /^(\w)\|(\d+)\|([^|]*)\|(\d+)\|/ or die; 

        my $word   = "$1_$3_$4"; 

        my $synset = "$1$2"; 

        given ("$word|$synset") 

        { 

                when ("n_pena_1|n10385041")  { $word = "n_pena_13" } 

        } 

        push @{$synset {$word}}, $synset; 

} 

close F; 

 



while (<STDIN>) 

{ 

        chomp; 

        s/ /_/g; 

        my %result; 

        if (@{$synset{$_} // []} != 1) 

        { 

                warn "No synset or multiple synsets for:  

      $_; skipping this word\n"; 

                next; 

        } 

                my @ToDo = ($synset{$_} [0]); # only one synset;  

# this has been checked 

above 

        while (my $current = pop @ToDo) 

        { 

                undef $result {$current}; 

                push @ToDo, @{$hypernym {$current} // []}; 

        } 

        say "$_|", join '|', sort keys %result; 

} 

Step 5. Compile an attribute list for the ARFF file.  
 

# PROGRAM DESCRIPTION 

# Reads a particular Spanish WordNet file, the text file generated 

at Step 4  

# and outputs lines like these (here the beginning of the file is 

given): 

# 

# @relation function 

# 

# @attribute n00001740 {0,1} 

# @attribute n00002086 {0,1} 

# @attribute n00003731 {0,1} 

# In this file the number of lines is equal to the overall number of 

all  

# hyperonyms (which are included in the text file generated at Step 

4. 

# Codes like v01787769 are hyperonym synset IDs in the Spanish  

# WordNet and {0,1} are boolean values of the respective attribute 

 

#!perl -w 

use strict; 

use 5.010; 

 

say "\@relation function"; 

say ""; 

my %h; 

while (<>) 

{        

  chomp; 

        my @a = split '\|'; 

        shift @a; 

        undef @h {@a}; 

 

} 

 

say "\@attribute $_ {0,1}" for sort keys %h; 

say "\@attribute category {yes,no}"; 

say ""; 



say "\@data"; 

Step 6. Add  commentaries to the attribute list for the ARFF file.  
 

# PROGRAM DESCRIPTION 

# Reads a particular Spanish WordNet file, the text file generated 

at  

# Step 5 and outputs lines like these: 

# 

# @attribute n09898220 {0,1} % 10_1 diez_1 decena_1 

# @attribute n09793320 {0,1} % 12.7_Kg_1 aprox._arroba_1 

# @attribute n10882271 {0,1} % 15_de_agosto_de_1945_1 dÝa_VJ_1 

# @attribute n10899730 {0,1} % 1_de_enero_1 a±o_nuevo_1 

# 

# where % is the symbol of a commentary, and commentaries are words  

# included in the respective synset indicated by its ID like 

n09898220 

  

#!perl -w 

use strict; 

use 5.010; 

 

my %h; 

 

while (<>) 

{ 

        chomp; 

        next unless /^([nv])\|([0-9]+)\|(.*?)\|([0-9]+)\|/; # $1 - 

$4 

        $h {$1.$2} .= " $3_$4"; 

} 

 

say "\@attribute $_ {0,1} \%$h{$_}" for sort { lc $h{$a} cmp lc 

$h{$b} } keys %h; 

Step 7. Compile the ARFF data file – Stage 1.  
 

# PROGRAM DESCRIPTION 

# Reads the text files generated at Step 5 and Step 6 

# Outputs the first part of the ARFF file 

 

#!perl -w 

use strict; 

use 5.010; 

 

open FULL,    $ARGV[0]; # the file generated at Step 6 

open INITIAL, $ARGV[1]; # the file generated at Step 5 

 

my @full = <FULL>; 

 

while (<INITIAL>) 

{ 

        chomp; 

        my %h; 

        unless (/^$/) 

        { 

                for my $full (@full) 

                { 

                        unless (index $full, $_) # found 

                        { 



                                print $full; 

                                die "Double match for $_" if exists 

$h{$_}; 

                                undef $h{$_}; 

                        } 

                } 

        } 

 

        say unless keys %h; 

} 

Step 8. Compile the ARFF data file – Stage 2 (final).  
 

# PROGRAM DESCRIPTION 

# Reads the text files generated at Step 2, Step 4 and Step 6 

# Outputs the final version of the ARFF file 

 
#!perl -w 

use strict; 

use 5.010; 

 

$| = 1;  # do not use buffer for output  

 

my $cnt_of_attributes; 

my %n_by_attribute; 

 

open F, "< $ARGV[0]" or die $!; # the file generated at Step 6 

 

while (<F>) 

{        

  next unless /^\@attribute (.*?) {/; # $1 

        $n_by_attribute {$1} = $cnt_of_attributes++; 

 

} 

 

$cnt_of_attributes--; 

close F; 

 

warn "$cnt_of_attributes attributes except the category\n"; 

 

my %hypernyms_by_word; # construct a database 

open F, "< $ARGV[1]" or die $!; # the file generated at Step 4  

 

while (<F>) 

{ 

        chomp; 

        next if /^$/; 

        die unless /(.*?)\|(.*)/; 

        $hypernyms_by_word {$1} = $2; 

} 

 

while (<STDIN>) # the file generated at Step 2 

{ 

        chomp; 

        # my ($w1, $w2, $category) = ("v_dar_9", "v_tomar_4", 

"yes");         

        die unless /^(\S+) +(\d+) +(\S+) +(\d+) +(\S+)( +% .*)?$/; 

        my $w1       = "$1_$2"; 

        my $w2       = "$3_$4"; 

        my $category = $5; 

        my @a = (0) x $cnt_of_attributes; 



  $a [$n_by_attribute {$_}] = 1 for split '\|',  

  ($hypernyms_by_word {$w1} . '|' . $hypernyms_by_word {$w2}); 

 

        push @a, $category; 

        say +(join ',', @a), " % $w1 $w2"; 

} 

 

Step 8. Read WEKA classifiers output.  
 

# PROGRAM DESCRIPTION 

# search for the line: ----------------- bayes.AODE ----------------  

# and print "bayes.AODE" (its the name of one of the classifiers)   

# search for the 15th line of numbers after the line  

# === Stratified cross-validation === 

# and print this line 

 

 

#!perl -w 

use strict; 

use 5.010; 

 

my $line; 

my $nextline; 

my $counter; 

 

 

 

while (my $line = <>)  

{  

      if ($line =~ /^-----------------\s(\w+\.\w+)/i)  

      {  

         print $1; 

         print "\n"; 

      } 

                   

      if ($line =~ /^=== Stratified cross-validation ===/)  

       

      {  

           for ($counter = 1; $counter < 16; $counter++)  

         

           { 

               $nextline = <>; 

           } 

        my $numbers = chomp ($nextline); 

        print "$nextline", "\n";  

      } 

} 

 

 

 



Chapter 11. Future Work 

We plan to do the following:  

1.   To experiment with different ratios of training and test sets of Spanish verb-non    

      collocations.  

1. To evaluate the performance of machine learning algorithms for more lexical 

functions. 

2. To analyze errors of classifiers.  

3. To test other classification techniques which were not examined in our experiments.  

4. To study the effect of other features, such as WordNet glosses. 

5. To experiment with a word space models representing various similarity measures 

between collocations.  

6. To experiment with context-base representation of data. Context can be represented in 

the form of grammatical relations between words.  

7. To experiment with other association measures to estimate distance between verb-noun 

collocations which belong to different lexical functions.   

8. To experiment on English verb-noun collocations.  
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