
INSTITUTO POLITECNICO NACIONAL
CENTRO DE INVESTIGACION EN COMPUTACION

Laboratorio de Lenguaje Natural y Procesamiento de Texto

Automatic Extraction of Lexical Functions

TESIS

QUE PARA OBTENER EL GRADO DE

DOCTOR EN CIENCIAS DE LA COMPUTACION

PRESENTA

M. en C. OLGA KOLESNIKOVA

Director:

Dr. Alexander Gelbukh

MEXICO, D.F. 2011

 2

Acknowledgements

I give thanks to God the Father, Lord Jesus Christ, the Son, and the Holy Spirit for giving me

this opportunity to come to Mexico and to do my doctoral studies.

I give thanks to the Republic of Mexico, its Government, National Polytechnic Institute,

CONACYT, and Center for Computing Research for making this work possible.

I give thanks to my advisor Dr. Alexander Gelbukh, to Dr. Sergio Suárez Guerra, Dr. José Luis

Oropeza Rodríguez, Dr. Héctor Jiménez Salazar, and Dr. Marco Antonio Moreno Ibarra for their

understanding and cooperation.

Resumen

Función léxica es un concepto que formaliza relaciones semánticas y sintácticas entre palabras.

Estas relaciones son muy importantes para cualquier sistema de procesamiento de lenguaje

natural.

Una relación colocacional es un tipo de relación léxica entre la base de una colocación y su

colocado. Una colocación es una combinación de palabras en la cual las palabras no tienen sus

significados típicos. Ejemplos de colocaciones son to give a lecture, impartir una conferencia, to

make a decision, tomar una decisión. En esas colocaciones las bases son lecture, conferencia,

decision, decisión, support, apoyo, y los colocados son give, impartir, make, tomar, lend, dar. Sin

embargo, cuando se utiliza el significado típico, las combinaciones de palabras se conocen como

combinaciones libres. Ejemplos de combinaciones libres son: to give a book, dar un libro, to

make a dress, hacer un vestido, to lend money, prestar dinero.

Existen muchos métodos de extracción automática de colocaciones. El resultado más común

de estos métodos son las listas de colocaciones. Las listas de colocaciones contienen solamente

las palabras que forman la colocación y la frecuencia de éstas. En este estudio nos enfocamos en

agregar información semántica y gramatical a las listas de colocaciones. Esta información es

extraída en forma de funciones léxicas. Dicha información hace que las colocaciones sean más

útiles para aplicaciones computacionales tales como: analizadores morfológicos, traducción

automática de alta calidad, sistemas de paráfrasis y aprendizaje de idiomas extranjeros asistido

por computadora. Entonces nuestra meta es extraer funciones léxicas de tipo verbo-sustantivo en

español de un corpus. Para lograr eso, proponemos representar el significado léxico de una

palabra con el conjunto de sus hiperónimos del diccionario Spanish WordNet y usar métodos de

aprendizaje de maquina supervisados para predecir funciones léxicas de colocaciones

desconocidas. Evaluamos varios algoritmos de aprendizaje de máquina utilizando el conjunto de

entrenamiento y el conjunto independiente de prueba. Los resultados obtenidos (el valor de la

medida F-measure de 75%) muestran que es posible detectar funciones léxicas automáticamente.

Contents

List of Tables

List of Figures

Chapter 1. Introduction

1.1. Lexical Functions: Preliminaries

1.2. Objective

1.3. Methodology

1.4. Organization of the Document

Chapter 2. Contributions

2.1. Scientific Contributions

2.2. Technical Contributions

Chapter 3. State of the Art

3.1. Lexical Functions: Theoretical Framework

3.2. Lexical Functions: Relations in Word Combinations

3.2.1. Institutionalized Lexical Relations

3.2.2. Collocational Relations

3.3. Lexical Functions: Definition and Examples

3.4. Lexical Functions and Collocations

3.4.1. Syntagmatic Lexical Functions

3.4.2. Syntagmatic Lexical Functions as a Collocation Typology

3.5. Automatic Extraction of Lexical Functions

3.5.1. Research in [Wanner 2004] and [Wanner et al. 2006]

3.5.2. Research in [Alonso Ramos et al. 2008]

3.5.3. Three Hypothesis Stated in [Wanner et al. 2006]

3.6. Automatic Detection of Semantic Relations

Chapter 4. Data

4.1. Data for the Training Sets

4.1.1. Lexical Resources

4.1.2. Work on Lexical Resources

4.1.3. Description of the Lexical Resource

4.2. Data for the Test Sets

Chapter 5. A New Method of Meaning Representation

5.1. Data Representation

5.1.1. Hyperonyms and Hyponyms

5.1.2. Spanish WordNet as a Source of Hyperonyms

5.1.3. Hyperonyms as a Meaning Representation

5.2. Linguistic Description of Training Sets and Test Sets

 5.2.1. Lexical Functions Chosen for Experiments

 5.2.2. Training Sets

 5.2.3. Test Sets

9

10

11

11

12

12

13

14

14

15

16

16

17

17

18

19

21

22

23

23

23

26

26

27

28

28

28

29

29

33

34

34

34

34

36

36

36

38

38

Chapter 6. Methodology

6.1. Machine Learning Algorithms

6.1.1. WEKA Data Mining Toolkit

6.1.2. Stratified 10-Fold Cross-validation Technique

6.2. Representing Data for Machine Learning Techniques

6.2.1. Training Sets

6.2.2. Test Sets

6.3. Classification Procedure

Chapter 7. Experimental Results

7.1. Algorithm Performance Evaluation on the Training Set

7.1.1. Baseline

7.1.2. Three Best Machine Learning Algorithms for Each Lexical Function

7.1.3. Algorithm Performance on the Training Set

7.1.4. Analysis of the Results

7.2. Algorithm Performance Evaluation on the Test Set

Chapter 8. Computational Applications of Lexical Functions

8.1. Important Properties of Lexical Functions with Respect to Applications

8.2. Lexical Functions in Word Sense Disambiguation

8.2.1. Syntactic Ambiguity

8.2.2. Lexical Ambiguity

8.3. Lexical Functions in Computer-Assisted Language Learning

8.4. Lexical Functions in Machine Translation

Chapter 9. Result Analysis with Respect to Our Contribution to Linguistic

Research

9.1. Computer Experiments in Linguistics

9.2. Linguistic Statement: Our Hypothesis

9.2.1. Collocational Isomorphism

9.2.2. Collocational Isomorphism Represented as Lexical Functions

9.3. Discussion of Our Results: Testing the Linguistic Statement

 9.4. Discussion of Our Results Concerning the Nature of Collocation: Statistical vs.

Semantic Approach

Chapter 10. Conclusions

Chapter 11. Future Work

Author’s Publications

Awards

Appendices

Appendix 1. Glossary

Appendix 2. Definitions of Collocation

Appendix 3. Syntagmatic Verb-Noun Lexical Functions

Appendix 4. Program Source Code

 References

39

39

40

40

40

40

42

43

47

47

47

48

50

61

66

68

68

69

69

70

70

71

73

73

74

74

76

77

78

80

82

83

85

86

86

89

95

105

112

List of Tables

Table 1. Examples of lexical functions

Table 2. Data in [Wanner 2004]

Table 3. Data in [Wanner et al. 2006]

Table 4. Results in [Wanner 2004]

Table 5. Results in [Wanner et al. 2006]

Table 6. Partial representation of the lexical resource

Table 7. Lexical functions with their respective frequency in corpus and the number of

instances in the list of verb-noun pairs

Table 8. Lexical functions chosen for the experiments

Table 9. Number of verb-noun combination in the test sets

Table 10. Machine learning algorithms used in the experiments

Table 11. Characteristics of data sets

Table 12. Best results showed by algorithms on the training set of lexical functions

Table 13. Probability of selecting “yes” class at random

Table 14. State of the art results for some LFs taken from [Wanner et al. 2006]

Table 15. Algorithm performance ranked by F-measure on the training set for Oper1

Table 16. Algorithm performance ranked by F-measure on the training set for

CausFunc0

Table 17. Algorithm performance ranked by F-measure on the training set for

CausFunc1

Table 18. Algorithm performance ranked by F-measure on the training set for Real1

Table 19. Algorithm performance ranked by F-measure on the training set for Func0

Table 20. Algorithm performance ranked by F-measure on the training set for Oper2

Table 21. Algorithm performance ranked by F-measure on the training set for

IncepOper1

Table 22. Algorithm performance ranked by F-measure on the training set for

ContOper1

Table 23. Algorithm performance ranked by F-measure on the training set for FWC

Table 24. Algorithm performance on the test set

Table 25. Algorithm performance on the test set

Table 26. Verb-noun collocations and their meaning

Table 27. Verb-noun collocations grouped according to their common semantic pattern

Table 28. Semantic patterns represented as lexical functions

21

25

25

25

26

32

32

37

38

39

43

47

48

49

50

51

52

54

55

56

57

58

60

66

67

75

75

77

 List of Figures

Fig 1. Sketch Engine with the Spanish Web Corpus

Fig. 2. The process of lexical resource compilation.

Fig. 3. A partial representation of the list of verb-noun pairs used for building the test

set

Fig. 4. The Spanish WordNet, hyperonyms for gato, cat.

Fig. 5. The Spanish WordNet, hyperonyms for gato, cat (continued).

Fig. 6. A partial representation of the training set in the ARFF format

Fig. 7. Algorithm of compiling the training sets

Fig. 8. The classification procedure

Fig. 9. Characteristics of data viewed in WEKA Explorer

Fig. 10. Selection of the classifier

Fig. 11. Output of the selected classifier

Fig. 12. Lexical Function Module of a Machine Translation System

30

31

33

35

35

41

42

43

44

44

45

72

Resumen

Función léxica es un concepto que formaliza relaciones semánticas y sintácticas entre palabras.

Estas relaciones son muy importantes para cualquier sistema de procesamiento de lenguaje

natural. Por ejemplo, para seleccionar el significado de una palabra se necesita identificar sus

relaciones con otras palabras en el contexto.

Una relación colocacional es un tipo de relación léxica entre la base de una colocación y su

colocado. Una colocación es una combinación de palabras en la cual las palabras no tienen sus

significados típicos. Ejemplos de colocaciones son to give a lecture, impartir una conferencia, to

make a decision, tomar una decisión, to lend support, dar apoyo. En esas colocaciones las bases

son lecture, conferencia, decision, decisión, support, apoyo, y los colocados son give, impartir,

make, tomar, lend, dar. Sin embargo, cuando se utiliza el significado típico, las combinaciones

de palabras se conocen como combinaciones libres. Ejemplos de combinaciones libres son: to

give a book, dar un libro, to make a dress, hacer un vestido, to lend money, prestar dinero.

Existen muchos métodos de extracción automática de colocaciones. El resultado más común

de estos métodos son las listas de colocaciones. Las listas de colocaciones contienen solamente

las palabras que forman la colocación y la frecuencia de éstas. En este estudio nos enfocamos en

agregar información semántica y gramatical a las listas de colocaciones. Esta información es

extraída en forma de funciones léxicas. Dicha información hace que las colocaciones sean más

útiles para aplicaciones computacionales tales como: analizadores morfológicos, traducción

automática de alta calidad, sistemas de paráfrasis y aprendizaje de idiomas extranjeros asistido

por computadora. Entonces nuestra meta es extraer funciones léxicas de tipo verbo-sustantivo en

español de un corpus. Para lograr eso, proponemos representar el significado léxico de una

palabra con el conjunto de sus hiperónimos del diccionario Spanish WordNet y usar métodos de

aprendizaje de maquina supervisados para predecir funciones léxicas de colocaciones

desconocidas. Evaluamos varios algoritmos de aprendizaje de máquina utilizando el conjunto de

entrenamiento y el conjunto independiente de prueba. Los resultados obtenidos (el valor de la

medida F-measure de 75%) muestran que es posible detectar funciones léxicas automáticamente.

Abstract

Lexical function is a concept which formalizes semantic and syntactic relations between lexical

units. Relations between words are a vital part of any natural language system. Meaning of an

individual word largely depends on various relations connecting it to other words in context.

Collocational relation is a type of institutionalized lexical relations which holds between the base

and its partner in a collocation (examples of collocations: gives a lecture, make a decision, lend

support where the bases are lecture, decision, support and the partners, termed collocates, are

give, make, lend). Collocations are opposed to free word combination where both words are used

in their typical meaning (for example, give a book, make a dress, lend money). Knowledge of

collocation is important for natural language processing because collocation comprises the

restrictions on how words can be used together. There are many methods to extract collocations

automatically but their result is a plain list of collocations. Such lists are more valuable if

collocations are tagged with semantic and grammatical information. The formalism of lexical

functions is a means of representing such information. If collocations are annotated with lexical

functions in a computer readable dictionary, it will allow effective use of collocations in natural

language applications including parsers, high quality machine translation, periphrasis system and

computer-aided learning of lexica. In order to create such applications, we need to extract lexical

functions from corpora automatically.

It is our intent to extract Spanish verb-noun collocations belonging to a given lexical function

from corpora. To achieve this task, it has been proposed to represent the lexical meaning of a

given word with a set of all its hyperonyms and to use machine learning techniques for

predicting lexical functions as values of the class variable for unseen collocations. Hyperonyms

are extracted from the Spanish WordNet. We evaluate many machine learning algorithms on the

training set and on an independent test set. The obtained results show that machine learning is

feasible to achieve the task of automatic detection of lexical functions.

Chapter 1. Introduction

1.1. Lexical Functions: Preliminaries

In this section, we introduce the concept of lexical functions with simple illustration. The

definition and more profound explanation will be given in Chapter 3, Section 3.3.

It does not surprise us that a bank can be a financial institution as well as a piece of land. It is

quite often that one word is used with different meanings. But sometimes the opposite happens:

we choose different words to express the same idea. For example, to give a smile means to smile,

and to lend support means to support. These two combinations convey the same idea: to smile is

to “perform”, or “do” a smile, and to support is to “do” support, so that both verb-noun

combinations share the same semantics: to do what is denoted by the noun. Likewise we find that

to acquire popularity and to sink into despair both mean ‘to begin to experience the <noun>’,

and to plant a garden and to write a letter mean ‘to create the <noun>’. Such semantic patterns

or classes are called lexical functions.

The notion of lexical functions is closely related to another linguistic concept, i.e.,

collocations. Again, collocations are presented in a simple, illustrative and informal way here.

More details are given in Chapter 3, Section 3.2.2 and in the same chapter, Section 3.4.

The meaning of word combination such as give a book or lend money can be obtained by

mechanically combining the meaning of the two constituting words: to give is to hand over, a

book is a pack of pages, then to give a book is to hand over a pack of pages. However, the

meaning of such word combinations as give a lecture or lend support is not obtained in this way:

to give a lecture is not to hand it over. Such word pairs are called collocations. Collocations are

difficult for a computer system to analyze or generate because their meaning cannot be derived

automatically from the meaning of their constituents. However, this difficulty could be resolved,

if each collocation is assigned its respective lexical function, since the latter represents the

collocational meaning.

More than 70 lexical functions have been identified. Each lexical function represents a group

of word combinations possessing the same semantic content. If we construct a database of word

combinations annotated with semantic data in the form of lexical functions, natural language

processing systems will have more knowledge at their disposal to fulfill such an urgent and

challenging task as word sense disambiguation. Lexical functions can also be helpful in text

generation, automatic translation, text paraphrase, among others.

1.2. Objective

Our objective is to construct a database of collocations annotated with lexical functions. This

objective can be achieved by completing the following tasks:

1. Create a lexical resource of Spanish verb-noun collocations annotated with

lexical functions and senses of the Spanish WordNet [Vossen 1998, SpWN].

Collocations are to be extracted automatically from the Spanish WebCorpus

[SpWC] by the Sketch Engine [SE, Kilgarriff et al. 2004], natural language

processing software.

2. Compile a training set for machine learning experiments using the lexical

resource of collocations.

3. Compile a test set of collocations. Collocations for the test set are to be

extracted automatically from a corpus other than the Spanish Web Corpus.

4. Apply the machine learning methods as implemented in WEKA learning toolkit

[WEKA] and evaluate them in fulfilling the task of predicting lexical functions

for unseen Spanish verb-noun combinations using the training set and the test

set. Find what methods are the best for predicting lexical functions chosen for

the experiments.

5. For each lexical function chosen for the experiments, use the learning algorithm

that predicts this function in the most effective way in order to detect what

collocations in the test set belong to the lexical function in question; annotate

collocations with this lexical function.

6. Save collocations annotated with lexical functions in a database.

1.3. Methodology

To achieve the objective given in Section 1.2, we use the following methods:

1. To extract collocations from the Spanish Web Corpus, we use the Sketch Engine, a

program designed to process corpora.

7. To compile a lexical resource of collocations, we rely on our intuition to assign

lexical functions to collocations and to tag each word in collocations with an

appropriate sense of the Spanish WordNet.

8. To construct the training set and the test set accessible by machine learning

methods, we use the ARFF format. The training set and the test set are built

automatically with the help of a Perl program written by us for this purpose.

9. To experiment with machine learning methods, we use WEKA 3-6-2 learning

toolkit.

10. To evaluate the performance of machine learning algorithms on the training set,

we use 10-fold cross-validation technique.

11. To evaluate the performance of machine learning algorithms on the test set, we

rely on our intuition to verify if the lexical functions predicted by classifiers for

particular collocations in the test set are the same as we would choose for these

collocations. In this manner, we estimate the values of precision, recall and F-

measure for the classifiers. To make the output of the machine learning

algorithms human readable, we process it by a Perl program written by us for

this purpose whose code in given in Appendix 4.

1.4. Organization of the Document

This document is organized in seven chapters. Chapter 1 is introductory, in Chapter 2

contributions of this work are birefly outlined. Chapter 3 describes state-of-the-art theoretical

framework, the basis of which is Meaning-Text Theory. It also explains a number of basic

concepts among which the concept of lexical function is fundamental for our work. Chapter 4

presents data and Chapter 5 explains how our data is represented in a new way for machine

learning experiments. Chapter 6 gives a detailed description of methods used to compile the

training set and the test set for machine learning experiments and learning algorithms applied to

fulfill the task of automatic detection of lexical functions. In Chapter 7, we present and consider

the experimental results. Chapter 8 speaks of some computational applications of lexical

functions, and in Chapter 9, a result analysis with respect to our contribution to linguistic

research is given. Chapter 10 presents conclusions, and in Chapter 11 future work is outlined.

The document concludes with a list of author’s publications, awards, appendices and references.

Chapter 2. Contributions

2.1. Scientific contributions

1. A new method of lexical meaning representation has been proposed in this work. Lexical

meaning is represented using the hyperonym hierarchy (in the case of our research the

hyperonym hierarchy of the electronic dictionary Spanish WordNet was used). This

representation has its potential use in other natural language processing tasks such as word sense

disambiguation, textual entailment among others. This meaning representation has been proved

effective in our case study, i.e. automatic extraction of lexical functions, realized on Spanish

material.

2. A new method of textual meaning representation has been proposed in this work. Textual

meaning is represented as a union of hyperonyms of all words used in a particular text. One of

advantages of such representation is its simplicity, since the meaning of a set of words is

represented in an additive manner, i.e. as a simple union of hyperonyms of each word in the set.

Therefore, this representation makes it possible to make a sum or subtract of meanings which

benefits its use in a variety of areas like information retrieval, making text summaries, text

classification, etc. In the case of our research, we used this method of semantic representation for

pairs of Spanish words, and it was demonstrated to be efficient.

3. In this work, the task of recognition of lexical functions in text has been achieved with a high

precision. Given two works, the system can predict the corresponding lexical function. At the

same time, since each lexical function has its proper semantics, the meaning of lexical function

disambiguates the words presented to the system. This makes it possible to predict new meanings

in texts although such new meanings do not appear in sense inventories. Therefore, lexical

function recognition contributes to a better text understanding.

4. It has been demonstrated in this work that lexical functions characterize words which show a

strong mutual association in texts. Such word combinations are called collocations or

instutionalized combinations. Therefore, given a word and a corresponding lexical function, we

can predict the other word to be used in combination with the given word. Also, the information

on lexical functions makes it possible to predict new meanings and helps to generate texts in

natural language.

5. A new meaning representation opens new ways for research. The metrics based on hyperonym

information can be used in data structures organized hierarchically and can be applied within the

Word Sense Model which is the future work.

6. The task of automatic detection of lexical functions has been formulated in a way that permits

a thorough investigation of new data representations and methodologies. In other words,

automatic extraction of lexical functions can not only help to resolve other tasks of

computational linguistics and natural language processing, it is also an independent area of

research.

2.2. Technical contributions

1. A database of hyperonyms of Spanish verb-noun combinations has been created automatically

using Perl programs whose code is given in Appendix 4.

2. A database of Spanish verb-noun lexical functions has been created. This lexical resource

includes 900 verb-noun pairs annotated with lexical functions and word senses of the Spanish

WordNet. The database is open to the public and is located at www.Gelbukh.com/lexical-

functions.

3. Best algorithms for recognition of lexical functions has been determined, see Chapter 7,

Section 7.1.2.

In general, machine learning techniques have been demonstrated to be feasible to fulfill the task

of automatic extraction of lexical functions. A wide-range comparison of many machine learning

techniques has been made for the task of automatic detection of lexical functions, and methods

have been identified that are able to give high quality predictions of lexical functions for unseen

verb-noun collocations.

Chapter 3. State of the Art

3.1. Lexical Functions: Theoretical Framework

As a concept, Lexical function (LF) was introduced in the frame of Meaning-Text Theory

described in [Mel’čuk 1974, 1996]. Later on, the LF formalism was used for various purposes:

word sense disambiguation, automatic translation, text paraphrasing, second language teaching,

etc.

Meaning-Text Theory (MTT) was created by I.A. Mel’čuk in the 1960s in Moscow, Russia.

Nowadays, the ideas that gave rise to MTT are being developed by Moscow semantic school

[Apresjan 2008]. MTT was proposed as a universal theory applicable to any natural language; so

far it has been elaborated on the basis of Russian, English and French linguistic data.

MTT views natural language as a system of rules which enables its speakers to transfer

meaning into text (speaking, or text construction) and text into meaning (understanding, or text

interpretation). However, for research purposes, the priority is given to the meaning-text transfer,

since it is believed that the process of text interpretation can be explained by patterns we use to

generate speech. MTT sets up a multilevel language model stating that to express meaning,

humans do not produce text immediately and directly, but the meaning-text transfer is realized in

a series of transformations fulfilled consecutively on various levels. Thus, starting from the level

of meaning, or semantic representation, we first execute some operations to express the intended

meaning on the level of deep syntax, then we go to the surface syntactic level, afterwards

proceeding to the deep morphological level, then to the surface morphological level, and we

finally arrive to the phonological level where text can be spoken and heard (oral text or speech).

Another option is a written text which is actually speech represented by means of an orthography

system created to facilitate human communication. Each transformational level possesses its own

“alphabet”, or units, and rules of arranging units together as well as rules of transfer from this

level to the next one in the series. So at each level we obtain a particular text representation –

e.g. deep syntactic representation, surface morphological representation, etc.

Semantic representation is an interconnected system of semantic elements, or network;

syntactic representations are described by dependency trees; morphological and phonological

representations are linear.

The most significant aspects of MTT are its syntactic theory, theory of lexical functions and

the semantic component – explanatory combinatorial dictionary. The syntactic part is most fully

presented in [Mel’čuk 1993-2000], lexical functions are explained further in this work, and the

best achievement in lexicography is explanatory combinatorial dictionaries for Russian and

French [Mel’čuk and Zholkovskij 1984, Mel’čuk et al. 1984].

3.2. Lexical Functions: Relations in Word Combinations

Theory of lexical functions is presented with the purpose to apply it to classification of

collocations. Therefore, we successively explain the concepts of institutionalized lexical

relations, collocational relations, lexical functions and syntagmatic lexical functions.

3.2.1. Institutionalized Lexical Relations

[Wanner 2004] states, that lexical function (LF) is a concept which can be used to systematically

describe “institutionalized” lexical relations. We will consider the notion of institutionalized

lexical relations and show its relevance to collocation. Wanner clarifies that “a lexical relation is

institutionalized if it holds between two lexical units L1 and L2 and has the following

characteristics: if L1 is chosen to express a particular meaning M, its choice is predetermined by

the relation of M to L2 to such an extent that in case M and L2 is given, the choice of L1 is a

language-specific automatism.” Institutionalized lexical relations can be of two types –

paradigmatic and syntagmatic. Paradigmatic relations are those between a lexical unit and all the

other lexical units within a language system (as between synonyms, hyperonyms and hyponyms,

etc.) and syntagmatic relations are those between a lexical unit and other lexical units that

surround it within a text. These are some examples of words between which there exist

institutionalized lexical relations: feeling – emotion, move – movement, snow – snowflake,

acceptance – general, argument – reasonable, make – bed, advice – accept, etc. In the first three

pairs of words we observe paradigmatic institutionalized lexical relations and the syntagmatic

ones in the rest of the examples.

In the above definition the term lexical unit is used to define a form-meaning composite that

represents a lexical form and single meaning of a lexeme [Loos 1997]. The phrase

“institutionalized lexical relation” does not have the meaning of the relation between lexical

units which build a cliché as in [Lewis 1994]. Speaking of multi-word entities as a whole, Lewis

divides them into two groups: institutionalized expressions and collocations. He defines

collocations as made up of habitually co-occurring individual words. Then he adds that

collocations tell more about the content of what a language user expresses as opposed to

institutionalized expressions which tell more about what the language user is doing, e.g.

agreeing, greeting, inviting, asking, etc. Institutionalized lexical relations in [Wanner 2004]

possess the quality of association present between habitually co-occurring words, or collocations,

if we consider the syntagmatic type of institutionalized lexical relations. Indeed, it can be seen

from definitions of collocation (see Appendix 2) that the relations between collocation

components, i.e. between the base and the collocate, are characterized by high probability of

occurrence of the collocate given the base and by arbitrariness of the collocate choice. The latter

is emphasized by [Lewis 1997] who insists that collocations do not result from logic but are

decided only by linguist convention.

We can notice that the concept of institutionalized lexical relations is wider than the concept of

relations between collocation elements. As it was mentioned in the beginning, institutionalized

lexical relations can be paradigmatic and syntagmatic. Paradigmatic relations connect lexical

units along the vertical axis of a language system while syntagmatic relations connect words

positioned along the horizontal axis of the language; they tie together lexical units within a linear

sequence of oral utterance or a written text as, for example, they link the base and its collocate in

a collocation. So the relations within a collocation are institutionalized syntagmatic lexical

relations which can be also termed collocational relations.

3.2.2. Collocational Relations

[Wanner 1996] gives the following definition of collocational relation. “A collocational relation

holds between two lexemes L1 and L2 if the choice of L1 for the expression of a given meaning is

contingent on L2, to which this meaning is applied. Thus, between the following pairs of lexical

units collocational relations hold: to do: a favor, to make: a mistake, close: shave, narrow:

escape, at: a university, in: a hospital.” The term lexeme used in the above definition is the

minimal unit of language which has a semantic interpretation and embodies a distinct cultural

concept, it is made up of one or more form-meaning composites called lexical units [Loos 1997].

As it is seen from the definition, a collocational relation holds between components of non-

free word combinations, i.e. such combinations whose semantics is not fully compositional and

has to be partially or entirely derived from the phrase as a whole. Non-free combinations are

opposed to free word combinations where syntagmatic relations hold between words in a phrase

with purely compositional semantics. Examples of free word combinations are: a black cable, a

different number, to put a chair [in the corner], to write a story, to run quickly, to decide to do

something. Examples of non-free word combinations are: a black box, as different again, to put

into practice, to write home about, to run the risk of [being fired], to decide on [a hat]. The

distinction between free and non-free combinations is a general distinction usually made in

linguistic research with respect to syntagmatic relations.

Collocational relations can be classified according to lexical, structural and semantic criteria.

The most fine-grained taxonomy of collocations based on semantic and structural principle was

given by [Mel’čuk 1996]. This taxonomy uses the concept of lexical function which we will

consider now.

3.3. Lexical Functions: Definition and Examples

The concept of lexical function was first introduced in [Mel’čuk 1974] within the frame of a

Meaning-Text linguistic model. It is a way to organize collocational data with the original

purpose of text generation. Here we will supply the definition of lexical function from [Mel’čuk

1996].

“The term function is used in the mathematical sense: f(X) = Y. …Formally, a Lexical

Function f is a function that associates with a given lexical expression L, which is the argument,

or keyword, of f, a set {Li} of lexical expressions – the value of f – that express, contingent on L,

a specific meaning associated with f:

f(L) = {Li}.

Substantively, a Lexical Function is, roughly speaking, a special meaning (or semantico-

syntactic role) such that its expression is not independent (in contrast to all “normal” meanings),

but depends on the lexical unit to which this meaning applies. The core idea of Lexical Functions

is thus lexically bound lexical expression of some meanings.”

To explain the concept of lexical function in a simple and illustrative way, let us consider two

sentences where the Spanish verb dar, give, is used.

(1) Te quiero dar un regalo, lit., I want to give you a gift.

(2) Quero dar un paseo, lit., I want to give a walk, the correct translation: I want to take a

walk.

In the first sentence the meaning of the phrase dar un regalo, give a gift, is composed of the

meaning of dar and the meaning of regalo. That is, the meaning of this phrase is a simple sum of

the meaning of its components. This is true for free word combinations to which dar un regalo

certainly belongs. If we observe the phrase dar un paseo in sentence (2), we notice that its

meaning can not be represented as a sum of the meanings of its components. The noun paseo is

used in its common or most frequent meaning. However, this is not the case of the verb dar. It

adds such a semantic component to the meaning of dar paseo that makes the whole phrase

convey the idea of pasear, to walk, or “efectuar” un paseo, “carry out” a walk. It can also be

mentioned that in order to express the meaning efectuar with paseo, only the verb dar is chosen,

and in fact this is the only choice because no other verb would be used in such a case by a native

Spanish speaker. This restrictive word co-occurence is characteristic of collocations to which dar

un paseo belongs. The same phenomenon is observed in the sentences

(1) Toma la mano, lit, Take the hand.

(2) Toma la decisión, lit. Take the decision, the correct translation: Make the decision.

In the first sentence we see a free word combination, and in the second sentence – a

collocation tomar la decisión, make the decision, which has the meaning “efectuar” la decisión,

“carry out” the decision. Now, we have two collocations with the same semantic component

efectuar: dar un paseo and tomar una decisión. Designating the semantic element efectuar by

Oper (abbreviated Latin verb operor, carry out) and using mathematical notation, we write the

following:

Oper(paseo) = dar,

Oper(decisión) = tomar.

Oper is the name of a lexical function, its value for the argument, or keyword paseo is dar, for

the keyword decisión – tomar. We can say that the generalized meaning or gloss of the lexical

function Oper is efectuar. Here are other examples of Oper:

Oper(conferencia, conference) = impartir, give,

Oper(anuncio, announcement) = hacer, make.

Oper values make up collocations with their respective keywords: impartir una conderencia,

hacer un anuncio, where the keyword is the base and the LF value is the collocate.

Thus, lexical function Oper denotes the collocational relation with the gloss ‘efectuar’,

‘perform’, ‘experience’, ‘carry out’. Other glosses, and therefore, lexical functions can be

distinguished among collocational relations. Consider some LFs in Table 1.

Table 1. Examples of lexical functions

LF
Name

description
Gloss Keyword Value Collocation

Fact from Latin

factum, fact

accomplish itself sueño, dream cumplirse,

come true

el sueño se cumplió, the

dream came true

Real from Latin

realibus , real

fulfill the requirement

contained in the argument

invitación,

invitation

aceptar,

accept

aceptar una invitación,

accept an invitation

Caus from Latin causa,

cause

cause to exist asociación,

association

fundar,

found

fundar una asociación,

found an association

Magn from Latin

magnus, big

intense, intensely, very

(intensifier)

temperatura,

temperature

alta,

high

la temperatura alta, high

temperature

Latin abbreviations are used for the names of lexical functions. The names are accompanied

by numeric subscripts. They signify how the LF argument and the LF semantic structure are

projected onto the syntactic structure of the LF value. For example, used as a subscript for Oper,

1 means that the Agent (the first participant) in the situation denoted by the argument is the

verb’s subject and the argument itself is its object. For example:

Oper1(demanda, demand) = presentar, present (presentar una demanda, present a demand).

Remember that the gloss of Oper1 is efectuar. As a subscript for the same LF, 2 means that

the verb’s subject is the Undergoer (the second participant) in the situation denoted by the

argument. For example:

Oper2(culpa, guilt) = tener, have (tener la culpa, have the guilt, be guilty).

The gloss of Oper2 is experimentar. Zero (0) as a subscript for the lexical function Func

(Latin fungor, realizar) shows that the LF argument is the subject of an intransitive verbal value.

For example:

Func0(viento, wind) = soplar, blow (el viento sopla, the wind blows).

3.4. Lexical Functions and Collocations

As it was mentioned in the beginning, lexical function is a concept used to systematically

describe “institutionalized” lexical relations, both paradigmatic and syntagmatic. Since we are

interested in collocational relations, i.e. syntagmatic institutionalized lexical relations, only

syntagmatic lexical functions will be considered in this work.

3.4.1. Syntagmatic Lexical Functions

Now we provide a definition of syntagmatic lexical function [Wanner 2004]. A syntagmatic

LF is a (directed) standard abstract relation that holds between the base A and the collocate B of

the collocation A⊕ B and that denotes ‘C’ ∈ ‘A⊕ C’ with ‘A⊕ C’ being expressed by A⊕ B.

‘Directed’ means that the relation is not symmetric. ‘Standard’ means that the relation apples to a

large number of collocations. ‘Abstract’ means that the meaning of this relation is sufficiently

general and can therefore be exploited for purposes of classification.

Alongside with formalizing semantic information, lexical functions specify syntactic patterns

of collocations. For this purpose, subscripts are used with the names of LFs as explained above.

Subscripts identify syntactic functions of words denoting basic thematic roles associated with LF

argument. We will not take semantic roles into account in our research and will treat subscripts

as a part of LF name. LF names serve as tags with which collocations are to be annotated as a

result of classification.

LFs can be grouped according to parts of speech to which collocational components belong.

The following classes of collocations are distinguished:

1. Verb-noun: to make a decision, to take a walk

2. Noun-noun: heart of the desert, prime of life

3. Adjective-noun: infinite patience, strong tea

4. Adverb-verb: to laugh heartily, to walk steadily

5. Noun-preposition: on the typewriter, by mail

6. Verb-preposition: to fly by [plane], to go to [the park]

About 20 of standard simple LFs capture verb-noun collocations. Simple LFs can further

combine to form complex LFs. Complex LFs reflect compositional semantics of collocates. For

example,

Magn + Oper1(laughter) = to roar [with laughter],

where roar means do [= Oper1] big [= Magn] laughter. In complex LFs, or in a configuration

of LFs, the syntactically central LF which determines the part of speech of the configuration and

the value is written rightmost. In the above example the value is a verb, so Oper is written

rightmost in the configuration:

MagnOper1(laughter) = roar [with ~].

3.4.2. Syntagmatic Lexical Functions as a Collocation Typology

Collocation definition has been a controversial issue for a number of years. Various criteria have

been suggested to distinguish collocations from free word combinations (see Appendix 2).

Definitions based on statistical distribution of lexical items in context cover frequently

encountered collocations but such collocations as feeble imagination are overlooked since they

occur rarely in corpus and thus are not considered collocations in the statistical sense. On the

other hand, collocation definition which suggest arbitrariness of lexical choice of the collocate

depending on the base does not encompass such phrases as strong man and powerful neighbor

which are considered recurrent free combinations.

We are interested in a collocation classification that can give an insight in the collocational

meaning. Syntagmatic lexical functions have glosses which represent a semantic component

added to the collocational base to form the meaning of a collocation. A gloss is an element of

meaning found common in a group of collocations. Such groups of collocations form classes,

each of the classes is associated with a particular lexical function. For verb-noun collocations, 20

lexical functions are identified. Compared to the only other existing semantic and syntactic

typology, the one proposed by [Benson et al. 1997], which includes 8 types of grammatical

collocations and 7 types of lexical collocations, the LF typology is very fine-grained. Verb-noun

lexical functions are listed and exemplified in Appendix 3.

3.5. Automatic Extraction of Lexical Functions

Not much research has been done on automatic detection of lexical functions. In fact, there are

only two papers that report results on performance of a few machine learning algorithms on

classifying collocations according to the typology of lexical functions, [Wanner 2004], [Wanner

et al. 2006]. In this section, we will summarize the work done in [Wanner 2004], [Wanner et al.

2006], then we will also mention another research on automatic extraction of lexical functions

[Alonso Ramos et al. 2008] based on an approach different from the work in [Wanner 2004] and

[Wanner et al. 2006]. We conclude this section with three statements, or hypotheses, made in

[Wanner et al. 2006].

3.5.1. Research in [Wanner 2004] and [Wanner et al. 2006]

In 2004, L. Wanner proposed to view the task of LF detection as automatic classification of

collocations according to LF typology. To fulfill this task, the nearest neighbor machine learning

technique was used. Datasets included Spanish verb-noun pairs annotated with nine LFs:

CausFunc0, Caus2Func1, IncepFunc1, FinFunc0, Oper1, ContOper1, Oper2, Real1, Real2. Verb-

noun pairs were divided in two groups. In the first group, nouns belonged to the semantic field of

emotions; in the second groups nouns were field-independent. As a source of information for

building the training and test sets, hyperonymy hierarchy of the Spanish part of EuroWordNet

was used. The words in the training set were represented by their hyperonyms, Basic Concepts

and Top Concepts. The average F-measure of about 70% was achieved in these experiments.

The best result for field-independent nouns was F-measure of 76.58 for CausFunc0 with the

meaning ‘cause the existence of the situation, state, etc.’ The Causer is the subject of utterances

with CausFunc0.

In [Wanner et al. 2006], four machine learning methods were applied to classify Spanish verb-

noun collocations according to LFs, namely Nearest Neighbor technique, Naïve Bayesian

network, Tree-Augmented Network Classification technique and a decision tree classification

technique based on the ID3-algorithm. As in [Wanner 2004], experiments were carried out for

two groups of verb-noun collocations: nouns of the first group belonged to the semantic field of

emotions; nouns of the second group were field-independent. Lexical functions were also

identical with [Wanner 2004] as well as data representation. The best results for field-

independent nouns were shown by ID3 algorithm (F-measure of 0.76) for Caus2Func1 with the

meaning ‘cause something to be experienced / carried out / performed’, and by the Nearest

Neighbor technique (F-measure of 0.74) for Oper1 with the meaning ‘perform / experience /

carry out something’. The Causer is the subject of utterances with Caus2Func1, and the Agent is

the direct object of the verb which is the value of Cuas2Func1. In utterances with Oper1, the

Agent is the subject.

As we are interested in experimented with verb-noun collocations where the nouns are have

various semantics, i.e., the nouns are field-independent, Tables 2—5 summarizes the results for

field-independent nouns only in [Wanner 2004] and [Wanner et al. 2006]. Table 2 gives the

meaning of lexical functions used in experiments only with field-independent nouns [Wanner

2004], examples in Spanish with literal translation in English; #Tr stands for the number of

examples of a given LF in the training set; #T stands for the number of examples of a given LF

in the test set; #Tt stands for the total number of examples of a given LF in the training set and in

the test set. Table 3 lists LFs with respective number of examples in [Wanner et al. 2006] for

verb-noun combinations with field-independent nouns. Table 4 presents the results reported in

the referenced paper. Table 5 shows the results in [Wanner et al. 2006]; the values of precision,

recall and F-measure are given in the following format: <precision> | <recall> | <F-measure>.

Not all four machine learning methods in Table 4 were applied to all LFs; if experiments were

not made for a particular method and LF, N/A is put instead of precision, recall, and F-measure.

Table 2. Data in [Wanner 2004]

Name Meaning Examples in Spanish
Lit. translation in

English
#Tr #T #Tt

Oper1 experience,

perform, carry out

something

dar golpe

presentar una demanda

hacer campaña

give a blow

present a demand

make a campaign

35 15 50

 dictar la sentencia dictate a sentence

Oper2 undergo, be

source of

someterse a un análisis

afrontar un desafío

hacer examen

tener la culpa

submit oneself to

analysis

face a challenge

make exam

have guilt

33 15 48

CausFunc0 cause the

existence of the

situation, state,

etc.

dar la alarma

celebrar elecciones

provocar una crisis

publicar una revista

give the alarm

celebrate elections

provoke a crisis

publish a magazine

38 15 53

Real1 act accordingly to

the situation, use

as forseen

ejercer la autoridad

utilizar el teléfono

hablar la lengua

cumplir la promesa

exercise authority

use a telephone

speak a language

keep a promise

37 15 52

Real2 react accordingly

to the situation

responder a objeción

satisfacer un requisito

atender la solicitud

rendirse a persuasión

respond to an

objection

satisfy a

requirement

attend an

application

surrender to

persuasion

38 15 53

Table 3. Data in [Wanner et al. 2006]

LF Number of Examples

CausFunc0 53

Oper1 87

Oper2 48

Real1 52

Real2 53

Table 4. Results in [Wanner 2004]

F-measure/LF CausFunc0 Oper1 Oper2 Real1 Real2

field-independent nouns 76.58 60.93 75.85 74.06 58.32

Table 5. Results in [Wanner et al. 2006]

Machine learning technique
LF

NN NB TAN ID3

CausFunc0 0.59 | 0.79 | 0.68 0.44 | 0.89 | 0.59 0.45 | 0.57 | 0.50 N/A

Caus2Func1 N/A N/A N/A 0.53 | 0.65 | 0.50

FinFunc0 N/A N/A N/A 0.53 | 0.40 | 0.40

IncepFunc1 N/A N/A N/A 0.40 | 0.48 | 0.40

Oper1 0.65 | 0.55 | 0.60 0.87 | 0.64 | 0.74 0.75 | 0.49 | 0.59 0.52 | 0.51 | 0.50

Oper2 0.62 | 0.71 | 0.66 0.55 | 0.21 | 0.30 0.55 | 0.56 | 0.55 N/A

ContOper1 N/A N/A N/A 0.84 | 0.57 | 0.68

Real1 0.58 | 0.44 | 0.50 0.58 | 0.37 | 0.45 0.78 | 0.36 | 0.49 N/A

Real2 0.56 | 0.55 | 0.55 0.73 | 0.35 | 0.47 0.34 | 0.67 | 0.45 N/A

3.5.2. Research in [Alonso Ramos et al. 2008]

[Alonso Ramos et al. 2008] propose an algorithm for extracting collocations following the

pattern “support verb + object” from FrameNet corpus of examples [Ruppenhofer et al. 2006]

and checking if they are of the type Opern. This work takes advantage of syntactic, semantic and

collocation annotations in the FrameNet corpus, since some annotations can serve as indicators

of a particular LF. The authors tested the proposed algorithm on a set of 208 instances. The

algorithm showed accuracy of 76%. The researchers conclude that extraction and semantic

classification of collocations is feasible with semantically annotated corpora. This statement

sounds logical because the formalism of lexical function captures the correspondence between

the semantic valency of the keyword and the syntactic structure of utterances where the keyword

is used in a collocation together with the value of the respective LF.

3.5.3. Three Hypothesis Stated in [Wanner et al. 2006]

[Wanner et al. 2006] experiment with the same type of lexical data as in [Wanner 2004], i.e.

verb-noun pairs. The task is to answer the question: what kind of collocational features are

fundamental for human distinguishing among collocational types. The authors view collocational

types as LFs, i.e. a particular LF represents a certain type of collocations. Three hypotheses are

put forward as possible solutions, and to model every solution, an appropriate machine learning

technique is selected. Below we list the three hypotheses and the selected machine learning

techniques.

1. Collocations can be recognized by their similarity to the prototypical sample of each

collocational type; this strategy is modeled by the Nearest Neighbor technique.

2. Collocations can be recognized by similarity of semantic features of their elements (i.e., base

and collocate) to semantic features of elements of the collocations known to belong to a

specific LF; this method is modeled by Naïve Bayesian network and a decision tree

classification technique based on the ID3-algorithm.

3. Collocations can be recognized by correlation between semantic features of collocational

elements; this approach is modeled by Tree-Augmented Network Classification technique.

It should be mentioned, that having proposed three hypotheses, the authors have not yet

demonstrated their validity by comparing the performance of many machine learning techniques

known today, but applied only four learning algorithms to illustrate that three human strategies

mentioned above are practical. This will be considered in more detail in Chapter 7.

3.6. Automatic Detection of Semantic Relations

There has been some research done on semantic relations in word combinations, for example,

one that deals with automatic assignment of semantic relations to English noun-modifier pairs in

[Nastase and Szpakowicz 2003, Nastase et al. 2006]. Though in our work, verb-noun

combinations are treated, we believe that the principles of choosing data representation and

machine learning techniques for detection of semantic relations between a noun and a modifier

can also be are used to detect semantic relations in verb-noun pairs. The underlying idea is the

same: learning the meaning of word combinations. In [Nastase and Szpakowicz 2003, Nastase et

al. 2006], the researchers examined the following relations: causal, temporal, spatial,

conjunctive, participant, and quality. They used two different data representations: the first is

based on WordNet relations, the second, on contextual information extracted from corpora. They

applied memory-based learning, decision tree induction and Support Vector Machine. The

highest F-measure of 0.847 was achieved by C5.0 decision tree to detect temporal relation based

on WordNet representation.

Chapter 4. Data

We have created a unique lexical resource of Spanish lexical functions in order to compile

training sets for machine learning experiments.

4.1. Data for the Training Sets

4.1.1. Lexical Resources

Lexical resources are widely used in natural language processing and their role is difficult to

overestimate. Lexical resources vary significantly in language coverage and linguistic

information they include, and have many forms: word lists, dictionaries, thesauri, ontologies,

glossaries, concordances, etc. For Spanish, this diversity of forms can be illustrated with the

following lexicographic works: A Medieval Spanish Word List [Oelschläger 1940], Diccionario

de la Lengua Española (Dictionary of the Spanish Language) [RAE 2001], Streetwise Spanish

Dictionary/Thesaurus [McVey and Wegmann 2001], Spanish part of EuroWordNet [Vossen

1998], an electronic lexical onthology, Glosario de voces comentadas en ediciones de textos

clásicos [Fontecha 1941], Concordancia electrónica de la Biblia online (for Reina Valera

version, 1960) [CEB]. Machine readable resources are of special interest, since they comprise an

integral part of computer systems aimed at automatic language treatment and language

generation.

Though computerized lexicography has achieved a significant progress over last years,

compilation of high quality dictionaries still requires a lot of manual work. In such a multi-

faceted area as computational linguistics, it is difficult sometimes to find an adequate lexical

resource (and for the language you need) for a specific research task or application. One way to

solve this problem is to develop computational procedures which can adjust existing resources to

the demands of a researcher. However, this is not always effective. Certainly, the best solution of

this problem is to compile a new lexical resource, but this is not always feasible in view of its

cost.

We present a list of most frequent Spanish verb-noun pairs which contains semantically

annotated collocations and free word combinations. It is a machine readable lexical resource

where each verb-noun pair is associated with the following linguistic data:

1. whether a pair is a free word combination or a collocation;

2. if a verb-noun pair is a collocation, it is marked with lexical functions;

3. word senses of the Spanish WordNet [Vossen 1998, SpWN] are assigned to both elements

of the verb-noun pair.

4.1.2. Work on Lexical Resources

In this Section, we give a number of lexical resources that contain lexical functions. Almost all

of them are not specialized dictionaries of lexical functions, but include lexical functions

together with other linguistic information.

The concept of lexical function was originally proposed by researchers of the Russian

semantic school. Lexical functions have been applied there for description of lexica and machine

translation. A dictionary in Russian compiled by Apresjan [referenced in Apresjan 2004] for the

machine translation system ETAP includes more that 100 lexical functions with definitions and

examples. For instance, for the verbal lexical function Oper1, the dictionary contains several

hundreds of samples.

Lexical functions are used to describe the word’s combinatory power in Explanatory

Combinatorial Dictionaries compiled for Russian [Mel’čuk and Zholkovskij 1984] and for

French [Mel’čuk et al. 1984, 1988]. For every word, its lexical entry includes a list of lexical

functions applicable to it with their respective values. For French, an on-line dictionary, the

DiCo, is referenced in [Wanner 2004] but we could not access it on the web.

For Spanish, there exists a dictionary of collocations, Diccionario de colocaciones del Español

[DiCE] [Alonso Ramos 2003] annotated with lexical functions, but the DiCE is limited only to

nouns belonging to the semantic field of emotions. [Sanromán 1998, 2003] compiled collections

of Spanish collocations also for emotion nouns classified in terms of lexical functions. [Wanner

2004], [Wanner et al. 2006] used Sanromán’s collections for machine learning experiments, and

for the same purpose, compiled additional lists of Spanish verb-noun collocations annotated with

lexical functions. In the additional lists nouns were semantically field independent. The overall

number of LF instances in the latter lists were 256 [Wanner 2004] and 293 [Wanner et al. 2006].

Unfortunately, these lists are no longer available in full.

4.1.3. Description of the Lexical Resource

 Compilation

Firstly, the Spanish Web Corpus [SpWC] was chosen as a source of verb-noun pairs with the

pattern verb + direct object. All such verb-noun pairs used in the Spanish Web Corpus five or

more times, were extracted automatically from the said corpus by the Sketch Engine [Kilgarriff

et al. 2004], a web-based program for corpus processing. Fig. 1 displays the interface of the

Sketch Engine where several corpora are listed including the Spanish Web Corpus. The obtained

list contained 83,982 verb-noun pairs, and it was ranked by frequency.

Fig 1. Sketch Engine with the Spanish Web Corpus.

Secondly, one thousand pairs were taken from the upper part of the list, i.e. most frequent

verb-noun pairs.

Thirdly, in the list of one thousand pairs, erroneous combinations were marked with the label

ERROR. Erroneous pairs included, for instance, past participle or infinitive instead of noun, or

contained symbols like --, « , © instead of words. How did errors emerge? The automatic

extraction procedure was set to search for combinations with the pattern verb + direct object in

the corpus. This procedure needs part of speech (POS) and lemma information, and such data is

supplied by TreeTagger, software used to annotate the Spanish Web Corpus with POS and

lemmas. The TreeTagger is a leading tool applied for POS tagging and lemmatisation, it

achieves high accuracy but still is error-prone. Due to errors made by the TreeTagger, the set of

extracted verb-noun pairs contained fallacious combinations. For the sake of preserving the

original design of automatically extracted set, these incorrect combinations were not removed

from the list but identified as wrong. The total number of erroneous pairs was 61, so after their

removal the list contained 939 pairs.

Fourthly, collocational verb-noun pairs were annotated with lexical functions. The rest of the

pairs were annotated as free word combinations using the label FWC.

Lastly, all verbs and nouns in the list were disambiguated with word senses from the Spanish

WordNet, an electronic lexicon structured the same way as WordNet for English. For some verb-

noun pairs, relevant senses were not found in the above mentioned dictionary, and the number of

such pairs was 39. For example, in the combinaiton dar cuenta, give account, the noun cuenta

means razón, satisfacción de algo (reason, satisfaction of something). This sense of cuenta is

taken from Diccionario de la Lengua Española (Dictionary of the Spanish Language) [RAE

2001]. Unfortunately, this sense is absent in the Spanish WordNet so the expression dar cuenta

was left without sense annotation. All such words were annotation N/A, i.e. not available.

The annotated list was formatted as a table and saved in an MS Excel file. Fig. 2 shows the

process of the compilation of the lexical resource schematically.

Fig. 2. The process of lexical resource compilation.

Contents of the lexical resource

A partial representation of the list is given in Table 6; Table 7 lists all lexical functions found

in the list of 1000 most frequent verb-noun pairs, their frequencies in the Spanish Web Corpus,

and the number of examples for each of them.

Table 6. Partial representation of the lexical resource

LF/

FWC/

ERROR

VERB

Verb

Sense

Number

NOUN

Noun

Sense

Number

FREQ

Oper1 dar 2 cuenta N/A 9236

CausFunc0 formar 2 parte 1 7454

Oper1 tener 1 lugar 4 6680

Oper1 tener 1 derecho 1 5255

CausFunc1 hacer 2 falta N/A 4827

CausFunc1 dar 9 lugar 4 4180

Oper1 hacer 15 referencia 2 3252

Func0 hacer N/A año 2 3211

Oper1 tener 1 problema 7 3075

Func0 hacer N/A tiempo 1 3059

IncepOper1 tomar 4 decisión 2 2781

Oper1 tener 1 acceso 3 2773

Oper1 tener 1 razón 2 2768

Caus2Func1 llamar 8 atención 1 2698

Oper1 tener 1 sentido 1 2563

ERROR haber ERROR estado ERROR 2430

FWC hacer 6 cosa 3 2374

Oper1 tener 3 miedo 1 2226

ERROR haber ERROR hecho ERROR 2168

Table 7. Lexical functions with their respective frequency in corpus

and the number of instances in the list of verb-noun pairs

LF Freq # LF Freq #

Oper1

FWC

CausFunc1

CausFunc0

ERROR

Real1

Func0

IncepOper1

Oper2

Caus2Func1

ContOper1

Manif

Copul

CausPlusFunc0

Func1

PerfOper1

CausPlusFunc1

Real2

FinOper1

165319

70211

45688

40717

26316

19191

17393

11805

8967

8242

5354

3339

2345

2203

1848

1736

1548

1547

1476

280

202

90

112

61

61

25

25

30

16

16

13

9

7

4

4

5

3

6

PerfFunc0

Caus1Oper1

Caus1Func1

IncepFunc0

PermOper1

CausManifFunc0

CausMinusFunc0

Oper3

LiquFunc0

IncepReal1

Real3

PlusOper1

CausPerfFunc0

AntiReal3

MinusReal1

AntiPermOper1

ManifFunc0

CausMinusFunc1

FinFunc0

1293

1280

1085

1052

910

788

746

520

514

437

381

370

290

284

265

258

240

229

178

1

2

3

3

3

2

3

1

2

2

1

1

1

1

1

1

1

1

1

4.2. Data for the Test Sets

To build the test set, we extracted all verb-noun pairs from a corpus other than the corpus used to

construct the training sets. So the data for test sets was mined from the Spanish Treebank

Cast3LB [Civit and Martí 2004]. The number of all verb-noun pairs extracted from Cast3LB was

5181. We constructed four test sets, including, respectively, 100%, 75%, 50%, and 25% of all

verb-noun pairs taken from Treebank Cast3LB.

Fig. 3. A partial representation of the list of verb-noun pairs used for building the test set.

v tener 1

n aire 1

v tener 1

n aire 2

...

v tener 9

n aire 10

v tener 9

n aire 11

v tener 9

n aire 12

v salir 1

n error 1

v salir 1

n error 2

v salir 1

n error 3

v salir 1

n error 4

v salir 1

n error 5

v salir 1

n error 6

...

We did not disambiguate verb-noun pairs for the test sets manually. Instead, for each verb-

noun, we built all possible verb-noun combinations of all senses in the Spanish WordNet. As an

example, let us consider the pair representar papel, lit. represent role. The verb representar has

12 senses in the Spanish WordNet, and the noun papel, 5. This gives totally 60 combinations of

representar and papel (12 multiplied by 5). The initial list for the test set included 5,181 verb-

noun pairs which resulted in totally 96,079 instances in the test set. A partial representation of

the list is given in Fig. 3.

Chapter 5. A New Method of Meaning Representation

5.1. Data Representation

Each verb-noun pair in the training set and in the test set is represented as a set of all

hyperonyms of the noun and all hyperonyms of the verb. The noun and the verb of the verb-noun

pair were considered as zero-level hyperonyms and thus were included in the set of hyperonyms.

5.1.1. Hyperonyms and Hyponyms

In linguistics, a hyponym is a word or phrase whose meaning is included within the meaning of

another word, its hyperonym (spelled hypernym in natural language processing literature). To put

it simpler, a hyponym shares a type-of relationship with its hyperonym. For example, restaurant,

rest house, planetarium, observatory, packinghouse, outbuilding, Pentagon are all hyponyms of

building (their hyperonym), which is, in turn, a hyponym of construction.

In computer science, the relationship of hyperonymy is often termed an "is-a" relationship. For

example, the phrase Restaurant is a building can be used to describe the hyponymic relationship

between restaurant and building.

Thus, hyperonymy is the semantic relation in which one word is the hyperonym of another

one.

5.1.2. Spanish WordNet as a Source of Hyperonyms

The Spanish Wordnet follows the EuroWordNet [Vossen 1998] framework and is structured in

the same way as the American WordNet for English [Miller 1998] in terms of synsets (sets of

synonymous words) with basic semantic relations between them.

Fig. 4. The Spanish WordNet, hyperonyms for gato, cat.

Fig. 5. The Spanish WordNet, hyperonyms for gato, cat (continued).

Spanish nouns and verbs are organized into synonym sets, each representing one underlying

lexical concept. Different relations, for example, hyperonym relations, link the synonym sets.

Since all verbs and nouns have been disambiguated, hyperonyms can be found for each word

that has been annotated with its sense of the Spanish WordNet [SpWN]. Hyperonyms were

extracted automatically from the database of the dictionary referenced above. Fig. 4 and Fig. 5

display the interface of the Spanish WordNet as it is seen on the web. In the interface, we see

hyperonyms of gato, cat.

5.1.3. Hyperonyms as a Meaning Representation

A difference between data representation in our experiments and data sets used in [Wanner et al.

2006] should be noted here. In the paper just referenced, every word in the training set was

accompanied by its synonyms and hyperonyms, its own Base Concepts (BC) and the BCs of its

hyperonyms, its own Top Concepts (TC) and the TCs of its hyperonyms taken from the Spanish

part of the EuroWordNet [Vossen 1998]. We included only hyperonyms in our training sets.

Though in this case the data is annotated with less information, i.e. only with hyperonyms, or in

other words, only hyperonyms are used to represent the meaning of verb-noun pairs, we hope

that hyperonyms would be sufficient to distinguish between lexical functions. Up to now, there

has not been any research done that compares different data representations for the task of

predicting lexical functions of verb-noun pairs. Here we can remember the original intent of

WordNet compilers [Miller 1998] who claimed that the meaning of any word can be described

sufficiently well by semantic relations only, like “is-a-kind-of” semantic relation of hyperonym

hierarchy. Later, WordNet authors admitted that their previous assumption had been wrong and

glosses were added to distinguish synonym sets. Though practical significance of glosses is

generally accepted, we intent to study how well the meaning of lexical functions can be

distinguished if only hyperonym information is taken into account. Further research is needed to

investigate how information other that hyperonym taxonomy, for example, that of semantic

ontologies, changes the performance of machine learning algorithms.

5.2. Linguistic Description of Training Sets and Test Sets

5.2.1. Lexical Functions Chosen for Experiments

Our choice of lexical functions depends on the number of examples that each lexical function has

in the lexical resource of Spanish lexical functions created by us and described in Section 4.1.

We have selected LFs that have the number of examples sufficient for machine learning

experiments. [Wanner 2004] and [Wanner et al.2006] experimented with the following number

of LF examples: the biggest number of examples that this researcher had in the training set was

87 for Oper1 and the least number of examples was 33 for Oper2. This data can be seen in

Section 3.5.1.

Table 8. Lexical functions chosen for the experiments

Collocation: LF value + keyword LF and # of

examples
Meaning

Spanish English translation

Oper1

280

Lat. operare – ‘to do,

perform’. Experience

(if K is an emotion),

carry out K.

alcanzar un objetivo

aplicar una medida

corregir un error

satisfacer una

necesidad

achieve a goal

apply a measure

correct a mistake

satisfy a necessity

CausFunc0
112

Lat. causare – ‘to

cause’. Do something

so that K begins

occurring.

encontrar respuesta

establecer un sistema

hacer campaña

producir un efecto

find an answer

establish a system

conduct a campaign

produce an effect

CausFunc1
90

A person/object,

different from the

agent of K, does

something so that K

occurs and has effect

on the agent of K.

abrir camino

causar daño

dar respuesta

producir un cambio

open the way

cause damage

give an answer

produce a change

Real1
61

Lat. realis – ‘real’. To

fulfill the requirement

of K, to act according

to K.

contestar una pregunta

cumplir el requisito

solucionar un

problema

utilizar la tecnología

answer a question

fulfill the requirement

solve a problem

use technology

Func0
25

Lat. functionare – ‘to

function’. K exists,

takes place, occurs.

el tiempo pasa

hace un mes

una posibilidad cabe

la razón existe

time flies

a month ago

there is a possibility

the reason exists

Oper2
30

Undergo K, be source

of K

aprender una lección

obtener una respuesta

recibir ayuda

sufrir un cambio

learn a lesson

get an answer

receive help

suffer a change

IncepOper1
25

Lat. incipere – ‘to

begin’. Begin to do,

perform, experience,

carry out K.

adoptar una actitud

cobrar importancia

iniciar una sesión

tomar posición

take an attitude

acquire importance

start a session

obtain a position

ContOper1
16

Lat. continuare – ‘to

continue’. Continue to

do, perform,

experience, carry out

K.

guardar silencio

mantener el equilibrio

seguir un modelo

llevar una vida

(ocupada)

keep silence

keep one’s balance

follow an example

lead a (busy) life

Table 8 presents LFs that we have chosen for our experiments. For each LF, we give the

number of examples, its meaning, and sample verb-noun combinations.

In the lexical resource, we have annotated free word combinations with the tag FWC. The

number of FWC is 261. We considered free word combinations as a lexical function FWC in its

own right and experimented how machine learning algorithms can predict this class of word

combinations. Therefore, the total number of LFs we experimented with is 9.

Remember, that in the training set and test set, each verb-noun combination is represented as a

set of all hyperonyms of the noun and all hyperonyms of the verb. To construct this

representation, the number of sense for every verb and noun must be identified. But sometimes,

an appropriate sense was absent in the Spanish WordNet. Such words were tagged with

abbreviation N/A (not available) instead of the number of word sense. In the training set, we

included only verb-noun combinations that are disambiguated with word senses of the Spanish

WordNet. In Table 8, the numbers of examples include only these verb-noun pairs in which all

the words are disambiguated with the Spanish WordNet.

The total number of examples for all 9 lexical functions is 900.

5.2.2. Training Sets

For each of 9 LF chosen for experiments, we built a training set, so we had 9 training sets. All

training sets included the same list of 900 verb-noun combinations. The only difference between

training sets was the annotation of examples as positive and negative. As an example, let us

consider the training set for Oper1. In the list of 900 verb-noun pairs, there are 266 examples of

Oper1, so these examples are marked as positive in the training set, and all the rest of verb-noun

combinations whose number is 634 (900 – 266 = 634) were marked as negative examples. This

procedure was applied to each training set.

5.2.3. Test Sets

The test sets were built independently of the training set. 5181 verb-noun combinations for the

test set were extracted from the Spanish Treebank Cast3LB [Civit and Martí 2004]. Four test sets

were constructed, including, respectively, 100%, 75%, 50%, and 25% of all verb-noun pairs

taken from Treebank Cast3LB. Words in the test set were not annotated with lexical functions.

Table 9 gives the number of verb-noun pairs in all four test sets.

Table 9. Number of verb-noun combination in the test sets

Test set Number of

verb-noun combinations

100% 5181

75% 3886

50% 2590

25% 1295

Chapter 6. Methodology

6.1. Machine Learning Algorithms

Our approach is based on supervised machine learning algorithms as implemented in the WEKA

version 3-6-2 toolset [WEKA], [Hall et al. 2009], [Witten and Frank 2005]. We performed two

groups of experiments. In the first group of experiments, we evaluated the prediction of LFs

meanings on the training sets using 10-fold cross-validation technique. In the second group of

experiments, the same meanings were predicted for the instances of an independent test set.

Table 10 lists all 68 machine learning algorithms we experimented with.

Table 10. Machine learning algorithms used in the experiments

Algorithm Algorithm Algorithm

AODE ClassificationViaClustering VFI

AODEsr ClassificationViaRegression ConjunctiveRule

BayesianLogisticRegression CVParameterSelection DecisionTable

BayesNet Dagging JRip

HNB Decorate NNge

NaiveBayes END OneR

NaiveBayesSimple EnsembleSelection PART

NaiveBayesUpdateable FilteredClassifier Prism

WAODE Grading Ridor

LibSVM LogitBoost ZeroR

Logistic MultiBoostAB ADTree

RBFNetwork MultiClassClassifier BFTree

SimpleLogistic MultiScheme DecisionStump

SMO OrdinalClassClassifier FT

VotedPerceptron RacedIncrementalLogitBoost Id3

Winnow RandomCommittee J48

IB1 RandomSubSpace J48graft

IBk RotationForest LADTree

KStar Stacking RandomForest

LWL StackingC RandomTree

AdaBoostM1 ThresholdSelector REPTree

AttributeSelectedClassifier Vote SimpleCart

Bagging HyperPipes

We evaluated the performance of the selected algorithms by comparing precision, recall, and

F-measure (values for predicting the positive class). The precision is the proportion of the

examples which truly have class x among all those which were classified as class x. The recall is

the proportion of examples which were classified as class x, among all examples which truly

have class x.

The F-measure is the harmonic mean of precision and recall:

RecallPrecision

RecallPrecision
2F

+

×
×= .

6.1.1. WEKA Data Mining Toolkit

WEKA (Waikato Environment for Knowledge Analysis) is well-known software for machine

learning and data mining developed at the University of Waikato. This program is written in

Java. WEKA is an open-source workbench distributed under the GNU-GPL license. For machine

learning experiments, we have used WEKA version 3-6-2 [WEKA, WM]. WEKA workbench

has a graphical user interface that leads the user through data mining tasks and has data

visualization tools that help understand the models.

6.1.2. Stratified 10-Fold Cross-validation Technique

For evaluating the prediction of machine learning algorithms on the training set, we have used

stratified 10-fold cross-validation technique. The simplest form of evaluating the performance of

classifiers is using a training set and a test set which are mutually independent. This is referred to

as hold-out estimate.

We have chosen a more elaborate evaluation method, i.e. cross-validation. Here, a number of

folds n is specified. The dataset is randomly reordered and then split into n folds of equal size. In

each iteration, one fold is used for testing and the other n-1 folds are used for training the

classifier. The test results are collected and averaged over all folds. This gives the cross-

validation estimate of the accuracy. The folds can be purely random or slightly modified to

create the same class distributions in each fold as in the complete dataset. In the latter case the

cross-validation is called stratified. We have applied the stratified option of 10-fold cross-

validation method.

6.2. Representing Data for Machine Learning Techniques

6.2.1. Training Sets

In Section 5.4, we have given a linguistic description of the training set and the test set. We have

mentioned that each verb-noun pairs was represented as a set of all hyperonyms of the noun and

all hyperonyms of the verb.

However, the machine learning techniques can access data only if it is represented in the

Attribute-Relation File Format (ARFF).

A dataset in ARFF format is a collection of examples, each one of class

weka.core.Instance. Remember, that WEKA is written in Java. Each Instance consists of a

number of attributes, any of which can be nominal (one of a predefined list of values), numeric

(a real or integer number) or a string (an arbitrary long list of characters, enclosed in ”double

quotes”). In our case, all attributes are nominal.

For each verb-noun pair, we used binary feature representation. Every hyperonym is

represented as a nominal attribute which can take one of two values: “1” if it is a hyperonym of

any word in a given verb-noun pair, and “0” if it is not. The fact that a verb-noun combination

belongs or does not belong to a particular LF is identified by the class attribute with two possible

values: “yes” for positive examples of a particular LF and “no” for negative ones.

All training sets include 900 verb-noun pairs represented by hyperonyms. This gives 798

features to represent the nouns, and 311 features to represent the verbs. Total number of features

that are hyperonyms is 1109. There is also one class attribute; therefore, each training set

includes 1110 attributes. Verb-noun pairs in the training set are represented as vectors of length

1110:

v1, v2, ..., v798, n1, n2, ..., n311, LF,

where vn, nk can be 0 or 1, and LF is a class attribute having the value yes for positive instances

of LF for which classification is done, and no for negative instances. A partial representation of

the training set in the ARFF format is given in Fig. 6.

Fig. 6. A partial representation of the training set in the ARFF format.

@relation Oper1

@attribute n00001740 {0,1} % entidad_1

@attribute n00002086 {0,1} % ser_vivo_1

@attribute n00003731 {0,1} % agente_causal_1 causa_4

...

@attribute v01128460 {0,1} % causar_5 producir_4 ocasionar_1

@attribute v01130277 {0,1} % hacer_2

@attribute v01131926 {0,1} % dar_9

...

@attribute category {yes,no}

@data

1,0,0,0,1,0,0,1,0,0,0,0,0,0,...,0,0,0,yes % v_hacer_15 n_mención_1

...

0,0,0,0,0,0,0,0,0,0,0,0,0,1,...,0,0,0,no % v_abrir_5 n_camino_5

In Fig. 6, after the tag @relation, we define the internal name of the dataset. Nominal

attributes are defined with the tag @attribute. The record @data marks the beginning of the

data section. The data section consists of comma-separated values for the attributes – one line

per example. In Fig. 6 we show only two examples: one positive and one negative. All records

beginning with @attribute as well as all strings in the data section are accompanied by a

comment starting with symbol % in ARFF. For attribute entries, comments include words of the

synset specified by its number after the record @attribute. For data strings, comment includes

the verb-noun pair represented by this string. The pair is annotated with POS and word senses.

Comments were added for human viewing of data.

The process of training set compilation explained above can be represented as fulfilled

according to the algorithm shown in Fig. 7. The training sets (as well as the test sets) were

compiled automatically used the programs whose code is given in Appendix 4.

Fig. 7. Algorithm of compiling the training sets.

Algorithm: constructing data sets

Input: a list of 900 Spanish verb-noun collocations annotated with 8 lexical functions

Output: 8 data sets – one for each lexical function

For each lexical function

Create an empty data set and assign it the name of the lexical function.

For each collocation in the list of verb-noun collocations

 Retrieve all hyperonyms of the noun.

 Retrieve all hyperonyms of the verb.

 Make a set of hyperonyms:

 {noun, all hyperonyms of the noun, verb, all hyperonyms of the verb}.

 If a given collocation belongs to this lexical function

 assign ‘1’ to the set of hyperonyms,

 Else assign ‘0’ to the set of hyperonyms.

 Add the set of hyperonyms to the data set.

Return the data set.

6.2.2. Test Sets

Section 5.4.2 describes characteristics of the training sets used to evaluate the selected machine

learning algorithms by 10-fold cross-validation method. That is, the training set is used to build a

model on the learning stage and then the model is tested 10 times on parts of the same training

set.

When the performance of the machine learning techniques is evaluated on an independent test

set, the test set format must be compatible with the training test format. It means that the training

set must contain all the attributes which are included in the test set. Since the test set has a lot of

words other than the training set, the number of attributes is much bigger than in the case of 10-

fold cross-validation.

Therefore, the list of attributes is the same in the training set and in the test set, when the

performance of the algorithms is validated on an independent test set. Table 11 gives

characteristics of the training set and the test sets. In Table 11, verb-noun pairs are actual verb-

noun combinaitons extracted from Spanish Treebank Cast3LB, and instances are combinations

of all senses of the verbs and all senses of the nouns that are found in the Spanish WordNet. For

more details, see Section 3.2.

Table 11. Characteristics of data sets

Test

set

of verb-noun pairs from Spanish

Treebank Cast3LB

of instances in the

test set

of attributes in the training set

and the test set

100% 5181 96079 10544

75% 3886 73021 9495

50% 2590 48904 8032

25% 1295 22254 5857

6.3. Classification Procedure

Fig. 8 presents the classification procedure schematically.

Fig. 8. The classification procedure.

Now, we will explain the classification procedure using the WEKA graphical user interface.

First, the training set is downloaded and WEKA shows various characteristics of the data in

Explorer, a part of the interface developed for the purpose of analyzing data in the data set. This

stage is demonstrated in Fig.9.

Fig. 9. Characteristics of data viewed in WEKA Explorer.

Secondly, a classifier is chosen for data classification. This step can be vied in Fig. 10.

Fig. 10. Selection of the classifier.

 Thirdly, the chosen classifier starts working and after finishing the learning and the test

stages, it outputs various estimates of its performance. In our experiments, we used the values of

precision, recall and F-measure for „yes“ class, or the positive class, to evaluate the performance

of the classifiers. A classifier’s output is demonstrated in Fig. 11.

Fig. 11. Output of the selected classifier.

While for initial experiments the included graphical user interface is quite sufficient, for in-

depth usage the command line interface is recommended, because it offers some functionality

which is not available via the graphical user interface (GUI). When data is classified with the

help of GUI, the default heap memory size is 16—64 MB. For our data sets, this is too little

memory. The heap size of java engine can be increased via

—Xmx1024m for 1GB in the command line. Also, via the command line using the

–cp option we set CLASSPATH so that includes weka.jar.

Taking the above advantages into account, we operated WEKA through the command line

using the following options for the algorithm PART of class rules taken as an example:

set classpath=%classpath%;C:\Archivos de programa\Weka-3-6\weka.jar

set classpath=%classpath%;C:\Archivos de programa\Weka-3-6\rules.jar

set classpath=%classpath%;C:\Archivos de programa\Weka-3-6\PART.jar

java -Xmx1024m weka.classifiers.rules.PART -t training_set.arff -d part.model

java -Xmx1024m weka.classifiers.rules.PART -l part.model -T test_set.arff -p

0 >> result1.txt 2> $$1.tmp

The first three lines of the above example show how CLASSPATH is set for WEKA and the

chosen classifier in particular. The fourth line tells the classifier to learn on the training set and to

save the model created for the training data in a file with the extension model. The last line

commands the classifier to test the learnt model on the test set and save the results of prediction

in a file. To preserve error messages of the classifier for further debug, the standard error stream

(2>) can be directed to a file and saved in it.

Chapter 7. Experimental Results

7.1. Algorithm Performance Evaluation on the Training Set

In Table 12, we present the main results obtained in our experiments. For each LF, we list three

machine learning algorithms that have shown the best performance. The symbol # stands for the

number of examples in the respective training set; P stands for precision, R stands for recall, F

stands for F-measure. The baseline is explained in Section 7.1.1.

Table 12. Best results showed by algorithms on the training set of lexical functions

LF # Algorithm P R F Baseline

BayesianLogisticRegression 0.879 0.866 0.873

Id3 0.879 0.861 0.870

Oper1 280

SMO 0.862 0.866 0.864

0.311

JRip 0.747 0.705 0.725

EnsembleSelection 0.744 0.659 0.699

CausFunc0

112

REPTree 0.750 0.648 0.695

0.124

J48 0.842 0.696 0.762

FilteredClassifier 0.842 0.696 0.762

CausFunc1 90

END 0.842 0.696 0.762

0.100

Prism 0.735 0.832 0.781

BayesianLogisticRegression 0.788 0.553 0.650

Real1 61

SMO 0.722 0.553 0.627

0.068

BFTree 0.667 0.727 0.696

Id3 0.571 0.727 0.640

Func0

25

AttributeSelectedClassifier 0.636 0.636 0.636

0.028

PART 0.923 0.571 0.706

AttributeSelectedClassifier 0.923 0.571 0.706

Oper2

30

END 0.923 0.571 0.706

0.033

Prism 0.750 0.800 0.774

NNge 0.923 0.600 0.727

IncepOper1

25

SMO 0.813 0.650 0.722

0.028

SimpleLogistic 0.909 0.769 0.833

DecisionTable 0.909 0.769 0.833

ContOper1

16

AttributeSelectedClassifier 0.833 0.769 0.800

0.018

Prism 0.639 0.702 0.669

BayesianLogisticRegression 0.658 0.629 0.643

FWC 261

SMO 0.656 0.623 0.639

0.290

Total: 900 Average best: 0.758

7.1.1. Baseline

Often, in classification experiments, the baseline is the performance of ZeroR classifier. ZeroR is

a trivial algorithm that always predicts the majority class. It happens that the majority class in

our training sets is always the class of negative instances. Even in the case of the LF which has

the largest number of positive instances in the training set (280 positive examples of Oper1), the

number of negative instances is still larger (900 – 280 = 620 negative examples of Oper1).

Therefore, the ZeroR does not classify any test instances as positives, which gives always recall

of 0 and undefined precision. Thus ZeroR is too bad a baseline to be considered.

However, the baseline can be a random choice of a positive or a negative answer to the

question “Is this collocation of this particular lexical function?” In such a case we deal with the

probability of a positive and negative response. Since we are interested in only assigning the

positive answer to a collocation, we calculate the probability of “yes” class for eight lexical

functions in the experiments according to the formula: probability of “yes” = 1 / (the number of

all examples / the number of positive examples of a given lexical function). These probabilities

will be results of a classifier that assigns the class “yes” to collocations at random. Since we will

compare the probabilities of the random choice with the results obtained in our experiments, we

present the former as numbers within the range from 0 to 1 in Table 13 as well as in Table 12.

Table 13. Probability of selecting “yes” class at random

Lexical

function

Number

of

examples

Probability

of the class

“yes”

Oper1 280 0.311

CausFunc0 112 0.124

CausFunc1 90 0.100

Real1 61 0.068

Func0 25 0.028

Oper2 30 0.033

IncepOper1 25 0.028

ContOper1 16 0.018

FWC 261 0.290

7.1.2. Three Best Machine Learning Algorithms for Each Lexical Function

As it is seen from Table 12, no single classifier is the best one for detecting all LFs. For each LF,

the highest result is achieved by a different classifier. However, Prism reaches the highest F-

score for both IncepOper1 and FWC, though recall that FWC (free word combinations) is not a

lexical function but is considered as an independent class along with LFs. The maximum F-

measure of 0.873 is achieved by BayesianLogisticRegression classifier for Oper1. The lowest

best F-measure of 0.669 is shown by Prism for FWC. The average F-measure (calculated over

only the nine best results, one for each LF) is 0.758.

We observed no correlation between the number of instances in the training set and the results

obtained from the classifiers. For example, a low result is shown for the class FWC which has

the largest number of positive examples. On the contrary, the second top result is achieved for

LF ContOper1, with the smallest number of positive examples. The minimum F-measure is

obtained for FWC whose number of positive examples (261) is a little less than the largest

number of positive examples (Oper1 with 280 examples) but the detection of Oper1 was the best.

For comparison, Table 14 gives the state of the art results reported in [Wanner et al. 2006] for

LF classification using machine learning techniques. Out of nine LFs mentioned in [Wanner et

al. 2006] we give in Table 14 only those five that we used in our experiments, i.e., that are

represented in Table 12. The numbers of our results are rounded to include two figures after the

point, since the results of [Wanner et al. 2006] are represented in this manner. Also, as we have

explained in Section 3.5.1 that [Wanner et al. 2006] reports the results for two different datasets:

one for a narrow semantic field (that of emotions) and another for a field-independent (general)

dataset. Since our dataset is also general, comparing them with a narrow-field dataset would not

be fair, so in Table 14 we only give the field-independent figures from [Wanner et al. 2006].

Table 14. State of the art results for some LFs taken from [Wanner et al. 2006]

NN NB ID3 TAN Our
LF

P R F P R F P R F P R F F

Oper1 0.65 0.55 0.60 0.87 0.64 0.74 0.52 0.51 0.51 0.75 0.49 0.59 0.87

Oper2 0.62 0.71 0.66 0.55 0.21 0.30 N/A 0.55 0.56 0.55 0.71

ContOper1 N/A N/A 0.84 0.57 0.70 N/A 0.83

CausFunc0 0.59 0.79 0.68 0.44 0.89 0.59 N/A 0.45 0.57 0.50 0.73

Real1 0.58 0.44 0.50 0.58 0.37 0.45 N/A 0.78 0.36 0.49 0.78

Best average: 0.66 Average: 0.78

Not all methods have been applied in [Wanner et al. 2006] for all LFs; if a method was not

applied for a particular LF, the corresponding cells are marked as N/A. In this table, NN stands

for the Nearest Neighbor technique, NB for Naïve Bayesian network, ID3 is a decision tree

classification technique based on the ID3-algorithm, and TAN for the Tree-Augmented Network

Classification technique; P, R, and F are as in Table 12. In fact [Wanner et al. 2006] did not give

the value of F-measure, so we calculated it using the formula in Section 6.1. The last column

repeats the best F-measure results from Table 12, for convenience of the reader. For each LF, the

best result from [Wanner et al. 2006], as well as the overall best result (including our

experiments), are marked in boldface.

As seen from Table 14, for all LFs our experiments gave significantly higher figures than

those reported in [Wanner et al. 2006]. The best average F-measure from [Wanner et al. 2006] is

0.66, while our experiments demonstrate the best average F-measure of 0.75 (calculated from

Table 12) and the average F-measure is 0.78. However, the comparison is not fair because

different datasets have been used: the exact dataset used in [Wanner et al. 2006] is unfortunately

not available anymore
1
, ours is available from [LFs].

7.1.3. Algorithm Performance on the Training Set

In Tables 15—23, we present the results of performance of 68 machine learning algorithms on 9

training sets, i.e., one training set for each of 9 LFs chosen for the experiments. As in previous

tables, P stands for precision, R stands for recall and F stand for F-measure. All algorithms are

ranked by F-measure.

Table 15. Algorithm performance ranked by F-measure on the training set for Oper1

Algorithm Precision Recall F-measure

bayes.BayesianLogisticRegression 0.879 0.866 0.873

trees.Id3 0.879 0.861 0.870

functions.SMO 0.862 0.866 0.864

trees.FT 0.858 0.866 0.862

trees.LADTree 0.873 0.851 0.862

trees.SimpleCart 0.873 0.851 0.862

functions.SimpleLogistic 0.872 0.847 0.859

meta.ThresholdSelector 0.835 0.876 0.855

meta.EnsembleSelection 0.871 0.837 0.854

trees.BFTree 0.871 0.837 0.854

trees.ADTree 0.859 0.847 0.853

rules.JRip 0.859 0.842 0.850

meta.AttributeSelectedClassifier 0.851 0.847 0.849

meta.LogitBoost 0.862 0.837 0.849

meta.Bagging 0.854 0.842 0.848

functions.Logistic 0.787 0.916 0.847

meta.MultiClassClassifier 0.787 0.916 0.847

meta.END 0.842 0.847 0.844

meta.FilteredClassifier 0.842 0.847 0.844

meta.OrdinalClassClassifier 0.842 0.847 0.844

rules.PART 0.857 0.832 0.844

trees.J48 0.842 0.847 0.844

trees.J48graft 0.841 0.837 0.839

rules.DecisionTable 0.854 0.812 0.832

trees.REPTree 0.832 0.832 0.832

meta.RotationForest 0.850 0.812 0.830

meta.ClassificationViaRegression 0.804 0.832 0.818

rules.NNge 0.794 0.842 0.817

rules.Ridor 0.827 0.807 0.817

meta.Decorate 0.781 0.847 0.812

functions.VotedPerceptron 0.856 0.767 0.809

meta.Dagging 0.801 0.817 0.809

meta.RandomCommittee 0.742 0.827 0.782

rules.Prism 0.735 0.832 0.781

trees.RandomForest 0.735 0.822 0.776

meta.RandomSubSpace 0.913 0.624 0.741

misc.VFI 0.764 0.688 0.724

bayes.HNB 0.841 0.629 0.720

bayes.BayesNet 0.694 0.743 0.718

bayes.WAODE 0.734 0.698 0.716

1 Personal communication with L. Wanner.

bayes.AODE 0.757 0.678 0.715

bayes.NaiveBayes 0.742 0.683 0.711

bayes.NaiveBayesSimple 0.742 0.683 0.711

bayes.NaiveBayesUpdateable 0.742 0.683 0.711

trees.RandomTree 0.662 0.718 0.689

functions.RBFNetwork 0.758 0.619 0.681

lazy.LWL 0.811 0.574 0.672

bayes.AODEsr 0.691 0.599 0.642

misc.HyperPipes 0.583 0.693 0.633

lazy.IB1 0.540 0.728 0.620

lazy.IBk 0.519 0.757 0.616

lazy.KStar 0.556 0.683 0.613

meta.AdaBoostM1 0.914 0.366 0.523

functions.Winnow 0.450 0.401 0.424

meta.MultiBoostAB 0.976 0.203 0.336

rules.OneR 0.976 0.203 0.336

trees.DecisionStump 0.976 0.203 0.336

rules.ConjunctiveRule 0.857 0.208 0.335

meta.ClassificationViaClustering 0.314 0.134 0.188

functions.LibSVM 0 0 0

meta.CVParameterSelection 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

Table 16. Algorithm performance ranked by F-measure on the training set for CausFunc0

Algorithm Precision Recall F-measure

rules.JRip 0.747 0.705 0.725

meta.EnsembleSelection 0.744 0.659 0.699

trees.REPTree 0.750 0.648 0.695

meta.ClassificationViaRegression 0.693 0.693 0.693

trees.SimpleCart 0.727 0.636 0.679

trees.LADTree 0.674 0.682 0.678

trees.BFTree 0.733 0.625 0.675

meta.Bagging 0.726 0.602 0.658

functions.SMO 0.675 0.614 0.643

trees.ADTree 0.718 0.580 0.642

trees.FT 0.655 0.625 0.640

rules.Ridor 0.694 0.568 0.625

meta.AttributeSelectedClassifier 0.746 0.534 0.623

trees.Id3 0.618 0.625 0.621

meta.RotationForest 0.712 0.534 0.610

meta.END 0.730 0.523 0.609

meta.FilteredClassifier 0.730 0.523 0.609

meta.OrdinalClassClassifier 0.730 0.523 0.609

trees.J48 0.730 0.523 0.609

functions.Logistic 0.552 0.659 0.601

meta.MultiClassClassifier 0.552 0.659 0.601

rules.DecisionTable 0.653 0.557 0.601

rules.Prism 0.577 0.612 0.594

bayes.BayesianLogisticRegression 0.662 0.534 0.591

meta.Decorate 0.602 0.568 0.585

functions.SimpleLogistic 0.672 0.511 0.581

rules.PART 0.605 0.557 0.580

meta.RandomCommittee 0.630 0.523 0.571

trees.RandomForest 0.677 0.477 0.560

meta.LogitBoost 0.702 0.455 0.552

rules.NNge 0.595 0.500 0.543

meta.ThresholdSelector 0.597 0.489 0.538

trees.J48graft 0.745 0.398 0.519

bayes.BayesNet 0.537 0.500 0.518

misc.VFI 0.443 0.580 0.502

functions.VotedPerceptron 0.614 0.398 0.483

meta.Dagging 0.784 0.330 0.464

misc.HyperPipes 0.395 0.557 0.462

bayes.WAODE 0.690 0.330 0.446

trees.RandomTree 0.507 0.398 0.446

lazy.KStar 0.485 0.364 0.416

bayes.AODEsr 0.365 0.477 0.414

lazy.IBk 0.452 0.375 0.410

meta.RandomSubSpace 0.735 0.284 0.410

lazy.IB1 0.468 0.330 0.387

rules.OneR 0.697 0.261 0.380

bayes.NaiveBayes 0.621 0.205 0.308

bayes.NaiveBayesSimple 0.621 0.205 0.308

bayes.NaiveBayesUpdateable 0.621 0.205 0.308

bayes.AODE 0.824 0.159 0.267

functions.Winnow 0.217 0.341 0.265

functions.RBFNetwork 0.625 0.114 0.192

bayes.HNB 0.571 0.091 0.157

meta.ClassificationViaClustering 0.092 0.091 0.091

meta.AdaBoostM1 0.500 0.011 0.022

functions.LibSVM 0 0 0

lazy.LWL 0 0 0

meta.CVParameterSelection 0 0 0

meta.Grading 0 0 0

meta.MultiBoostAB 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ConjunctiveRule 0 0 0

rules.ZeroR 0 0 0

trees.DecisionStump 0 0 0

Table 17. Algorithm performance ranked by F-measure on the training set for CausFunc1
Algorithm Precision Recall F-measure

trees.J48 0.842 0.696 0.762

meta.FilteredClassifier 0.842 0.696 0.762

meta.END 0.842 0.696 0.762

meta.OrdinalClassClassifier 0.842 0.696 0.762

functions.SimpleLogistic 0.828 0.696 0.756

meta.LogitBoost 0.828 0.696 0.756

meta.AttributeSelectedClassifier 0.774 0.696 0.733

rules.DecisionTable 0.833 0.652 0.732

rules.JRip 0.783 0.681 0.729

trees.FT 0.742 0.710 0.726

trees.LADTree 0.818 0.652 0.726

trees.SimpleCart 0.804 0.652 0.72

trees.BFTree 0.811 0.623 0.705

trees.Id3 0.700 0.710 0.705

rules.NNge 0.742 0.667 0.702

rules.PART 0.696 0.696 0.696

trees.REPTree 0.808 0.609 0.694

trees.J48graft 0.851 0.580 0.690

meta.Bagging 0.792 0.609 0.689

bayes.BayesianLogisticRegression 0.726 0.652 0.687

meta.RotationForest 0.833 0.58 0.684

rules.Ridor 0.804 0.594 0.683

functions.SMO 0.697 0.667 0.681

meta.Dagging 0.800 0.580 0.672

functions.VotedPerceptron 0.769 0.580 0.661

lazy.LWL 0.796 0.565 0.661

meta.AdaBoostM1 0.796 0.565 0.661

meta.MultiBoostAB 0.796 0.565 0.661

rules.ConjunctiveRule 0.796 0.565 0.661

rules.OneR 0.796 0.565 0.661

trees.ADTree 0.796 0.565 0.661

trees.DecisionStump 0.796 0.565 0.661

meta.EnsembleSelection 0.78 0.565 0.655

rules.Prism 0.612 0.695 0.651

meta.ClassificationViaRegression 0.741 0.580 0.650

meta.Decorate 0.571 0.696 0.627

trees.RandomForest 0.720 0.522 0.605

meta.RandomCommittee 0.615 0.580 0.597

lazy.IBk 0.500 0.493 0.496

trees.RandomTree 0.452 0.478 0.465

lazy.IB1 0.492 0.435 0.462

bayes.WAODE 0.632 0.348 0.449

lazy.KStar 0.483 0.406 0.441

meta.ThresholdSelector 0.329 0.667 0.440

meta.RandomSubSpace 0.778 0.304 0.438

functions.Logistic 0.306 0.696 0.425

meta.MultiClassClassifier 0.306 0.696 0.425

bayes.BayesNet 0.438 0.406 0.421

bayes.AODEsr 0.375 0.478 0.42

misc.VFI 0.343 0.507 0.409

misc.HyperPipes 0.286 0.522 0.369

functions.RBFNetwork 0.462 0.174 0.253

functions.Winnow 0.163 0.348 0.222

meta.ClassificationViaClustering 0.081 0.087 0.084

bayes.AODE 0.429 0.043 0.079

bayes.HNB 0.429 0.043 0.079

bayes.NaiveBayes 0.333 0.043 0.077

bayes.NaiveBayesSimple 0.333 0.043 0.077

bayes.NaiveBayesUpdateable 0.333 0.043 0.077

functions.LibSVM 0 0 0

meta.CVParameterSelection 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

Table 18. Algorithm performance ranked by F-measure on the training set for Real1

Algorithm Precision Recall F-measure

rules.Prism 0.735 0.832 0.781

bayes.BayesianLogisticRegression 0.788 0.553 0.650

functions.SMO 0.722 0.553 0.627

trees.FT 0.650 0.553 0.598

rules.NNge 0.614 0.574 0.593

trees.Id3 0.600 0.574 0.587

trees.LADTree 0.733 0.468 0.571

meta.LogitBoost 0.833 0.426 0.563

rules.DecisionTable 0.750 0.447 0.560

rules.JRip 0.750 0.447 0.560

functions.SimpleLogistic 0.864 0.404 0.551

trees.J48graft 0.864 0.404 0.551

trees.BFTree 0.769 0.426 0.548

functions.Logistic 0.440 0.702 0.541

meta.MultiClassClassifier 0.440 0.702 0.541

rules.PART 0.677 0.447 0.538

meta.END 0.714 0.426 0.533

meta.FilteredClassifier 0.714 0.426 0.533

meta.OrdinalClassClassifier 0.714 0.426 0.533

trees.J48 0.714 0.426 0.533

trees.SimpleCart 0.714 0.426 0.533

meta.Bagging 0.857 0.383 0.529

misc.VFI 0.473 0.553 0.510

trees.ADTree 0.679 0.404 0.507

meta.AttributeSelectedClassifier 0.588 0.426 0.494

meta.RandomCommittee 0.613 0.404 0.487

meta.Decorate 0.453 0.511 0.480

meta.ThresholdSelector 0.409 0.000 0.478

trees.RandomForest 0.600 0.383 0.468

misc.HyperPipes 0.488 0.447 0.467

meta.EnsembleSelection 0.727 0.340 0.464

trees.REPTree 0.667 0.340 0.451

meta.RotationForest 0.778 0.298 0.431

meta.ClassificationViaRegression 0.486 0.362 0.415

rules.Ridor 0.813 0.277 0.413

lazy.LWL 0.636 0.298 0.406

meta.AdaBoostM1 0.636 0.298 0.406

meta.MultiBoostAB 0.636 0.298 0.406

rules.ConjunctiveRule 0.636 0.298 0.406

trees.DecisionStump 0.636 0.298 0.406

lazy.KStar 0.436 0.362 0.395

lazy.IBk 0.367 0.383 0.375

trees.RandomTree 0.367 0.383 0.375

lazy.IB1 0.390 0.340 0.364

meta.RandomSubSpace 0.889 0.170 0.286

bayes.BayesNet 0.357 0.213 0.267

functions.Winnow 0.211 0.340 0.260

bayes.AODEsr 0.211 0.319 0.254

functions.VotedPerceptron 0.467 0.149 0.226

rules.OneR 0.500 0.128 0.203

bayes.WAODE 0.571 0.085 0.148

meta.ClassificationViaClustering 0.071 0.106 0.085

bayes.NaiveBayes 0.333 0.021 0.040

bayes.NaiveBayesSimple 0.333 0.021 0.040

bayes.NaiveBayesUpdateable 0.333 0.021 0.040

bayes.AODE 0 0 0

bayes.HNB 0 0 0

functions.LibSVM 0 0 0

functions.RBFNetwork 0 0 0

meta.CVParameterSelection 0 0 0

meta.Dagging 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

Table 19. Algorithm performance ranked by F-measure on the training set for Func0

Algorithm Precision Recall F-measure

trees.BFTree 0.667 0.727 0.696

trees.Id3 0.571 0.727 0.640

meta.AttributeSelectedClassifier 0.636 0.636 0.636

meta.END 0.636 0.636 0.636

meta.FilteredClassifier 0.636 0.636 0.636

meta.OrdinalClassClassifier 0.636 0.636 0.636

misc.HyperPipes 0.636 0.636 0.636

trees.J48 0.636 0.636 0.636

lazy.LWL 0.750 0.545 0.632

meta.AdaBoostM1 0.750 0.545 0.632

meta.LogitBoost 0.750 0.545 0.632

rules.OneR 0.750 0.545 0.632

trees.DecisionStump 0.750 0.545 0.632

misc.VFI 0.583 0.636 0.609

bayes.BayesianLogisticRegression 0.667 0.545 0.600

meta.ClassificationViaRegression 0.667 0.545 0.600

rules.JRip 0.667 0.545 0.600

trees.ADTree 0.667 0.545 0.600

meta.MultiBoostAB 0.833 0.455 0.588

functions.SMO 0.538 0.636 0.583

trees.LADTree 0.538 0.636 0.583

rules.DecisionTable 0.600 0.545 0.571

rules.PART 0.600 0.545 0.571

meta.RotationForest 0.714 0.455 0.556

rules.Ridor 0.545 0.545 0.545

functions.SimpleLogistic 0.625 0.455 0.526

trees.SimpleCart 0.625 0.455 0.526

rules.NNge 0.500 0.545 0.522

trees.FT 0.667 0.364 0.471

trees.J48graft 0.667 0.364 0.471

functions.Logistic 0.368 0.636 0.467

meta.MultiClassClassifier 0.368 0.636 0.467

rules.Prism 0.364 0.571 0.444

trees.RandomTree 0.375 0.545 0.444

lazy.IBk 0.333 0.455 0.385

meta.Bagging 0.600 0.273 0.375

meta.EnsembleSelection 0.600 0.273 0.375

trees.REPTree 0.600 0.273 0.375

meta.RandomCommittee 0.500 0.273 0.353

lazy.IB1 0.333 0.364 0.348

meta.ThresholdSelector 0.308 0.364 0.333

trees.RandomForest 0.429 0.273 0.333

lazy.KStar 0.300 0.273 0.286

functions.RBFNetwork 0.500 0.182 0.267

bayes.AODEsr 0.120 0.545 0.197

functions.VotedPerceptron 1.000 0.091 0.167

meta.RandomSubSpace 1.000 0.091 0.167

rules.ConjunctiveRule 1.000 0.091 0.167

meta.Decorate 0.103 0.273 0.150

functions.Winnow 0.048 0.091 0.063

bayes.AODE 0 0 0

bayes.BayesNet 0 0 0

bayes.HNB 0 0 0

bayes.NaiveBayes 0 0 0

bayes.NaiveBayesSimple 0 0 0

bayes.NaiveBayesUpdateable 0 0 0

bayes.WAODE 0 0 0

functions.LibSVM 0 0 0

meta.ClassificationViaClustering 0 0 0

meta.CVParameterSelection 0 0 0

meta.Dagging 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

Table 20. Algorithm performance ranked by F-measure on the training set for Oper2

Algorithm Precision Recall F-measure

rules.PART 0.923 0.571 0.706

meta.AttributeSelectedClassifier 0.923 0.571 0.706

meta.END 0.923 0.571 0.706

meta.FilteredClassifier 0.923 0.571 0.706

meta.OrdinalClassClassifier 0.923 0.571 0.706

trees.J48 0.923 0.571 0.706

meta.LogitBoost 0.857 0.571 0.686

meta.RandomCommittee 0.722 0.619 0.667

trees.LADTree 0.667 0.667 0.667

rules.JRip 0.786 0.524 0.629

trees.SimpleCart 0.909 0.476 0.625

trees.FT 0.667 0.571 0.615

trees.BFTree 0.733 0.524 0.611

bayes.BayesianLogisticRegression 0.632 0.571 0.600

rules.NNge 0.632 0.571 0.600

functions.SMO 0.688 0.524 0.595

rules.Prism 0.545 0.632 0.585

functions.SimpleLogistic 0.900 0.429 0.581

meta.EnsembleSelection 0.900 0.429 0.581

rules.DecisionTable 0.900 0.429 0.581

rules.OneR 0.900 0.429 0.581

trees.J48graft 0.900 0.429 0.581

trees.REPTree 0.900 0.429 0.581

trees.Id3 0.542 0.619 0.578

meta.ClassificationViaRegression 0.714 0.476 0.571

trees.ADTree 0.714 0.476 0.571

meta.Bagging 0.818 0.429 0.563

functions.VotedPerceptron 0.889 0.381 0.533

rules.Ridor 0.692 0.429 0.529

meta.RotationForest 0.727 0.381 0.500

lazy.KStar 0.476 0.476 0.476

trees.RandomTree 0.407 0.524 0.458

meta.RandomSubSpace 0.857 0.286 0.429

lazy.IBk 0.370 0.476 0.417

trees.RandomForest 0.538 0.333 0.412

meta.ThresholdSelector 0.333 0.524 0.407

functions.Logistic 0.302 0.619 0.406

meta.MultiClassClassifier 0.302 0.619 0.406

misc.HyperPipes 0.323 0.476 0.385

misc.VFI 0.303 0.476 0.370

bayes.AODEsr 0.245 0.571 0.343

meta.Decorate 0.256 0.476 0.333

lazy.IB1 0.286 0.381 0.327

meta.Dagging 1.000 0.190 0.320

meta.MultiBoostAB 0.667 0.095 0.167

functions.Winnow 0.067 0.143 0.091

rules.ConjunctiveRule 1.000 0.048 0.091

meta.AdaBoostM1 0.500 0.048 0.087

trees.DecisionStump 0.500 0.048 0.087

lazy.LWL 0.333 0.048 0.083

meta.ClassificationViaClustering 0.050 0.095 0.066

bayes.AODE 0 0 0

bayes.BayesNet 0 0 0

bayes.HNB 0 0 0

bayes.NaiveBayes 0 0 0

bayes.NaiveBayesSimple 0 0 0

bayes.NaiveBayesUpdateable 0 0 0

bayes.WAODE 0 0 0

functions.LibSVM 0 0 0

functions.RBFNetwork 0 0 0

meta.CVParameterSelection 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

Table 21. Algorithm performance ranked by F-measure on the training set for IncepOper1

Algorithm Precision Recall F-measure

rules.Prism 0.750 0.800 0.774

rules.NNge 0.923 0.600 0.727

functions.SMO 0.813 0.650 0.722

functions.SimpleLogistic 0.857 0.600 0.706

bayes.BayesianLogisticRegression 0.917 0.550 0.687

trees.LADTree 0.917 0.550 0.687

trees.Id3 0.846 0.550 0.667

trees.FT 0.786 0.550 0.647

misc.VFI 0.733 0.550 0.629

meta.LogitBoost 0.769 0.500 0.606

meta.RandomCommittee 0.818 0.450 0.581

meta.AttributeSelectedClassifier 0.667 0.500 0.571

meta.END 0.667 0.500 0.571

meta.FilteredClassifier 0.667 0.500 0.571

meta.OrdinalClassClassifier 0.667 0.500 0.571

rules.DecisionTable 0.667 0.500 0.571

trees.BFTree 0.667 0.500 0.571

trees.J48 0.667 0.500 0.571

rules.JRip 0.625 0.500 0.556

trees.RandomForest 0.889 0.400 0.552

trees.ADTree 0.692 0.450 0.545

rules.PART 0.556 0.500 0.526

lazy.LWL 0.727 0.400 0.516

trees.SimpleCart 0.727 0.400 0.516

trees.RandomTree 0.600 0.450 0.514

meta.RandomSubSpace 0.778 0.350 0.483

trees.REPTree 0.700 0.350 0.467

misc.HyperPipes 0.636 0.350 0.452

meta.Decorate 0.343 0.600 0.436

lazy.KStar 0.750 0.300 0.429

functions.Logistic 0.324 0.600 0.421

meta.MultiClassClassifier 0.324 0.600 0.421

lazy.IBk 0.600 0.300 0.400

meta.RotationForest 0.714 0.250 0.370

functions.VotedPerceptron 0.625 0.250 0.357

lazy.IB1 0.625 0.250 0.357

trees.J48graft 0.625 0.250 0.357

meta.ThresholdSelector 0.296 0.400 0.340

rules.Ridor 0.500 0.250 0.333

bayes.AODEsr 0.233 0.500 0.317

meta.ClassificationViaRegression 0.571 0.200 0.296

meta.Bagging 0.600 0.150 0.240

meta.AdaBoostM1 0.500 0.100 0.167

meta.MultiBoostAB 0.500 0.100 0.167

rules.OneR 0.500 0.100 0.167

trees.DecisionStump 0.500 0.100 0.167

meta.EnsembleSelection 0.400 0.100 0.160

rules.ConjunctiveRule 0.500 0.050 0.091

meta.ClassificationViaClustering 0.016 0.050 0.024

bayes.AODE 0 0 0

bayes.BayesNet 0 0 0

bayes.HNB 0 0 0

bayes.NaiveBayes 0 0 0

bayes.NaiveBayesSimple 0 0 0

bayes.NaiveBayesUpdateable 0 0 0

bayes.WAODE 0 0 0

functions.LibSVM 0 0 0

functions.RBFNetwork 0 0 0

functions.Winnow 0 0 0

meta.CVParameterSelection 0 0 0

meta.Dagging 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

Table 22. Algorithm performance ranked by F-measure on the training set for ContOper1

Algorithm Precision Recall F-measure

functions.SimpleLogistic 0.909 0.769 0.833

rules.DecisionTable 0.909 0.769 0.833

meta.AttributeSelectedClassifier 0.833 0.769 0.800

meta.END 0.833 0.769 0.800

meta.FilteredClassifier 0.833 0.769 0.800

meta.OrdinalClassClassifier 0.833 0.769 0.800

rules.JRip 0.833 0.769 0.800

rules.PART 0.833 0.769 0.800

trees.BFTree 0.833 0.769 0.800

trees.J48 0.833 0.769 0.800

trees.SimpleCart 0.833 0.769 0.800

functions.Logistic 0.733 0.846 0.786

meta.MultiClassClassifier 0.733 0.846 0.786

meta.Bagging 0.900 0.692 0.783

rules.Prism 0.750 0.818 0.783

rules.Ridor 0.90 0.692 0.783

functions.SMO 0.818 0.692 0.750

meta.LogitBoost 0.818 0.692 0.750

rules.NNge 0.818 0.692 0.750

trees.FT 0.818 0.692 0.750

trees.Id3 0.818 0.692 0.750

trees.LADTree 0.818 0.692 0.750

meta.EnsembleSelection 0.889 0.615 0.727

meta.RandomSubSpace 0.889 0.615 0.727

lazy.LWL 0.800 0.615 0.696

trees.ADTree 0.800 0.615 0.696

trees.REPTree 0.800 0.615 0.696

bayes.BayesianLogisticRegression 0.778 0.538 0.636

meta.ClassificationViaRegression 0.857 0.462 0.600

meta.MultiBoostAB 0.857 0.462 0.600

rules.OneR 0.857 0.462 0.600

trees.DecisionStump 0.857 0.462 0.600

trees.RandomForest 0.857 0.462 0.600

functions.VotedPerceptron 0.750 0.462 0.571

meta.RandomCommittee 0.750 0.462 0.571

meta.AdaBoostM1 0.833 0.385 0.526

meta.RotationForest 0.833 0.385 0.526

meta.ThresholdSelector 0.714 0.385 0.500

trees.J48graft 0.714 0.385 0.500

lazy.IBk 0.625 0.385 0.476

meta.Decorate 0.345 0.769 0.476

trees.RandomTree 0.556 0.385 0.455

lazy.KStar 0.667 0.308 0.421

rules.ConjunctiveRule 1.000 0.231 0.375

lazy.IB1 0.600 0.231 0.333

misc.VFI 0.227 0.385 0.286

bayes.AODEsr 0.143 0.538 0.226

misc.HyperPipes 0.150 0.231 0.182

meta.Dagging 0.500 0.077 0.133

functions.RBFNetwork 0.333 0.077 0.125

functions.Winnow 0.095 0.154 0.118

bayes.AODE 0 0 0

bayes.BayesNet 0 0 0

bayes.HNB 0 0 0

bayes.NaiveBayes 0 0 0

bayes.NaiveBayesSimple 0 0 0

bayes.NaiveBayesUpdateable 0 0 0

bayes.WAODE 0 0 0

functions.LibSVM 0 0 0

meta.ClassificationViaClustering 0 0 0

meta.CVParameterSelection 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

Table 23. Algorithm performance ranked by F-measure on the training set for FWC

Algorithm Precision Recall F-measure

rules.Prism 0.639 0.702 0.669

bayes.BayesianLogisticRegression 0.658 0.629 0.643

functions.SMO 0.656 0.623 0.639

bayes.BayesNet 0.609 0.667 0.637

meta.RandomCommittee 0.639 0.635 0.637

trees.Id3 0.627 0.635 0.631

trees.FT 0.642 0.610 0.626

meta.Decorate 0.627 0.591 0.608

misc.VFI 0.542 0.692 0.608

rules.NNge 0.628 0.585 0.606

bayes.WAODE 0.634 0.579 0.605

lazy.IBk 0.577 0.635 0.605

meta.RotationForest 0.701 0.516 0.594

trees.RandomForest 0.625 0.566 0.594

trees.RandomTree 0.611 0.572 0.591

trees.LADTree 0.608 0.566 0.586

lazy.KStar 0.599 0.572 0.585

lazy.IB1 0.571 0.585 0.578

meta.EnsembleSelection 0.731 0.478 0.578

trees.ADTree 0.636 0.528 0.577

meta.Bagging 0.700 0.484 0.572

trees.REPTree 0.607 0.535 0.569

functions.SimpleLogistic 0.718 0.465 0.565

meta.ClassificationViaRegression 0.612 0.516 0.560

trees.BFTree 0.688 0.472 0.560

bayes.AODEsr 0.525 0.597 0.559

rules.PART 0.609 0.509 0.555

functions.VotedPerceptron 0.627 0.497 0.554

trees.SimpleCart 0.622 0.497 0.552

bayes.NaiveBayes 0.626 0.484 0.546

bayes.NaiveBayesSimple 0.626 0.484 0.546

bayes.NaiveBayesUpdateable 0.626 0.484 0.546

rules.DecisionTable 0.626 0.484 0.546

bayes.AODE 0.647 0.472 0.545

misc.HyperPipes 0.440 0.711 0.543

meta.Dagging 0.719 0.434 0.541

rules.JRip 0.610 0.472 0.532

functions.Logistic 0.449 0.560 0.499

meta.MultiClassClassifier 0.449 0.560 0.499

meta.ThresholdSelector 0.435 0.585 0.499

functions.RBFNetwork 0.625 0.409 0.494

meta.END 0.714 0.377 0.494

meta.FilteredClassifier 0.714 0.377 0.494

meta.OrdinalClassClassifier 0.714 0.377 0.494

meta.RandomSubSpace 0.714 0.377 0.494

trees.J48 0.714 0.377 0.494

meta.AttributeSelectedClassifier 0.687 0.358 0.471

trees.J48graft 0.746 0.333 0.461

lazy.LWL 0.557 0.371 0.445

bayes.HNB 0.718 0.321 0.443

rules.Ridor 0.654 0.321 0.430

meta.AdaBoostM1 0.581 0.340 0.429

trees.DecisionStump 0.550 0.346 0.425

meta.MultiBoostAB 0.552 0.333 0.416

functions.Winnow 0.374 0.447 0.407

meta.LogitBoost 0.638 0.277 0.386

rules.ConjunctiveRule 0.551 0.239 0.333

rules.OneR 0.419 0.164 0.235

meta.ClassificationViaClustering 0.188 0.132 0.155

functions.LibSVM 0 0 0

meta.CVParameterSelection 0 0 0

meta.Grading 0 0 0

meta.MultiScheme 0 0 0

meta.RacedIncrementalLogitBoost 0 0 0

meta.Stacking 0 0 0

meta.StackingC 0 0 0

meta.Vote 0 0 0

rules.ZeroR 0 0 0

 7.1.4. Analysis of the Results

� Three Hypothesis in [Wanner et al. 2006] and Our Results

In Section 3.5.3, we have mentioned three hypotheses expressed in [Wanner et al. 2006].

These hypotheses are three possible methods of how humans recognize and learn collocations.

Now we formulate these three hypothetic methods and comment them using our results.

Method 1. Collocations can be recognized by their similarity to the prototypical sample of

each collocational type; this was modeled by Nearest Neighbor technique. WEKA implements

the nearest neighbor method in the following classifiers: NNge, IB1, IBk and KStar [Witten and

Frank, 2005]. NNge belongs to the class rules; classifiers of this type are effective on large

data sets, and our training sets include many examples (900) and possess high dimensionality.

NNge is an algorithm that generalizes examples without nesting or overlap. NNge is an

extension of Nge, which performs generalization by merging examples exemplars, forming

hyper-rectangles in feature space that represent conjunctive rules with internal disjunction. NNge

forms a generalization each time a new example is added to the database, by joining it to its

nearest neighbor of the same class. Unlike Nge, it does not allow hyper-rectangles to nest or

overlap. This is prevented by testing each prospective new generalization to ensure that it does

not cover any negative examples, and by modifying any generalizations that are later found to do

so. NNge adopts a heuristic that performs this post-processing in a uniform fashion. The more

details about this algorithm can be found in [Roy 2002].

In spite of its advantages, NNge does no perform very well on predicting LFs. The only LF

which NNge predicts well is IncepOper1 with the meaning ‘to begin doing something’ (F-

measure of 0.727). For the rest 8 LFs NNge does not show high results: for Oper1 the value of F-

measure is 0.817, for ContOper1 it is 0.750, for CausFunc1 the value of F-measure is 0.702, for

FWC it is 0.606, for Oper2 it is 0.600, for Real1 it is 0.593, for CausFunc0 it is 0.543, for Func0 it

is 0.522. The average F-measure for all nine LFs is 0.651.

Classifiers IB1, IBk and KStar, also based on the nearest neighbor algorithm, belong to the

class lazy. It means that their learning time is very short, in fact learning in its full sense does not

take place in these algorithms. An unseen example is compared with all instances annotated with

LFs, and the LF whose instance is closer to the unseen example, is assigned to the latter. On our

training sets, IB1, IBk and KStar show worse performance than NNge. Here we give average

values of F-measure for IB1, IBk and KStar. The average value of F-measure for Oper1 is 0.616,

for FWC it is 0.589, for CausFunc1 it is 0.466, for ContOper1 it is 0.410, for Oper2 it is 0.407, for

CausFunc0 it is 0.404, for IncepOper1 it is 0.395, for Real1 it is 0.378, for Func0 it is 0.340. The

average F-measure for all nine LFs is 0.445. It means that it is difficult to find a very distinctive

prototypical LF instance that could indeed distinguish the meaning of a particular LF.

IncepOper1 is an exception here, and the distance between the examples of IncepOper1 and the

examples of all the rest of LF is significantly bigger that the distance between the examples of

IncepOper1. But for 8 LFs, our results demonstrate that Method 1 does not produce high quality

results.

Method 2. Collocations can be recognized by similarity of semantic features of collocational

elements to semantic features of elements of collocations known to belong to a specific LF; this

was modeled by Naïve Bayesian network and a decision tree classification technique based on

the ID3-algorithm. We tested three WEKA Naïve Bayesian classifiers – NaiveBayes,

NaiveBayesSimple, and NaiveBayesUpdateable [Witten and Frank, 2005]. All three classifiers

show low results for Oper1 (F-measure of 0.711), FWC (F-measure of 0.546), CausFunc0 (F-

measure of 0.308), CausFunc1 (F-measure of 0.077), Real1 (F-measure of 0.040). These three

Bayesian classifiers failed to predict Func0, Oper2, IncepOper1, ContOper1; their result for these

LFs is 0. Bayesian classifiers are based on the assumption that attributes used to represent data

are independent. As the results show, this is not the case with our training sets. Indeed, the

features used to represent verb-noun combinations are hyperonyms of the verb and hyperonyms

of the noun. Hyperonyms are organized in a hierarchy, and are placed in a fixed order in the

branches of their taxonomy, so that the position of each hyperonym depends on the location of

other hyperonyms in the same branch. Moreover, it seems that in verb-noun pairs, the verb

depends on the noun since they both form a collocation but not a free word combination where

there is no lexical dependency between the constituents. These are the reasons why Bayesian

algorithms perform poorly on LFs. Since Bayesian methods intent to model human recognition

of collocational relations, it can be concluded, that our results for Bayesian classifiers do not

support the hypothesis of learning collocations by similarity of semantic features of collocational

elements to semantic features of elements of collocations known to belong to a specific LF.

Now let is consider another machine learning algorithm that model the same method of

collocation recognition, ID3 algorithm. This algorithm is implemented in WEKA as Id3

classifier of the class trees. It shows the top result for CausFunc1 as compared with the

performance of the other classifiers for predicting the same LF, (F-measure of 0.762), the second

best result for predicting Oper1 (F-measure of 0.870), another second best result for ContOper1

(F-measure of 0.800). For Oper2 the value of F-measure is 0.706, for IncepOper1 it is 0.667, for

Func1 the value of F-measure is 0.636, for FWC it is 0.631, for CausFunc0 the value of F-

measure is 0.621, for Real1 it is 0.587. The average F-measure for all nine LFs is 0.698. This

classifier gives average results close to the results of NNge of Method 1 but which still are rather

low. However, for Oper1 and ContOper1 the results are quite satisfactory. It means that the

semantic features of these two lexical function which in our case are hyperonyms, distinguish

sufficiently well these two lexical functions from the rest seven LFs.

Method 3. The third method was modeled by Tree-Augmented Network (TAN) Classification

technique. As it is seen from results in [Wanner et al. 2006] demonstrated in Table 5, the nearest

neighbor algorithm gives better results in terms of recall than TAN. So it can be concluded that

there are more evidence in favor of Method 2 than Method 3. We did not apply TAN method in

our experiments.

� Best Machine Learning Algorithms

Now we consider the best algorithm for each LF chosen for our experiments.

Oper1: the Best Algorithm is BayesianLogisticRegression

For Oper1, BayesianLogisticRegression has shown precision of 0.879, recall of 0.866, and F-

measure of 0.873.

Logistic Regression is an approach to learning functions of the form f : X → Y, or P(Y|X) in

the case where Y is discrete-valued, and X = {X1 ...Xn} is any vector containing discrete or

continuous variables. In the case of our training data, the variables are discrete. X is a variable

for the attributes, and Y is a Boolean variable which corresponds to the class attribute in the

training set. Logistic Regression assumes a parametric form for the distribution P(Y|X), then

directly estimates its parameters from the training data. Logistic Regression is trained to choose

parameter values that maximize the conditional data likelihood. The conditional data likelihood

is the probability of the observed Y values in the training data, conditioned on their

corresponding X values.

CausFunc0: the Best Algorithm is JRip

For CausFunc0, JRip has shown precision of 0.747, recall of 0.705, and F-measure of 0.725.

JRip (Extended Repeated Incremental Pruning) implements a propositional rule learner,

“Repeated Incremental Pruning to Produce Error Reduction” (RIPPER), as proposed in [Cohen

1995]. JRip is a rule learner alike in principle to the commercial rule learner RIPPER.

CausFunc1: the Best Algorithm is J48

For CausFunc1, J48 has shown precision of 0.842, recall of 0.696, and F-measure of 0.762.

J48 is a rule base classifier algorithm that generates C4.5 decision trees. J48 is the C4.5 clone

implemented in the WEKA data mining library. In its turn, C4.5 implements ID3 algorithm. The

basic ideas behind ID3 are the following. Firstly, in the decision tree each node corresponds to a

non-categorical attribute and each arc to a possible value of that attribute. A leaf of the tree

specifies the expected value of the categorical attribute for the records described by the path

from the root to that leaf. Secondly, in the decision tree at each node should be associated the

non-categorical attribute which is most informative among the attributes not yet considered in

the path from the root. Thirdly, entropy is used to measure how informative is a node. C4.5 is an

extension of ID3 that accounts for unavailable values, continuous attribute value ranges, pruning

of decision trees, rule derivation, etc.

Real1: the Best Algorithm is Prism

For Real1, Prism has shown precision of 0.735, recall of 0.832, and F-measure of 0.781.

Prism is a rule based classification algorithms It is based on the inductive rule learning and

uses separate-and-conquer strategy. It means, that a rule that works for many instances in the

class is identified first, then the instances covered by this rule are excluded from the training set

and the learning continues on the rest of the instances. These learners are efficient on large, noisy

datasets. Our training sets included 900 instances represented as vectors of the size 1109

attributes, and rule induction algorithms performed very well.

Func0: the Best Algorithm is BFTree

For Func0, BFTree has shown precision of 0.667, recall of 0.727, and F-measure of 0.696.

BFTree is a best-first decision tree learner and it is a learning algorithm for supervised

classification learning [19]. Best-first decision trees represent an alternative approach to standard

decision tree techniques such as C4.5 algorithm since they expand nodes in best-first order

instead of a fixed depth-first order.

Oper2: the Best Algorithm is PART

For Oper2, PART has shown precision of 0.923, recall of 0.571, and F-measure of 0.706.

PART is a rule base classifier that generates partial decision trees rather that forming one

whole decision tree in order to achieve the classification.

IncepOper1: the Best Algorithm is Prism

For IncepOper1, Prism has shown precision of 0.750, recall of 0.800, and F-measure of 0.774.

Since Prism is also the best classifier for Real1, it has been described above. We remind, that

for Real1, Prism has shown precision of 0.735, recall of 0.832, and F-measure of 0.781.

IncepOper1 has the meaning ‘to begin doing what is designated by the noun, and Real1 means ‘to

act according to the situation designated by the noun’. The meaning of IncepOper1is

distinguished better because the semantic element ‘begin’ is very different from ‘act’ which is

more general and has more resemblance with the meaning ‘perform’ (Oper1) or ‘cause to exist’

(CausFunc0, CausFunc1).

ContOper1: the Best Algorithm is SimpleLogistic

For ContOper1, SimpleLogistic has shown precision of 0.909, recall of 0.769, and F-measure of

0.833.

Simple logistic regression finds the equation that best predicts the value of the Y variable (in

our case, the class attribute) for each value of the X variable (in our training data, values of

attributes that represent hyperonyms). What makes logistic regression different from linear

regression is that the Y variable is not directly measured; it is instead the probability of obtaining

a particular value of a nominal variable. The algorithm calculates the probability of Y applying

the likelihood ratio method. This method uses the difference between the probability of obtaining

the observed results under the logistic model and the probability of obtaining the observed

results in a model with no relationship between the independent and dependent variables.

FWC: the Best Algorithm is Prism

For FWC, Prism has shown precision of 0.639, recall of 0.702, and F-measure of 0.669.

Since Prism is also the best classifier for Real1, it has been described above. Prism has the top

result for IncepOper1 as well. Still, for free word combinations, Prism show weaker results that

for predicting IncepOper1 and Real1. We remind that for IncepOper1, Prism has shown precision

of 0.750, recall of 0.800, and F-measure of 0.774; and for Real1, this algorithm has shown

precision of 0.735, recall of 0.832, and F-measure of 0.781.

The meaning of free word combinations is less distinguishable since their semantic content is

very diverse in comparison with the meaning of lexical functions.

7.2. Algorithm Performance Evaluation on the Test Set

Some of the algorithms that showed best results for predicting LFs were evaluated on an

independent test set built as described in Section 4.2, Section 5.4.3, and Section 6.2.2. Tables

24, 25 present the results for these algorithms. We listed the values of precision, recall and f-

measure for each classifier in this way: <precision>|<recall>|<f-measure>; BLR in the column

Algorithm stands for BayesianLogisticRegression. As we explain below, the test sets had such a

big size that some classifiers failed to make predictions within a reasonable time period. For such

classifiers, we put N/A instead of metrics as for the other classifiers.

Table 24. Algorithm performance on the test set

Test set size
Meaning Algorithm

100% 75%

PART 0.261|0.864|0.400 0.304|0.864|0.382

SimpleCart N/A N/A Oper1

BLR 0.178|0.830|0.293 0.212|0.818|0.337

JRip 0.231|0.662|0.342 0.189|0.662|0.294

SimpleCart N/A 0.168|0.662|0.268 CausFunc0

LADTree 0.285|0.676|0.401 0.168|0.676|0.269

FT N/A N/A

SMO 0.331|0.793|0.467 0.567|0.793|0.661 IncepOper1

NNge 0.302|0.724|0.426 0.567|0.724|0.636

Ridor 0.799|0.480|0.600 0.993|0.480|0.647

REPTree 0.581|0.480|0.526 0.820|0.480|0.606 ContOper1

LWL N/A N/A

It was mentioned in Section 4.2, that since we did not disambiguate verb-noun pairs in the test

sets, for each pair we build the number of instances equal to the number of senses for the verb

multiplied by the number of senses for the noun. Remember, that this has given us 96079

instances and 10544 attributes in 100% test set, 73021 instances and 9495 attributes in 75% test

set, 48904 instances and 8032 attributes in 50% test set, and 22254 instances and 5857 attributes

in 25% test set. SimpleCart, FT, LWL had difficulties in predicting the value of the class variable

on test sets of sizes more than 25%. Among these three algorithms, SimpleCart was better

because this algorithm was effective enough to process a 75% and 50% set. SimpleCart and FT

are decision tree algorithms, and LWL is a nearest-neighbor instance-based learner. Note, that

almost all the best classifiers that could process a full-size test set, belong to the class rules.

BayesianLogisticRegression also performs well and the only algorithm of the class trees that did

not experience time problems was LADTree.

Table 25. Algorithm performance on the test set

Test set size
Meaning Algorithm

50% 25%

PART 0.245|0.864|0.382 0.162|0.852|0.272

SimpleCart 0.405|0.864|0.551 0.281|0.852|0.423 Oper1

BLR 0.205|0.818|0.328 0.145|0.807|0.246

JRip 0.189|0.662|0.294 0.174|0.662|0.276

SimpleCart 0.203|0.662|0.311 0.177|0.662|0.279 CausFunc0

LADTree 0.144|0.676|0.237 0.177|0.676|0.281

FT N/A 0.409|0.724|0.523 IncepOper1

SMO 0.464|0.793|0.585 0.404|0.793|0.535

NNge 0.603|0.724|0.658 0.451|0.724|0.556

Ridor 0.958|0.480|0.640 1.000|0.480|0.649

REPTree 0.694|0.480|0.567 0.667|0.480|0.558 ContOper1

LWL N/A 1.000|0.480|0.649

As it is seen from Tables 24, 25, the best precision was shown by Ridor. This method (Ridor =

RIpple-DOwn Rule learner) have been developed for knowledge acquisition where it is hard to

add a new rule and be sure that it would not cause the inconsistency of the rules generated

before. Ridor algorithm is different from covering algorithms for constructing the rule set;

instead it generates exceptions for the existing rules that work within the confines of these rules

thus not affecting other rules. Then it iterates on the exceptions for the best solution. This

scheme allowed the classifier to reach 100% precision. Unfortunately, it can not boast the best

recall which is only 0.649 for ContOper1 on a 25% test set. Still, it is the second best recall in our

experiments on test sets. The top recall is 0.658 shown by NNge for the meaning BEGIN on a

50% test set.

Another algorithm that gives the best precision of 100% is LWL when performing predictions

for the meaning ContOper1 on a 25% test set. But, like Ridor, it shows the same low recall of

0.658. However, a high precision of Ridor and LWL makes them appropriate for fulfilling the

tasks where precision is of special importance, for example, for automatic construction of

dictionaries.

Chapter 8. Computational Applications of Lexical Functions

8.1. Important Properties of Lexical Functions with Respect to Applications

1. LFs are universal. It means that a significantly little number of LFs (about 70) represent

the fundamental semantic relations between words in the vocabulary of any natural

language (paradigmatic relations) and the basic semantic relations which syntactically

connected word forms can obtain in the text (syntagmatic relations).

2. LFs are idiomatic. LFs are characteristic for idioms in many natural languages. An

example is the lexical function Magn which means ‘a great degree of what is denoted by

the key word’. In English, it is said to sleep soundly and to know firmly, not the other way

round: *to sleep firmly or *to know soundly. But in Russian the combination krepko spat’

(literally to sleep firmly) is quite acceptable although it is not natural in English.

3. LFs can be paraphrased. For example, the LFs Oper and Func can form combinations with

their arguments which are synonymous to the basic verb like in the following utterances:

The government controls prices – The government has control of prices – The government

keeps prices under control – The prices are under the government’s control. Most

paradigmatic lexical functions (synonyms, antonyms, converse terms, various types of

syntactic derivatives) can also substitute for the keyword to form synonymous sentences.

4. LFs are diverse semantically. Sometimes the values of the same LF from the same key

word are not synonymous. This is especially characteristic of the LF Magn. We can

describe a great degree of knowledge in the following three ways: a) as deep or profound;

b) as firm; c) as broad or extensive. Although all these adjectives are valid values of the

Magn, the three groups should somehow be distinguished from each other because the

respective adjectives have very different scopes in the semantic representation of the

keyword. Deep and profound characterize knowledge with regard to the depth of

understanding; firm specifies the degree of its assimilation; broad and extensive refer to

the amount of acquired knowledge. It was proposed in [Apresjan et al. 2003] that in order

to keep such distinctions between different values of the same LFs in the computerized

algebra of LFs it is sufficient to ascribe to the standard name of an LF the symbol NS

(non-standardness) plus a numerical index and maintain the correspondences between the

two working languages by ascribing the same names to the respective LFs in the other

language.

8.2. Lexical Functions in Word Sense Disambiguation

Syntagmatic LFs can be used to resolve syntactic and lexical ambiguity. Both types of ambiguity

can be resolved with the help of LFs Oper, Func and Real. LFs like Magn (with the meaning

‘very’, intensifier), Bon (with the meaning ‘good’), Figur (with the meaning ‘metaphoric

expression typical of the key word’) among others, can be used to resolve lexical ambiguity.

8.2.1. Syntactic Ambiguity

Syntactic ambiguity and its resolution with the help of LFs is explained in this section by means

of an example. Let us consider such English phrases as support of the parliament or support of

the president. The word support is object in the first phrase, but it is subject (agent) in the second

phrase. Syntactically, both phrases are identical: support + the preposition of + a noun, this is the

sourse of syntactic ambiguity, and for that reason both phrases may mean both: ‘support given

by the parliament (by the president)’, which syntactically is the subject interpretation with the

agentive syntactic relation between support and the subordinated noun, and ‘support given to the

parliament (to the president)’ which syntactically is the object interpretation with the first

completive syntactic relation between support and the subordinated noun. This type of ambiguity

is often extremely difficult to resolve, even within a broad context. LF support verbs can be

successfully used to disambiguate such phrases because they impose strong limitations on the

syntactic behaviour of their keywords in texts.

Now let us view the same phrases in a broader context. The first example is The president

spoke in support of the parliament, where the verb to speak in is Oper1 the noun support. Verbs

of the Oper1 type may form collocations with their keyword only on condition that the keyword

does not subordinate directly its first actant. The limitation is quite natural: Oper1 is by definition

a verb whose grammatical subject represents the first actant of the keyword. Since the first actant

is already represented in the sentence in the form of the grammatical subject of Oper1, there is no

need to express it once again. This is as much as to say that the phrase The president spoke in

support of the parliament can only be interpreted as describing the support given to the

parliament, with parliament fulfilling the syntactic function of the complement of the noun

support.

On the other hand, verbs of the Oper2 type may form such collocations only on condition that

the keyword does not subordinate directly its second actant. Again, the limitation is quite natural:

Oper2 is by definition a verb whose grammatical subject represents the second actant of the

keyword. Since the second actant is already represented in the sentence in the form of the

grammatical subject of Oper2, there is no need to express it once again. So in the second example

we consider in this section, The president enjoyed (Oper2) the support of the parliament, the

phrase the support of the parliament implies the support given to the president by the parliament,

with parliament fulfilling the syntactic function of the agentive dependent of the noun support.

In cases of syntactic ambiguity, syntactically identical phrases are characterized by different

lexical functions which in this case serve as a tool of disambiguation.

8.2.2. Lexical Ambiguity

LFs are also useful in resolving lexical ambiguity. For the sake of brevity, we shall give only one

illustrative example. The Russian expression provodit' razlichie and its direct English equivalent

to draw a distinction can be analyzed as composed of OPER1 + its keyword. Taken in isolation,

the Russian and the English verbs are extremely polysemous, and choosing the right sense for

the given sentence becomes a formidable problem. Provodit', for example, has half a dozen

senses ranging from ‘spend’ via ‘perform’ to ‘see off’, while draw is a polysemic verb for which

dictionaries list 50 senses or more. However, in both expressions the mutual lexical attraction

between the argument of the LF and its value is so strong that, once the fact of their co-

occurrence is established by the parser, we can safely ignore all other meanings and keep for

further processing only the one relevant here.

8.3. Lexical Functions in Computer-Assisted Language Learning

One of the purposes in developing software for language learning is to acquire lexicon. It has

been proposed (for example, in [Diachenko 2006]) to organize learning in the form of linguistic

games. There are games that operate on a word dictionary, but in order to learn collocations, a

lexical function dictionary can be used whose advantage is that it includes the linguistic material

on word combinations which is absent in word dictionaries. Below an example of a game

oriented to lexical functions is given.

Game “Lexical Function”

In the game “LF”, the user needs to supply values of a concrete LF for each given argument.

The user chooses the LF she is going to play with and enters the number of questions. The

system gathers the material for the game by random selection of arguments from the dictionary.

The system also shows the user the definition of the LF and two examples.

According to the difficulty of learning, all LFs were divided into 3 levels.

While some LF values have a compound format and may include the argument itself or

pronouns, the system generates hints for such values. For example, CausFact0 (with the meaning

‘to cause something to function according to its destination) for clock (in the sense of ‘time-

measuring instrument) is wind up (a watch) / start (a watch). For this value the hint will look like

this:

“— (a watch)”

CausFact0 of imagination is fire (somebody's imagination). The hint will look like this

“— (somebody) (imagination)”.

If the user cannot supply an answer, the system shows him the list of correct answers.

8.4. Lexical Functions in Machine Translation

Two important properties of LFs mentioned in Section 8.1., i.e. their semantic universality and

cross-linguistic idiomaticity, make them an ideal tool for selecting idiomatic translations of set

expressions in a MT system. The way it can be done is explained by an example of prepositions

in English and Spanish.

As is well known, locative prepositions used to form prepositional phrases denoting places,

sites, directions, time points, periods, intervals etc. reveal great versatility within one language

and incredibly fanciful matching across languages. If we were to account properly for the

discrepancies existing between the uses of these prepositions, say, in English and Spanish, we

would have to write too detailed translation rules involving complicated semantic and pragmatic

data. However, a large part of the task may be achieved with the help of LFs.

Consider the following correspondences between English and Russian that may be easily

found with the help of the LFs Dir (preposition denoting a movement toward the location

expressed by the key word):

Dir (city) = to (the city), Dir (cuidad) = a (la cuidad)

Dir (friend) = to (my friend), Dir (amiga) = con (mi amiga)

In order to ensure the production of these equivalents in machine translation, we must only

identify the arguments and the value of the LF during parsing and substitute the correct value

from the target language dictionary during generation.

Implementation Example

A module that annotates word combinations with lexical functions (such word combinations will

be collocations, see Section 3.4) represented in Fig. 12, can be included in any machine

translation system based on interlingua like UNL. UNL is a project of multilingual personal

networking communication initiated by the University of United Nations based in Tokyo

[Uchida et al. 2006].

Fig. 12. Lexical Function Module of a Machine Translation System.

Chapter 9. Result Analysis with Respect to our Contribution

to Linguistic Research

Linguistics as a scientific study of human language intends to describe and explain it. However,

validity of a linguistic theory is difficult to prove due to volatile nature of language as a human

convention and impossibility to cover all real-life linguistic data. In spite of these problems,

computational techniques and modeling can provide evidence to verify or falsify linguistic

theories. As a case study, we conducted a series of computer experiments on a corpus of Spanish

verb-noun collocations using machine learning methods, in order to test a linguistic point that

collocations in the language do not form an unstructured collection but are language items

related via what we call collocational isomorphism, represented by lexical functions of the

Meaning-Text Theory. Our experiments allowed us to verify this linguistic statement. Moreover,

they suggested that semantic considerations are more important in the definition of the notion of

collocation than statistical ones.

9.1. Computer Experiments in Linguistics

Computer experiments play a very important role in science today. Simulations on computers

have not only increased the demand for accuracy of scientific models, but have helped the

researcher to study regions which can not be accessed in experiments or would demand very

costly experiments.

Our computational experiments made on the material of Spanish verb-noun collocations like

seguir el ejemplo, follow the example, satisfacer la demanda, meet the demand, tomar una

decisión, make a decision, can contribute to verify if the linguistic statement specified in Section

9.2 is true. Out results also make it possible to derive another important inference on the nature

of collocation presented in Section 9.4.

It should be added here that testing a linguistic hypothesis on computer models not only

demonstrates validity or rejection of the hypothesis, but also motivates the researcher to search

for more profound explanations or to explore new approaches in order to improve computational

operation. Thus, starting from one linguistic model, the researcher can evaluate it and then go

further, sometimes into neighboring spheres of linguistic reality, in her quest of new solutions,

arriving at interesting conclusions. One of the original intents of our research was to test one

linguistic model experimentally. If we develop a computer program on the premise of a certain

linguistic model and this program accomplishes its task successfully, then the linguistic model

being the basis of the program is thus verified. The results we obtained not only produced

evidence for verifying a linguistic model or statement we make in the next section, but they also

made it possible to get more insight into the nature of collocation which has been a controversial

issue in linguistics for many years.

9.2. Linguistic Statement: our Hypothesis

Collocations are not a stock or a “bag” of word combinations, where each combination exists as

a separate unit with no connection to the others, but they are related via collocational

isomorphism represented as lexical functions.

9.2.1. Collocational Isomorphism

Considering collocations of a given natural language, it can be observed that collocations are not

just a “bag” of word combinations, as a collection of unrelated items where no association could

be found, but there are lexical relations among collocations, and in particular, we study the

lexical relation which may be called ‘collocational isomorphism’. It has some resemblance to

synonymy among words which is the relation of semantic identity or similarity. Collocational

isomorphism is not a complete equality of the meaning of two or more collocations, but rather a

semantic and structural similarity between collocations.

What do we mean by semantic and structural similarity between collocations? For

convenience of explanation, we will comment on the structural similarity of collocations first.

The latter is not a novelty, and a detailed structural classification of collocations (for English)

was elaborated and used to store collocational material in the well-known dictionary of word

combinations The BBI Combinatory Dictionary of English (Benson et al. 1997). However, we

will exemplify collocational structures with Spanish data, listing some typical collocates of the

noun alegría, joy:

verb + noun: sentir alegría, to feel joy

adjective + noun: gran alegría, great joy

preposition + noun: con alegría, with joy

noun + preposition: la alegría de (esa muchacha), the joy of (this girl).

The above examples are borrowed from the dictionary of Spanish collocations entitled

Diccionario de colocaciones del Español [Alonso Ramos 2003], a collection of collocations in

which the bases are nouns belonging to the semantic field of emotions. So collocations have

structural similarity when they share a common syntactic structure.

We say that two or more collocations are similar semantically if they possess a common

semantic content. In Table 26, we present collocations with the same syntactic structure, namely,

‘verb + noun’. For these collocations, the meaning is given for us to see what semantic element

can be found that is common to all of them.

Table 26. Verb-noun collocations and their meaning

Spanish

collocation

English literal

translation

Translation into

natural English

Meaning of

collocation

English

translation

hacer uso

dar un abrazo

prestar atención

tener interés

tomar la medida

make use

give a hug

lend attention

have interest

take measure

make use

give a hug

pay attention

take interest

take action

usar

abrazar

fijarse

interesarse

actuar

use

hug

pay attention

be interested

act

Table 27. Verb-noun collocations grouped according to their common semantic pattern

Semantic pattern Spanish collocations
English literal

translation

Translation into

natural English

create an entity or

process

escribir un libro

elaborar un plan

construir la sociedad

dar vida

write a book

elaborate a plan

construct a society

give life

write a book

develop a plan

build a society

give life

intensify a property

or attribute

aumentar el riesgo

elevar el nivel

desarrollar la

capacidad

mejorar la condición

increase the risk

lift the level

develop a capacity

improve a condition

increase the risk

raise the level

develop a capacity

improve a condition

reduce a property or

attribute

disminuir la

probabilidad

reducir el consumo

bajar el precio

limitar los derechos

lessen the probability

reduce consumption

lower the price

limit rights

lower chances

reduce consumption

bring down the price

restrict rights

begin to realize an

action or begin to

manifest an attribute

iniciar la sesión

tomarla palabra

asumir el papel

adoptar una actitud

initiate a session

take the word

assume a role

adopt the attitude

start a session

take the floor

assume a role

take the attitude

preserve a property

or process

mantener el equilibrio

guardar silencio

seguir el modelo

llevar una vida

maintain the balance

keep silence

follow a model

carry a life

keep the balance

keep quiet

follow an example

lead a life

It may be noted that the meaning of all collocations in Table 26 is generalized as ‘do, carry out

or realize what is denoted by the noun’, in other words, that these collocations are built

according to the semantic pattern ‘do the noun’. In turn, observing the meaning of the nouns, we

see that their semantics can be expressed in general terms as ‘action’ (uso, abrazo, medida) or

‘psychological attribute’ (atención, interés), so the resulting semantic pattern of the collocations

in Table 26 is ‘do an action / manifest a psychological attribute’. Since these collocations share

common semantics and structure, we may say that they are isomorphic, or that they are tied to

one another by the relation we termed above as ‘collocational isomorphism’. Table 27 gives

more examples of isomorphic collocations.

9.2.2. Collocational Isomorphism Represented as Lexical Functions

Several attempts to conceptualize and formalize semantic similarity of collocations have been

made. As far back as in 1934, the German linguist W. Porzig claimed that on the syntagmatic

level, the choice of words is governed not only by grammatical rules, but by lexical

compatibility, and observed semantic similarity between such word pairs as dog – bark, hand –

grasp, food – eat, cloths – wear [Porzig 1934]. The common semantic content in these pairs is

‘typical action of an object’. Research of J. R. Firth [Firth 1957] drew linguists’ attention to the

issue of collocation and since then collocational relation has been studied systematically. In the

article of J. H. Flavell and E. R. Flavell [Flavell and Flavell 1959] and in the paper by Weinreich

[Weinreich 1969], there were identified the following meanings underlying collocational

isomorphism: an object and its typical attribute (lemon – sour), an action and its performer (dog

– bark), an action and its object (floor – clean), an action and its instrument (axe – chop), an

action and its location (sit – chair, lie – bed), an action and its causation (have – give, see –

show), etc. Examples from the above mentioned writings of Porzig, Flavell and Flavell,

Weinreich are borrowed from [Apresjan 1995: 44].

The next step in developing a formalism representing semantic relations between the base and

the collocate as well as semantic and structural similarity between collocations was done by I.

Mel’čuk. Up to now, his endeavor has remained the most fundamental and theoretically well-

grounded attempt to systematize collocational knowledge. This scholar proposed a linguistic

theory called the Meaning-Text Theory, which explained how meaning, or semantic

representation, is encoded and transformed into spoken or written texts [Mel’čuk 1974]. His

theory postulates that collocations are produced by a mechanism called lexical function. Lexical

function is a mapping from the base to the collocate; it is a semantically marked correspondence

that governs the choice of the collocate for a particular base. About 70 lexical functions have

been identified in [Mel’čuk 1996]; each is associated with a particular meaning according to

which it receives its name. Table 28 demonstrates a correspondence between semantic patterns

of collocations and lexical functions.

Table 28. Semantic patterns represented as lexical functions

Semantic pattern

and examples

Complex lexical function

representation

Complex lexical function

description

create an entity or process

escribir un libro

dar vida

CausFunc0(libro) = excribir

CausFunc0(vida) = dar

CausFunc0 = cause an entity or

process to function.

intensify a property or attribute

aumentar el riesgo

elevar el nivel

CausPlusFunc1(riesgo) =

aumentar

CausPlusFunc1(nivel) = elevar

CausPlusFunc1 = cause that a

property or attribute manifest

itself to a larger degree.

reduce a property or attribute

disminuir la probabilidad

reducir el consumo

CausMinusFunc1(probabilidad)

= disminuir

CausMinusFunc1(consumo) =

reducir

CausMinusFunc1 = cause that a

property or attribute manifest

itself to a lesser degree.

begin to realize an action or

begin to manifest an attribute

iniciar la sesión

adoptar una actitud

IncepOper1(sesión) = iniciar

IncepOper1(actitud) = adoptar

IncepOper1 = cause that an

action begin to be realized or an

attribute begin to manifest itself.

preserve a property or process

mantener el equilibrio

guardar silencio

ContOper1(probabilidad) =

disminuir

ContOper1(probabilidad) =

disminuir

ContOper1 = cause that an

action continue to be realized or

an attribute continue to manifest

itself.

Now we are going to see if computer experiments can supply evidence to the existence of

collocational isomorphism as defined by lexical functions. The idea is to submit a list of

collocations to the computer and see if it is able to distinguish collocations belonging to different

lexical functions. If a machine can recognize lexical functions, then it is a strong testimony to

their existence.

9.3. Discussion of Our Results: Testing the Linguistic Statement

One of the purposes of this work is to provide evidence for the linguistic statement made in the

beginning of Section 9.2. Now let us review it in the light of our experimental results. The

statement affirms that collocations are not a stock, or a “bag” of word combinations, where each

combination exists as a separate unit with no connection to others, but they are related via

collocational isomorphism represented as lexical functions.

What evidence have we obtained concerning lexical functions? We presented a sufficient

number of collocations annotated with lexical functions to the computer that learned

characteristic features of each function. It was demonstrated that the computer was able to assign

lexical functions to unseen collocations with a significant average accuracy of 0.759. Is it

satisfactory? We can compare our result with computer performance on another task of natural

language processing: word sense disambiguation, i.e., identifying the intended meanings of

words in context. Today, automated disambiguating systems reach the accuracy of about 0.700

and this is considered a substantial achievement. As an example of such works see [Zhong and

Tou Ng 2010]. Therefore, our result is weighty enough to be a trustworthy evidence for the

linguistic statement under discussion.

In Section 9.1 we stated, that if we develop a computer program on the premise of a certain

linguistic model and this program accomplishes its task successfully, then the linguistic model

being the basis of the program is thus verified. In our experiments, we have observed that

machine learning methods are able to detect lexical functions of collocations. Thus lexical

functions as a linguistic concept get evidence received in computational experiments which can

be repeated on the same data as well as on new data. It means that the formalism of lexical

functions is a legitimate model of collocational isomorphism described in Section 9.2.1.

9.4. Discussion of Our Results Concerning the Nature of Collocation: Statistical vs.

Semantic Approach

What knowledge is necessary and sufficient for the computer to analyze and generate texts in

natural language? And what type of knowledge should it be? Up to now, the two foremost

approaches in natural language processing have been the statistical approach and the symbolic

one. Our results demonstrated that rule-based methods outperformed statistical methods in

detecting lexical functions. It means that collocations are analyzed better by rules than by

frequency counts; that rules tell us more of what collocations are than frequency counts do; that

collocations can be recognized better semantically than statistically.

The fact that the semantic aspect of collocation outweighs the statistical one has an important

effect on the definition of collocations. Definition of a concept must contain necessary and

sufficient criteria for distinguishing this concept from other concepts. The debate over the most

relevant criterion for defining collocations has already lasted over a long period. Should this

criterion be statistical or semantic? [Wanner 2004] gives a good concise overview of this debate.

The statistical definition of collocation, i.e. based on probabilistic knowledge, says that

collocation is the syntagmatic association of lexical items, quantifiable, textually, as the

probability that there will occur, at n removes (a distance of n lexical items) from an item x, the

items a, b, c ... [Halliday 1961:276]. The semantic definition of collocation explains how the

collocational meaning is formed: a collocation is a combination of two words in which the

semantics of the base is autonomous from the combination it appears in, and where the collocate

adds semantic features to the semantics of the base [Mel’čuk 1995]. For example, in the phrase

She fell to the floor, all the words are used in their typical sense and the verb to fall means to

drop oneself to a lower position, but when it is said She fell in love, we understand that the same

verb is not used in its typical, full meaning, but attains a different sense ‘begin to experience

something’. WordReference Online Dictionary
5
 gives a description of this sense: pass suddenly

and passively into a state of body or mind. To illustrate the definition, the dictionary provides the

following examples: to fall into a trap, She fell ill, They fell out of favor, to fall in love, to fall

asleep, to fall prey to an imposter, fall into a strange way of thinking. This meaning of fall is

more abstract as compared with its typical meaning given in [SpWN] ‘descend in free fall under

the influence of gravity’, e.g., The branch fell from the tree. Fall reveals its characteristic

meaning in free word combinations, and its more abstract sense, in collocations. What do we

mean by more abstract sense? An abstract sense is not independent, it is not complete, but rather

can be called a “semantic particle” whose function is not to express the full semantics, but to add

semantic features to the base of collocation.

To explain what is meant by “adding semantic features to the base”, let us make an analogy

with semantics of grammatical categories which is also very abstract. The verb be in its function

as an auxiliary verb does not express any meaning except abstract grammatical categories of

time, aspect, and person. In the sentence This castle was built in the 15th century, the verb build

carries the meaning of an action, and what be does is adding semantic features to the verb, i.e.

that this action took place in past, it is passive, not active, and was applied to a single object,

because the grammatical number of be is singular. Likewise, fall does not express an event, or a

state, but to the word denoting an event or state ‘adds’ the semantic feature ‘begin to occur’.

According to the semantic definition of collocation, the latter differs from free word

combinations in the way it constructs its semantics. While the semantics of a free word

combination is the sum of the meanings of its elements, collocational meaning is formed by

adding more abstract semantic features expressed by the collocate to the full meaning of the

base.

Our experiments showed that collocations are recognized better using rules, or conceptual

knowledge. It means that the basic criterion for distinguishing collocations from free word

combinations is semantic, so there is a good evidence and reason to build definition of

collocation on the semantic, not statistical, criterion.

Chapter 10. Conclusions

1. Our experiments have shown that verb-noun collocations can be classified according

to semantic taxonomy of lexical functions using WEKA learning toolset. We have

shown that it is feasible to apply machine learning methods for predicting the meaning

of unseen Spanish verb-noun collocations.

2. Verb-noun pairs were represented as sets of hyperonyms for both the verb and the

noun. As our experiments have shown, hyperonyms of the Spanish WordNet function

sufficiently well as features distinguishing between the meanings we chosen to be

predicted by classifiers. Therefore, this representation can be used for the task of

automatic extraction of lexical functions. With this we re-confirmed that the set of

hyperonyms can be used to describe lexical meaning and discriminate word senses.

3. According to 10-fold cross-validation technique, the best performance was

demonstrated by bayes.BayesianLogisticRegression algorithm for detecting the lexical

function Oper1 and by SimpleLogistic classifier for detecting the lexical function

ContOper1. Both algorithms can be applied for high quality semantic annotation of

verb-noun collocations based on the taxonomy of lexical functions.

4. According to evaluation of algorithms on an independent test set, the best performance

was shown by Ridor and LWL algorithms for detecting the lexical function

ContOper1. These algorithms can be used for high quality annotation of verb0noun

collocations with this lexical function.

5. The best f-measure achieved in our experiments is 0.873 using the training set and 10-

fold cross-validation technique. This is significantly higher than the previously

reported result of 0.740 for F-measure, though the comparison is not fair because we

looked for the meaning which is similar to the meaning predicted in [Wanner et al.

2006], but not the same one. The highest F-measure achieved in the experiments on an

independent test set was only 0.658. This could be explained by the fact that the best

ratio between the training set and the test set has not yet been found by us. More

experiments on test sets of various sizes are needed.

6. We have tested if the three hypothesis stated in [Wanner et al. 2006] were valid and

well-grounded. These hypothesis claim that collocations can be recognized: first, by

their similarity to the prototypical sample of each collocational type (this strategy is

modeled by the Nearest Neighbor technique); second, by similarity of semantic

features of their elements (i.e., base and collocate) to semantic features of elements of

the collocations known to belong to a specific LF (this method is modeled by Naïve

Bayesian network and a decision tree classification technique based on the ID3-

algorithm); and third, by correlation between semantic features of collocational

elements (this approach is modeled by Tree-Augmented Network Classification

technique). Our research has shown that there machine learning methods other than

mentioned in the three hypotheses that can be used for high quality annotation of verb-

noun collocations of lexical funciton. To these methods the following algorithms

belong: JRip, J48, Prism, PART, SimpleLogistic, Ridor.

References

[Alonso Ramos 2003] Alonso Ramos, M.: Hacia un Diccionario de colocaciones del español y
su codificación.’ In: M. A. Martí et al. (eds.), Lexicografía computacional y semántica.
Barcelona: Edicions de l’Universitat de Barcelona, pp. 11—34

[Alonso Ramos et al. 2008] Alonso Ramos, M., Rambow O., Wanner L.: Using semantically

annotated corpora to build collocation resources. Proceedings of LREC, Marrakesh, Morocco,
pp. 1154—1158

[Apresjan 1995] Apresjan, Ju. D.: Lexical Semantics. (In Russian). Moscow: Vostochnaya

Literatura RAN.

[Apresjan 2004] Apresjan, Ju. D.: About semantic nonemptiness and motivatedness of verbal

lexical functions. (In Russian.) Voprosy jazykoznanija: pp. 3—18

[Apresjan 2008] Apresjan, Ju. D.: Systematic Lexicography. Translated by Kevin Windle.

Oxford University Press US.

[Apresjan et al. 2003] Apresjan, Ju. D., Boguslavsky, I. M., Iomdin, L. L., Tsinman L., L.:

Lexical Functions as a Tool of ETAP-3. MTT 2003, Paris, June 16-18, 2003.

[ARFF] The University of Waikato Computer Science Department Machine Learning Group,

Attribute-Relation File Format, http://www.cs.waikato.ac.nz/~ml/weka/ arff.html, last viewed
June 11, 2010

[Benson et al. 1997] Benson, M., Benson, E., Ilson R.: The BBI Combinatory Dictionary of

English. John Benjamins, Amsterdam

[Castellón et al. 1999] Castellón I., Civit, M., Atserias J.: Syntactic Parsing of Unrestricted

Spanish Texts. Proceedings First International Conference on Language Resources and
Evaluation (LREC’98), Granada, Spain

[Chiu et al. 2007] Chiu A., Poupart P., DiMarco C.: Learning Lexical Semantic Relations using

Lexical Analogies, Extended Abstract. Publications of the Institute of Cognitive Science

[Civit and Martí 2004] Civit, M., Martí, M.A.: Building Cast3LB: A Spanish Treebank. In:

Research on Language and Computation, vol. 2(4), pp. 549—574. Springer, Netherlands

[CEB] Concordancia electrónica de la Biblia Reina Valera 1960 online,

http://www.concordancia.bravefire.com/concordancia.php/, last viewed on June 07, 2010

[Cohen 1995] Cohen, W.: Fast effective rule induction. In: 12th International Conference on

Machine Learning, pp.115—123

[Diachenko 2006] Diachenko, P.: Lexical functions in learning the lexicon. In: Current

Developments in Technology-Assisted Education, Vol. 1, 2006, pp. 538—542.

[DiCE] Diccionario de colocaciones del Español, http://www.dicesp.com/paginas/, last viewed
June 08, 2010

[Duda and Hart 1973] Duda, R. O., Hart, P. E.: Pattern Classification and Scene Analysis. John

Wiley and Sons, New York

[Firth 1957] Firth, J. R.: Modes of Meaning. In J. R. Firth, Papers in Linguistics 1934–1951 (pp.
190–215). Oxford: Oxford University Press.

[Flavell and Flavell 1959] Flavell, J. H. & Flavell, E. R.: One Determinant of Judged semantic

and associative connection between words. Journal of Experimental Psychology, 58(2), 159–
165.

[Fontecha 1941] Fontecha, C.: Glosario de voces comentadas en ediciones de textos clásicos.

Madrid: CSIC

[Friedman et al. 1997] Friedman, N., Geiger D., Goldszmidt, M.: Bayesian network classifiers.

Machine Learning. Vol. 29 pp. 131–163

[Hall et al. 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten I. H.:

The WEKA Data Mining Software: An Update. SIGKDD Explorations, Volume 11, Issue 1

[Halliday 1961] Halliday, M. A. K.: Categories of the Theory of Grammar. Word 17, 241–292.

[Hanks and Pustejovsky 2005] Hanks, P., Pustejovsky, J.: A Pattern Dictionary for Natural

Language Processing. Revue Francaise de Langue Appliquée, 10:2

[Hindle 1983] Hindle, D.: Deterministic Parsing of Syntactic Noun-Fluencies. Proceedings 21st

Annual Meeting of the Association for Computational Linguistics

[Kilgarriff et al. 2004] Kilgarriff, A., Rychly, P., Smrz, P. and Tugwell, D.: The Sketch Engine.

In Proceedings of EURALEX. France, Université de Bretagne Sud: pp. 105—116

[Langley et al. 1992] Langley, P., Iba, W., Thompson, K.: An Analysis of Bayesian Classifiers.

In Proceedings of Tenth National Conference on Artificial Intelligence. AAAI Press, Mentlo
Park, CA

[Leacock and Chodorow 1998] Leacock C., Chodorow, M.: Combining Local Context and

WordNet Similarity for Word Sense Identification. In: C. Fellbaum, editor, WordNet. An
Electronic Lexical Database, pp. 265—283. MIT Press, Cambridge, MA

[Lewis 1994] Lewis, M.: The Lexical Approach. The State of ELT And A Way Forward,

Language Teaching Publications

[Lewis 1997] Lewis, M.: Implementing the Lexical Approach: Putting Theory into Practice,

Hove: Language Teaching Publications

[LFs] www.Gelbukh.com/lexical-functions, last viewed on June 10, 2010

[Loos 1997] Loos, E. (general editor), Anderson, S., Day Jr., D. H., Jordan, P. C., Wingate J. D.
(editors): Glossary of Linguistic Terms.
http://www.sil.org/linguistics/GlossaryOfLinguisticTerms/, last viewed on June 08, 2010

[McVey and Wegmann 2001] McVey Gill, M., Wegmann, B.: Streetwise Spanish

Dictionary/Thesaurus. Chicago: McGraw-Hill.

[Mel’čuk 1974] Igor’ Mel’čuk . 1974. Opyt teorii lingvističeskix modelej “Smysl ↔ Tekst” [‘A

Theory of the Meaning-Text Type Linguistic Models’]. Moskva: “Nauka”.

[Mel’čuk 1996] Igor Mel’čuk. Lexical Functions: A Tool for the Description of Lexical

Relations in a Lexicon. In Lexical Functions in Lexicography and Natural Language
Processing, pages 37-102. L. Wanner, ed. John Benjamin Publishing Company, 1996.

[Mel’čuk and Zholkovskij 1984] I. A. Mel’čuk, A. K. Zholkovskij. Tolkovo-kombinatornyj

slovar' sovremennogo russkogo jazyka. [An Explanatory Combinatorial Dictionary of the
Contemporary Russian Language] Wiener Slawistischer Almanach, Sonderband 14, 1984.

[Mel’čuk et al. 1984] Igor Mel’čuk, Nadia Arbatchewsky-Jumarie, Lidija Iordanskaja, Adèle

Lessard. Dictionnaire explicatif et combinatoire du français contemporain, Recherches lexico-
sémantiques I. Les Presses de l'Université de Montréal, 1984.

[Mel’čuk et al. 1988] Mel’čuk, Igor, Nadia Arbatchewsky-Jumarie, Louise Dagenais, Léo

Elnitsky, Lidija Iordanskaja, Marie-Noëlle Lefebvre, Suzanne Mantha. 1988. Dictionnaire

explicatif et combinatoire du français contemporain. Recherches lexico-sémantiques II. Les
Presses de l'Université de Montréal.

[Mel’čuk 1993-2000] Igor Mel’čuk Cours de morphologie générale, vol. 1-5, Montréal: Les

Presses de l’Université de Montréal/Paris: CNRS Éditions.

[Mel’čuk 2006] Igor Mel’čuk. Aspects of the Theory of Morphology. Berlin - New York: de

Gruyter.

[Mel’čuk and Zholkovskij 1984] Mel’čuk, I. A. and Zholkovskij, A. K. 1984. An Explanatory

Combinatorial Dictionary of the Contemporary Russian Language. Wiener Slawistischer
Almanach, Sonderband 14.

[Miller 1998] Miller, G.A: Foreword. In: Fellbaum, C. (ed.) WordNet. An Electronic Lexical

Database, pp. xv–xxii. MIT Press, Cambridge, Mass. (1998)

[Nastase and Szpakowicz 2003] V. Nastase and S. Szpakowicz. Exploring noun-modifier

semantic relations. In Fifth International Workshop on Computational Semantics (IWCS-5),
Tilburg, The Netherlands, pages 285-301, 2003.

[Nastase et al. 2006] Nastase, V., J. Sayyad-Shiarabad,M. Sokolova, and S. Szpakowicz. 2006.

Learning noun-modifier semantic relations with corpus-based and wordnet-based features. In
Proceedings of the Twenty-First National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference. AAAI Press.

[Oelschläger 1940] Oelschläger, V.R.B. 1940. A Medieval Spanish Word-List: A Preliminary

Dated Vocabulary of First Appearances Up To Berceo. Madison, Wisc.: University of
Wisconsin Press.

[Ogawa et al. 1991] Y. Ogawa, T. Morita and K. Kobayashi. A Fuzzy Document Retrieval

System Using the Keyword Connection Matrix and a Learning Method. Fuzzy Sets and
System 39:163-179.

[Patwardhan 2006] Siddharth Patwardhan, Ted Petersen. Using WordNet-based Context Vectors

to Estimate the Semantic Relatedness of Concepts. In Proceedings of the EACL 2006
Workshop Making Sense of Sense - Bringing Computational Linguistics and
Psycholinguistics Together, pages 1–8.

[Porzig 1934] Porzig, W.: Wesenhafte Bedeutungsbeziehungen. Beträge zur Geschichte der

deutsche Sprache und Literatur. No. 58.

[RAE 2001] Real Academia Española 2001. Diccionario de la Lengua Española. (Twenty

Second Edition.) Madrid: Real Academia Española

[Roy 2002] Roy S. Nearest neighbor with generalization. Christchurch, NZ.

[Ruppenhofer et al. 2006] Ruppenhofer, J., Ellsworth, M., Petruck, M., Johnson, C. R. &

Scheffczyk, J. FrameNet II: Extended Theory and Practice. Available at
http://framenet.icsi.berkeley.edu/book/book.pdf. ICSI Berkeley

 [Sanromán 1998] B. Sanromán. Contribución lexicográfica al estudio de los nombres de

emoción. Master’s thesis, Universidad de Coruña.

[Sanromán 2003] B. Sanromán. Semántica, sintaxis y combinatoria léxica de los nombres de
emoción en español. PhD thesis, Helsinki: University of Helsinki.

[Sebastián 2000] N. Sebastián. LEXESP, léxico informatizado del español. Edicions de la

Universidad de Barcelona, Barcelona.

[Shepard 1968] D. Shepard. A Two Dimensional Interpolation Function for Irregularly Spaced

Data. Proceedings of the 23rd National Conference of the ACM, ACM Press.

[SbWC] Spanish Web Corpus. 03 May 2010. http://trac.sketchengine.co.uk/wiki/
Corpora/SpanishWebCorpus/

[SpWN] Spanish WordNet, http://www.lsi.upc.edu/~nlp/web/index.php?Itemid=57 &id=31&

option=com_content&task=view, last viewed June 02, 2010

[Uchida et al. 2006] Uchida, H., Zhu, M., Senta T. D.: Universal Networking Language. UNDL

Foundation, 2006

[Vossen 1998] P. Vossen. EuroWordNet: A Multilingual Database with Lexical Semantic
Networks. Kluwer Academic, Dordrecht.

[Wanner 1996] L. Wanner. 1996. Lexical Functions in Lexicography and Natural Language

Processing. John Benjamin Publishing Company.

[Wanner 2004] Leo Wanner. Towards automatic fine-grained semantic classification of verb-
noun collocations. Natural Language Engineering (2004), 10:2:95-143 Cambridge University
Press.

[Wanner 2006] Wanner, L., Bohnet, B. and Giereth, M. What is beyond Collocations? Insights

from Machine Learning Experiments. EURALEX.

[Webster] Merriam-Webster’s Online Dictionary, http://www.merriam-

webster.com/dictionary/walk%5B2%5D

[Weinreich 1969] Weinreich, U.: Problems in the Analysis of Idioms. In J. Puhvel (Ed.),

Substance and Structure of Language (pp. 23–82). CA, Los Angeles: University of California
Press.

[WEKA] The University of Waikato Computer Science Department Machine Learning Group,

WEKA download, http://www.cs.waikato.ac.nz/~ml/weka/ index_downloading.html, last
viewed June 02, 2010

[WM] WEKA Manual for Version 3-6-2, http://iweb.dl.sourceforge.net/project/weka/

documentation/3.6.x/WekaManual-3-6-2.pdf

[Witten and Frank, 2005] Witten, I. H., Frank, E. Data Mining: Practical machine learning tools

and techniques, 2nd Edition. Morgan Kaufmann, San Francisco.

[Zhong and Tou Ng 2010] Zhong, Z. and Tou Ng, H.: It Makes Sense: A Wide-Coverage Word

Sense Disambiguation System for Free Text. In Proceedings of System Demonstrations, 48th
Annual Meeting of the Association for Computational Linguistics (pp. 78–83). Sweden,
Uppsala: Uppsala University.

Appendices

 Appendix 1. Glossary

Relation Definition 1 - that feature or attribute of things which is involved

in considering them in comparison or contrast with each other; the

particular way in which one thing is thought of in connexion with

another, any connexion, correspondence, or association, which can

be conceived as naturally existing between things. (The Shorter

Oxford English Dictionary on Historical Principles, 3
rd
 edition,

Oxford, At the Clarendon Press, 1959)

Definition 2 - an aspect or quality (as resemblance) that connects

two or more things or parts as being or belonging or working

together or as being of the same kind, specif: a property (as one

expressing by is equal to, is less than, or is the brother of) that holds

between an ordered pair of objects. (Webster’s Ninth New Collegiate

Dictionary, Merriam-Webster Inc. Publishers, Springfield,

Massachusetts, USA, 1991)

Definition 3 - a connection between two or more things. (Longman

Dictionary of Contemporary English, 3
rd
 edition, Longman

Dictionaries, 1995)

Definition 4 - the way in which two or more concepts, objects, or

people are connected; a thing’s effect on or relevance to another.

(The New Oxford Dictionary of English, Clarendon Press, Oxford,

1998)

Definition 5 - the way in which two or more things are connected.

(Oxford Advanced Learner’s Dictionary, A.S.Hornby, 6
th
 edition,

Oxford University Press, 2000)

Definition 6 - an aspect or quality, e.g. resemblance, that connects

two or more things and enables them to be considered together in a

meaningful way. (The Penguin English Dictionary, 2
nd
 edition,

Penguin Books, 2003)

Definition 7 - an abstraction belonging to or characteristic of two

entities or parts together. (WordNet 2.1)

Wordform the phonological or orthographic sound or appearance of a word

that can be used to describe or identify something; "the inflected

forms of a word can be represented by a stem and a list of inflections

to be attached" (WordNet 3.0) http://www.thefreedictionary.com

Lexical form an abstract unit representing a set of wordforms differing only in

inflection and not in core meaning.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Meaning a notion in semantics classically defined as having two

components: reference, anything in the referential realm denoted by a

word or expression, and sense, the system of paradigmatic and

syntagmatic relationships between a lexical unit and other lexical

units in a language.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Lexical unit a form-meaning composite that represents a lexical form and single

meaning of a lexeme.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Lexeme the minimal unit of language which has a semantic interpretation

and embodies a distinct cultural concept, it is made up of one or more

form-meaning composites called lexical units.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Lexical

relation

a culturally recognized pattern of association that exists between

lexical units in a language.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Paradigmatic

lexical relation

a culturally determined pattern of association between lexical units

that share one or more core semantic components, belong to the same

lexical category, fill the same syntactic position in a syntactic

construction, and have the same semantic function.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

“In general, paradigmatic relations subsume all contrast and

substitution relations that may hold between lexical units in specific

contexts. For example, the lexemes school and student are

paradigmatically related in such pairs of phrases as to go to school

and to be a student, and so also are the lexemes young and tall in

young student and tall student. A paradigmatic relation, in general,

does not automatically imply a semantic relation.” [Wanner 1996]

Semantic

component

a potentially contrastive part of the meaning of a lexical unit. E.g.,

contrastive semantic component distinguishes one lexical unit from

another as “male” is the contrastive semantic component

distinguishing man from woman, and boy from girl; shared semantic

component occurs in each member of a group of lexical units as

“human” is a shared component for man, woman, boy, and girl.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Lexical

category

a syntactic category for elements that are part of the lexicon of a

language. These elements are at the word level. Also known as part

of speech, word class, grammatical category, grammatical class.

Lexical categories may be defined in terms of core notions or

‘prototypes’. Given forms may or may not fit neatly in one of the

categories. The category membership of a form can vary according to

how that form is used in discourse.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Prototype of

any category

the member or set of members of a category that best represents

the category as a whole. Not everything fits perfectly in a category.

Categories are defined by an intersection of properties that make up

their members. Members that have all the properties are the prototype

members. Those that contain some, but not all, of the properties are

less prototypical.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Syntax (from Ancient Greek συν- syn-, "together", and τάξις táxis,

"arrangement") is the study of the principles and rules for

constructing sentences in natural languages. In addition to referring

to the discipline, the term syntax is also used to refer directly to the

rules and principles that govern the sentence structure of any

individual language, as in "the syntax of Modern Irish."

http://en.wikipedia.org/wiki/Syntax

Syntactic

category

either a phrasal category, such as noun phrase or verb phrase,

which can be decomposed into smaller syntactic categories, or a

lexical category, such as noun or verb, which cannot be further

decomposed. The three criteris ised in defining syntactic categories

are the type of meaning it expresses, the type of affixes it takes, the

structure in which it occurs.

http://en.wikipedia.org/wiki/Syntactic_category

Grammatical

category

person, number, tense, aspect, mood, gender, case, voice...

Grammatical

class

transitive and intransitive verbs; count and mass nouns...

Grammatical

relations

subject, direct object, indirect object...

Functional

categories

agent, patient, instrument...; topic, comment...; definite NP

Syntagmatic

lexical relation

a culturally determined pattern of association between pairs of

lexical units (A1-B1, A2-B2, A3-B3...) where the two members of

each pairs (A1 and B1) have compatible semantic components, are in

a fixed syntactic and semantic relationship to each other, and are

typically associated with each other, and corresponding members of

each pair (A1, A2, A3...) belong to the same lexical category, fill the

same syntactic position in a syntactic construction, and have the same

semantic function.

http://www.sil.org/linguistics/GlossaryOfLinguisticTerms

Syntagmatic

relations

(or co-occurence relations) hold between lexical units that can

appear together, i.e. that co-occur, in the same phrase or clause.

[Wanner 1996]

Token each running word in the text. Thus a text of length a hundred

words contains a hundred tokens. [Sinclair et al. 2004]

Lexical

semantic

relations

semantic relations between concepts [Chiu et al. 2007]

Appendix 2. Definitions of Collocation

Additional information is given as to the source of definition, the criterion used to distinguish

collocations from free word combinations, and some comments on definitions.

Author Definition Criterion for a

word combination to

be considered a

collocation

Comments

[Firth 1957] Collocations of a

given word are

statements of the

habitual or customary

places of that word.

Lexical criterion:

a word is used in a

fixed position with

respect to a given

word.

Statistical

criterion: frequency

of word co-

occurrence.

[Firth 1957] first

introduced the term

‘collocation’ from

Latin collocatio which

means ‘bringing

together, grouping’.

Firth believes that

speakers make

‘typical’ common

lexical choices in

collocational

combinations.

Collocation is a

concept in Firth’s

theory of meaning:

“Meaning by

collocation is an

abstraction at the

syntagmatic level and

is not directly

concerned with

the conceptual or

idea approach to the

meaning of words.

One of the meanings

of night is its

collocability with

dark, and of dark, of

course, collocation

with night.”

[Halliday

1961]

Collocation is the

syntagmatic

association of lexical

items, quantifiable,

textually, as the

probability that there

will occur, at n

removes (a distance of

n lexical items) from

an item x, the items a,

b, c ...

Lexical criterion:

a word is used a

fixed position with

respect to a given

word.

Statistical

criterion: high co-

occurrence

frequency.

If a lexical item is

used in the text, then

it’s collocate has the

highest probability of

occurrence at some

distance from the

lexical item.

Collocations cut

across grammar

boundaries: e.g. he

argued strongly and

the strength of his

argument are

grammatical

transformations of the

initial collocation

strong argument.

[Hausmann

1984, 1985]

Collocations are

binary word-

combinations, consist

of words with limited

combinatorial

capacity, they are

semi-finished products

of language, affine

combinations of

striking habitualness.

In a collocation one

partner determines,

another is determined.

In other words:

collocations have a

basis and a co-

occurring collocate.

Lexical criterion:

the lexical choice of

the collocate

depends on the

basis.

Word combinations

are classified word-

combinations

according to the

features fixed vs. non-

fixed, and in this

classification

collocations are

belong to the category

of non-fixed affine

combinations.

Internal structure of

collocation:

collocation

components have

functions of a basis

and a collocate, and

the basis (not the

speaker) ‘decides’

what the collocate will

be.

[Benson

1985]

Collocation is a

group of words that

occurs repeatedly, i. e.

recurs, in a language.

Recurrent phrases can

be divided into

grammatical

collocations and

lexical collocations.

Grammatical

collocations consist of

a dominant element

and a preposition or a

grammatical

construction: fond of,

(we reached) an

agreement that...

Lexical collocations

do not have a

dominant word, their

components are

"equal": to come to an

agreement, affect

deeply, weak tea.

Functional

criterion:

collocations are

classified according

to function of

collocational

elements.

Statistical

criterion: high co-

occurrence

frequency.

Broad

understanding of

collocation.

Classification of

collocations according

to their compositional

structure.

[Benson

1989]

Collocations should

be defined not just as

‘recurrent word

combinations’, [but

as] ‘ARBITRARY

recurrent word

combinations’

Lexical criterion:

arbitrariness and

recurrency

‘Arbitrary’ as

opposed to ‘regular’

means that

collocations are not

predictable and cannot

be translated word by

word.

[Van Roey

1990]

Collocation is “that

linguistic phenomenon

whereby a given

vocabulary item

prefers the company

of another item rather

than its ‘synonyms’

because of constraints

which are not on the

level of syntax or

conceptual meaning

but on that of usage.”

Statistical

criterion: high co-

occurrence

frequency in

corpora.

Van Roey

summarizes statistical

view stated by

Halliday in terms of

expression or ‘usage’.

A collocate can thus

simply be seen as any

word which co-occurs

within an arbitrary

determined distance

or span of a central

word or node at the

frequency level at

which the researcher

can say that the co-

occurrence is not

accidental. This

approach is also

textual in that it relies

solely on the ability of

the computer program

to analyze large

amounts of computer-

readable texts.

[Cowie

1993]

Collocations are

associations of two or

more lexemes (or

roots) recognized in

and defined by their

occurrence in a

specific range of

grammatical

constructions.

Structural

criterion:

collocations are

distinguished by

patterns

Collocations are

classified into types

according to their

grammatical patterns.

[Howarth

1996]

[Howarth

1996] contd.

In his lexical

continuum model,

collocations as

composite units are

placed on a sliding

scale of meaning and

form from relatively

unrestricted

(collocations) to

highly fixed (idioms).

Restrictive

collocations are fully

institutionalised

phrases, memorized as

wholes and used as

conventional form-

meaning pairings.

Syntactic

criterion:

commutability – the

extent to which the

elements in the

expression can be

replaced or moved

(make/reach/take

decision vs. shrug

one’s shoulders).

Semantic

criterion: motivation

– the extent to which

the semantic origin

of the expression is

identifiable (move

the goalposts = to

change conditions

for success vs. shoot

the breeze = to

chatter, which is an

opaque idiom).

Classification

includes 4 types of

expressions with no

reference to frequency

of occurrence:

free collocation:

blow a trumpet = to

play a trumpet,

restrictive

collocation: blow a

fuse = to destroy a

fuse/to get angry,

figurative idiom:

blow your own

trumpet = to sell

oneself excessively,

pure idiom: blow

the gaff = to reveal a

concealed truth.

The problem with

this classification is

that is difficult to

determine what is

meant by

‘syntactically fixed’,

‘unmotivated’ or

‘opaque’. This is seen

in the ambiguous

example of to blow a

fuse.

[Sinclair

et al. 2004]

Collocation is the

co-occurrence of two

items in a text within a

specified environment.

Significant collocation

is regular collocation

between two items,

such that they co-

occur more often than

their respective

frequencies. Casual

collocations are “non-

significant”

collocations.

Lexical criterion:

recurrency of co-

occurrence

Statistical

criterion: high co-

occurrence

frequency

The degree of

significance for an

association between

items is determined by

such statistic tests as

Fischer’s Exact Test

or Poisson Test.

[Mel’čuk

1995]

Collocation is a

combination of two

lexical items in which

the semantics of one

of the lexical items

(the base) is

autonomous from the

combination it appears

in, and where the other

lexical item (the

collocate) adds

semantic features to

the semantics of the

base. [Gledhill 2000]

explains that for

Mel’čuk a collocation

is a semantic function

operating between two

or more words in

which one of the

words keeps its

‘normal’ meaning.

Semantic

criterion:

the meaning of a

collocation is not

inferred from the

meaning of the base

combined with

meaning of the

collocate.

Semantics of a

collocation is not the

meaning of the base +

the meaning of the

collocate, but rather

the meaning of the

base + some

additional meaning

that are included in

the meaning of the

base.

‘...the concept of

collocation is

independent of

grammatical

categories: the

relationship which

holds between the

verb argue and the

adverb strongly is the

same as that holding

between the noun

argument and the

adjective strong.’

[Fontenelle 1994]

Appendix 3. Syntagmatic Verb-Noun Lexical Functions

Examples in English Examples in Spanish Lexical function name and

description

Lexical function

variant LF

Argument

Collocation:

LF value + LF

argument

LF Argument Collocation:

LF value + LF

argument

Oper1
‘perform, do,

act’

support

resistance

order

to lend support

to put up resistance

to give order

apoyo

resistencia

orden

dar apoyo

oponer resistencia

dar la orden

Operi

Lat. operari ‘do, carry out,

perform, experience’. The

keyword of Operi is the name of

an action, an activity, a state, a

property, a relation, i.e. a noun

whose meaning is or includes a

predicate in the logical sense of

the term this presupposing

actants.

Oper2
‘undergo, meet’

support

resistance

order

to receive support

to meet resistance

to receive order

apoyo

resistencia

orden

recibir apoyo

encontrar resistencia

recibir la orden

Func0
‘happen, take

place’

snow

silence

smell

falls

reigns

lingers

vieto

silencio

accidente

el viento sopla

el silencio reina

el accidente ocurre

Funci

Lat. functionare ‘function’.

The keyword of Funci is the name

of an action, an activity, a state, a

property, a relation, i.e. a noun

whose meaning is or includes a

predicate in the logical sense of

the term this presupposing

actants.

Func1
‘originate from’

blow

proposal

support

comes [from N]

comes, stems [from

N]

come [from]

golpe

propuesta

apoyo

un golpe se produce

una propuesta se

presenta

apoyo se presta

Func2
‘concern, apply

to’

blow

proposal

analysis

falls [upon N]

concerns [N]

concerns

golpe

propuesta

analisis

el golpe cae

la propuesta consiste

en N

analisis explica

Laborij(k)

Lat. laborari ‘to work, toil,

process’ – a verb connecting L

and participant(s).

Labor12
a verb

connecting the first

participant as

grammatical

subject with the

second participant

as direct object and

with L as indirect

object

control

respect

punishment

to keep N under

control

to treat N with respect

to subject N to

punishment

alegría

cariño

celebrar algo con

alegría

tratar algo con cariño

IncepOper1 fire [shoot]

popularity

despair

to open fire on N

to acquire popularity

to sink into despair

admiración

amistad

cariño

contagiarse de

admiración

contraer la amistad

cobrar cariño a N

IncepOper2 power

control

fall under the power

of N

to get under N’s

control

Incep

Lat. incipere ‘begin’ – a

phrasal verb

IncepFunc1
‘N begins to be

experienced’

despair

hatred

anger

despair creeps over/in

N

hatred stirs up N

anger arises

desesperación

odio

ira

desesperación entra

en N

odio se apodera de N

ira envade N

Cont

Lat. continuare ‘continue’ – a

phrasal verb

ContOper1

‘continue to

experience’

enthusiasm

hope

anger

maintain enthusiasm

hope burns

anger boiled over in

N

entusiasmo

esperanza

odio

guardar entusiasmo

guardar esperanza

conservar odio

ContOper2 attention to hold attention

ContOper12 animosity feel animosity

towards/against N

enemistad mantener el

enemistad

ContFunc0 offer

odor

the offer stands

the odor lingers

ContFact0 luck her luck holds

FinOper1 power

patience

to lose one’s power

over N

to lose patience

alegría

amistad

cariño

perder la alegría

perder la amistad

perder cariño

FintOper2
‘cease to be the

object of

somebody’s L’

credit to lose credit with N admiración perder la admiración

de N

FinFunc0

‘N ceases to be

experienced’

anger

hatred

enthusiasm

anger defuses

hatred ceases

enthusiasm wanes

aprención

odio

entusiasmo

aprención se disipa

odio desaparece

entusiasmo se

desvanece

Fin

Lat. finire ‘cease’ – a phrasal

verb

FinFunc1 love his love vanished into

thin air

admiración la admiración ha

desaparecido en N

CausOper1 opinion

despair

to lead N to the

opinion

to throw N into

despair

admiración llenar a N de

admiración

CausOper2 control

attention

to put N under X’s

control

to call N to X’s

attention

Caus

Lat. causare ‘cause’

‘do something so that a

situation begins occurring’

Caus1Oper2 control to bring N under

one’s control

CausFunc0
‘cause the

existence of N’

crisis

difficulty

election

to bring about the

crisis

to create a difficulty

to hold elections

alarma

elecciones

crisis

dar la alarma

celebrar elecciones

provocar una crisis

Caus1Func2 suspicion

attention

to sow suspicions

to show attention to N

cariño

sospecha

depositar el cariño en

N

apuntar la sospecha

hacia N

Caus2Func1
‘cause N to be

experienced’

hope

surprise

anger

to raise the hope in N

to give surprise

to provoke anger

horror

sorpresa

odio

causar horror

dar sorpresa

despertar odio

Caus2Func2 attention

friendship

to grab N’s attention

to seek frienship

admiración

amistad

cariño

atraer admiración

concitar la amistad

atraerse el cariño de

N

CausReal1 suspicion to fall under suspicion sospecha corroborar la

sospecha

Caus1Manif admiration

joy

friendship

to produce admiration

to show joy

to enjoy friendship

admiración

alegría

amistad

confesar admiración

exteriorizar la alegría

demostrar amistad

CausDegrad joy

fire

strength

joy was vanishing

the fire is dying down

my strength is failing

alegría empañar la alegría

PermFunc1 gana dejar a N con las

ganas

Perm1Fact0 anger

desire

to let go N’s anger

to give in to the desire

alegría dejarse llevar por la

alegría

Perm

Lat. permittere ‘permit, allow’

‘do nothing which would cause

that a situation stops occurring’

nonPerm1Fact laugh

impulse

tear

to suppress a laugh

to check an impulse

to hold back a tear

alegría

dolor

gana

contener la alegría

contener el dolor

reprimir las ganas

Perm1Manif strength

impatience

tact

to display N’s

strength

to exhibit impatience

to show tact

sospecha dar rienda suelta a la

sospecha

nonPerm1Manif smile

hatred

laughter

to conceal a smile

to hide N’s hatred

to stifle N’s laughter

admiración

alegría

celos

ocultar la admiración

disimular la alegría

reprimir los celos

LiquOper2

liability

debt

duty

to exempt from

liability

to release from debts

to release N from N’s

duties

sospecha alejar a N de toda

sospecha

Liqu1Func0

‘put an end to’

support

obstacle

meeting

withdraw support

remove the obstacle

end the meeting

alegría

amistad

celos

apagar la alegría

romper la amistad

atajar los celos

LiquFunc1 custom

shyness

the custom is

vanishing

to get better of N’s

shyness

alegría

celos

gana

minar la alegría a N

quitar los celos a N

quitar las ganas a N

Liqu

Lat. liquidare ‘liquidate’

‘do something so that a

situation stops occurring’

LiquFunc2 attention to divert N’s attention

from N

sospecha alejar la sospecha de

N

Reali
Lat. realis ‘real’. The gloss is

‘to fulfill the requirement of L’,

‘to do with L what you are

supposed to with L’, or ‘L fulfils

its requirement’. The values are

fulfillment verbs, differs from

Facti and Labrealij with respect

Real1
‘use L according

to its destination’

‘do with regard

to X that which is

normally expected

of first participant’

duty

obligation

principle

do one’s duty

fulfill the obligation

follow a principle

amistad

cariño

celos

conceder amistad a

alguien

dar cariño

consumirse en los

celos

Real2
‘do with regard

to X that which is

normally expected

of second

participant‘

challenge

examination

insult

accept a challenge

pass an examination

avenge an insult

cariño

examen

ofensa

recibir cariño de

alguien

aprobar el examen

vengar la ofensa

Fact0

hope

movie

suspicion

his hope comes true

the movie is on

the suspicion is

confirmed

Fact1

suspicion

hope

arouse suspicion

stir up hope

alegría

celos

dolor

la alegría domina a

algien

los celos me abrasan

el dolor le punzó

Facti
Lat. factum ‘fact’. The gloss is

‘to fulfill the requirement of L’,

‘to do with L what you are

supposed to with L’, or ‘L fulfils

its requirement’. The values are

fulfillment verbs, differs from

Reali and Labrealij with respect

to its syntax only.

Fact2 suspicion

hope

fall under suspicion

cherish hope

cariño el cariño rodea a

alguien

Labreal12

gallows

saw

reserve

to string up N on the

gallows

to cut N with the saw

to hold N in reserve

horca

sierra

cariño

ejecutar en la horca a

N

la sierra corta N

rodear a N de cariño

Labrealij
It is a hybrid of Labor and

Real. The gloss is ‘to fulfill the

requirement of L’, ‘to do with L

what you are supposed to with

L’, or ‘L fulfils its requirement’.

The values are fulfillment verbs,

differs from Facti and Reali with

respect to its syntax only.

Labreal13 shame

health

to burn with shame

to waste N’s health

celos consumir a N de celos

Involv

Lat. involvere ‘drag along’ – a

verb meaning ‘to involve Y’, ‘to

concern Y’; it links L and the

name of a non-participant Y

which is affected or acted upon

by the situation L’

 light

snowstorm

smell

light floods the room

the snowstorm caught

him in N=place

the smell filled the

room

Manif

Lat. manifestare ‘manifest’ –

verb meaning ‘L manifests itself

or becomes apparent in Y’

 amazement

joy

scorn

amazement lurks in

his eyes

joy explodes in them

scorn is dripping from

every word

dolor

enemistad

orgullo

el dolor se refleja

la enemistad se

manifesta

el orgullo resplandece

ProxOper1 despair

disaster

tears

to be on the edge of

despair

to be on the brink of

disaster

to be on the verge of

tears

 Prox

Lat. proximare ‘approach’ –

verb meaning ‘to be about to do

something, to be on the verge of

something’

ProxFunc0 thunderstorm thunderstorm brews

Prepar1Real1 friendship to propose friendship

to N

amistad ofrecer amistad a N

Prepar1Real2 plane to board a plane

Prepar

Lat. praeparare ‘prepare’ –

verb meaning ‘to prepare N for

..., to get N ready for normal use

or functioning’
PreparFact0 car

program

table

to fill up the car

to load a program into

a computer

to lay the table

Degrad

Lat. degradare ‘lower,

degrade’ – verb meaning ‘to

degrade, to become permanently

worse or bad’

 milk

clothes

teeth

milk goes sour

clothes wear off

teeth decay

alegría

ropa

dientes

la alegría se frustra

Son

Lat. sonare ‘sound’ – verb

meaning ‘to emit characteristic

sound’

 dog

banknotes

waterfall

the dog barks

banknotes rustle

the waterfall roars

perro

billetes

cascada

el perro ladra

Obstr eyes

negotiations

economy

eyes blur

negotiations are

stalled

economy stagnates

Obstr2 breath

speech

N is short of breath

N stutters, stammers,

mumbles

Obstr

Lat. obstruere ‘obstruct’ – verb

meaning ‘to function with

difficulty’; alphabetical

superscripts specify the aspect of

obstruction.

Obstr
stat

‘stat’ = ‘with

respect to vertical

position’

body

knees

the body crumples

his knees give way

Stop voice

heart1

heart2

his voice breaks

his heart is stopping

her heart broke

 Stop

Lat. stuppare ‘stop up, plug’ –

verb meaning ‘to stop

functioning’ Stop2 breath N loses his breath

Excess engine

sweat

the engine races

sweat rolls down

across N’s forehead

Excess2 heart1 N has palpitations

Excess
motor

‘motor’ = ‘with

respect to

movements’

eyes

heart1

the eyes pop out on

stalks

the heart pounds,

races

Excess2
motor

 teeth

sweat

N grinds his teeth

N is bathed in sweat

Excess
color

‘color’ = ‘with

respect to color’

cheeks cheeks glow

Excess

Lat. excessus (past participle of

excédere) ‘exceed’ – verb

meaning ‘to function in an

abnormally excessive way’;

alphabetical superscripts specify

the aspect of excessive

functioning.

Excess1
color

 cheeks to be red-cheeked

Excess
dim

‘dim’ = ‘with

respect to

dimension/size’

eyes the eyes are like

saucers in X’s head

Excess
fulg

‘fulg’ = ‘with

respect to

brightness’

eyes eyes flash/glitter

Excess
trem

‘dim’ = ‘with

respect to

dimension/size’

hands his hand were shaking

Excess
t0

‘t
0
’ = ‘with

respect to

temperature’

cheeks her cheeks burnt

Obstr(1)-

Sympt23(2)

1=breath,

2=anger

1=speech,

2=anger

N chokes with anger

N sputters with anger

1=respiración,

2=cólera

sofocarse de cólera

Stop(1)-

Sympt1(2)

1=speech,

2=amazement

//N is dumbstruck 1=habla,

2=susto

enmudecer del susto,

el susto le hizo

enmudecer

Excess
motor

(1)-

Sympt1(2)

1=hair,

2=fear

1=eyes,

2=amazement

N’s hair stands on end

N’s eyes start from

their sockets

1=pelo,

2=susto

1=ojos,

2=espanto

ponérsele a uno los

pelos de punta

estar con los ojos

fuera de las órbitas

Sympt

Lat. symptoma ‘a symptom of’

– a verbal expression meaning

‘symptom of’, it denotes a bodily

reaction that is a symptom of an

emotional or physical state.

Excess
motor

(1)-

Sympt213(2)

1=mouth,

2=amazement

N opens N’s mouth

wide with amazement

1=cuerpo,

2=dolor

1=pecho,

2=orgullo

doblarse del dolor

henchir el pecho

Excess
motor

(1)-

Sympt13(2)

1=mouth,

2=astonishment

1=mouth,

2=surprise

N’s jaw drops in

astonishment

the mouth hangs open

in surprise

1=corazon,

2=alegría

1=palmas,

2=alegría

el corazon da un

vuelco de alegría

dar palmas de alegría

AntiReal1 cancer to win over N’s

cancer

dolor

sospecha

aguantar el dolor

desmentir la sospecha
Anti

Lat. antonymum – antonym,

i.e. an LF returning for L a

lexical unit L´ such that the

meanings ‘L’ and ‘’ differ by a

negation of an internal element of

one of them.

AntiReal2 examination

piece of

advice

application

to fail an examination

to reject a piece of

advice

to turn down an

application

examen

consejo

solicitud

reprobar el examen

desoír el consejo

rechazar la solicitud

Result

Lat. resultare ‘result’ – a verb

meaning ‘to be the expected

result of’.

ResultOper3 proposal to have the proposal

Appendix 4. Program Source Code (Perl)

Step 1. Reading the original data Excel file containing the Corpus of Spanish

Verb-Noun Lexical Functions.

PROGRAM DESCRIPTION

Reads the Excel file containing the Corpus of Sanish Verb-Noun

Lexical Functions and outputs a text file where each line looks

like this:

v_formar 2 n_parte 1 CausFunc0, where v stands for verb,

n stands for noun, the numbers which follow the words formar and

parte

are numbers of their senses in the Spanish WordNet

#!/usr/bin/perl -w

use strict;

use 5.010;

use Win32::OLE qw(in with);

use Win32::OLE::Const 'Microsoft Excel';

$Win32::OLE::Warn = 3; # die on errors...

open new Excel application

my $Excel = Win32::OLE->GetActiveObject('Excel.Application')

 || Win32::OLE->new('Excel.Application', 'Quit');

open Excel file

my $Book = $Excel->Workbooks->Open

("C:/Lexical Resources/Corpus of Spanish Verb-Noun Lexical

Functions.xls");

select worksheet number 1 (you can also select a worksheet by

name)

my $Sheet = $Book->Worksheets($ARGV[0]);

warn "Processing $ARGV[0]\n";

my %POS = (

 VERB => "v_",

 NOUN => "n_",

 ADJECTIVE => "a_",

 ADVERB => "r_"

);

my %prefix = (

 2 => ($POS{$Sheet->Cells(1,2)->{'Value'}} or die),

 4 => ($POS{$Sheet->Cells(1,4)->{'Value'}} or die)

);

for my $row (2..1001)

{

 for my $col (2..5, 1)

 {

 # skip empty cells

 die "Empty cell: (row, col) = ($row, $col)" unless

defined $Sheet->Cells($row,$col)->{'Value'};

 # print out the contents of a cell

 print +($prefix {$col} // ""), $Sheet-

>Cells($row,$col)->{'Value'}, " ";

 }

 printf "\n";

}

$Book->Close;

Step 2. Mark verb-noun combinations as positive or negative examples for the

lexical function chosen for the classification procedure.

PROGRAM DESCRIPTION

Reads the text file generated at Step 1 and outputs a text file

where

each line looks like this:

v_formar 2 n_parte 1 no % CausFunc0

where v stands for verb, # n stands for noun, the numbers which

follow

the words formar and parte are numbers of their senses in the

Spanish

WordNet and no means that this is a negative example for the

lexical

function chosen for the classification procedure (which is

definitely

not CausFunc0).

#!perl -w

use strict;

use 5.010;

my $f = $ARGV [0]; # the name of the LF chosen

for the classification procedure

while (<STDIN>)

{

 chomp;

 next if /^ *$/;

 next if /N\/A/;

 next if /ERROR/;

 die unless my ($line, $func) = /(.*) ([^]+) *$/;

 say $line, " ", ($func =~ /^$f/) ? "yes" : "no", " % ",

$func;

}

Step 3. Prepare a wordlist.

PROGRAM DESCIPTION

Reads the text file generated at Step 1 and outputs a text file

where lines look like these:

v formar 2

n parte 1

and where v stands for verb, n stands for noun and the numbers are

those

of the respective senses of words in the Spanish WordNet

#!perl -w

use strict;

use 5.010;

while (<>)

{

 chomp;

 next if /^ *$/;

 next if /N\/A/;

 next if /ERROR/;

 die unless my ($pos1, $word1, $sense1, $pos2, $word2,

$sense2) = /^([^]+)_([^]+) +([0-9]+) +([^]+)_([^]+) +([0-9]+)/;

 # next unless my ($pos1, $word1, $sense1, $pos2, $word2,

$sense2) = /^([^]+)_([^]+) +([0-9]+) +([^]+)_([^]+) +([0-9]+)/;

 say "$pos1 $word1 $sense1";

 say "$pos2 $word2 $sense2";

}

Step 4. Find hyperonyms in the Spanish WordNet.

PROGRAM DESCRIPTION

Reads the text file generated at Step 3 and the Spanish WordNet

and outputs a text file where each line looks like these:

v_formar_2|v01787769|v01788486

n_parte_1|n00013018|n00018916|n09945970

where v stands for verb, n stands for noun, the numbers which

follow

the words formar and parte are numbers of their senses in the

Spanish

WordNet, codes like v01787769 are hyperonym synset IDs in the

Spanish

WordNet and | is a separator, so for each word all hyperonyms

are extracted from the SpanishWordNet

#!perl -w

use strict;

use 5.010;

my $wndir = $ARGV[0];

my %hypernym;

open F, "$wndir/esWN-200611-relation"; # a file of the Spanish

WordNet

while (<F>)

{

 # has_hyponym|n|06125829|n|50005897|99

 push @{$hypernym {"$3$4"}}, "$1$2"

 if /^has_hyponym\|(\w)\|(\d+)\|(\w)\|(\d+)\|/;

}

close F;

my %synset;

open F, "$wndir/esWN-200611-variant"; # a file of the Spanish

WordNet

while (<F>)

{

 # v|00005575|parpadear_ligeramente|1|99|-

 /^(\w)\|(\d+)\|([^|]*)\|(\d+)\|/ or die;

 my $word = "$1_$3_$4";

 my $synset = "$1$2";

 given ("$word|$synset")

 {

 when ("n_pena_1|n10385041") { $word = "n_pena_13" }

 }

 push @{$synset {$word}}, $synset;

}

close F;

while (<STDIN>)

{

 chomp;

 s/ /_/g;

 my %result;

 if (@{$synset{$_} // []} != 1)

 {

 warn "No synset or multiple synsets for:

 $_; skipping this word\n";

 next;

 }

 my @ToDo = ($synset{$_} [0]); # only one synset;

this has been checked

above

 while (my $current = pop @ToDo)

 {

 undef $result {$current};

 push @ToDo, @{$hypernym {$current} // []};

 }

 say "$_|", join '|', sort keys %result;

}

Step 5. Compile an attribute list for the ARFF file.

PROGRAM DESCRIPTION

Reads a particular Spanish WordNet file, the text file generated

at Step 4

and outputs lines like these (here the beginning of the file is

given):

@relation function

@attribute n00001740 {0,1}

@attribute n00002086 {0,1}

@attribute n00003731 {0,1}

In this file the number of lines is equal to the overall number of

all

hyperonyms (which are included in the text file generated at Step

4.

Codes like v01787769 are hyperonym synset IDs in the Spanish

WordNet and {0,1} are boolean values of the respective attribute

#!perl -w

use strict;

use 5.010;

say "\@relation function";

say "";

my %h;

while (<>)

{

 chomp;

 my @a = split '\|';

 shift @a;

 undef @h {@a};

}

say "\@attribute $_ {0,1}" for sort keys %h;

say "\@attribute category {yes,no}";

say "";

say "\@data";

Step 6. Add commentaries to the attribute list for the ARFF file.

PROGRAM DESCRIPTION

Reads a particular Spanish WordNet file, the text file generated

at

Step 5 and outputs lines like these:

@attribute n09898220 {0,1} % 10_1 diez_1 decena_1

@attribute n09793320 {0,1} % 12.7_Kg_1 aprox._arroba_1

@attribute n10882271 {0,1} % 15_de_agosto_de_1945_1 dÝa_VJ_1

@attribute n10899730 {0,1} % 1_de_enero_1 a±o_nuevo_1

where % is the symbol of a commentary, and commentaries are words

included in the respective synset indicated by its ID like

n09898220

#!perl -w

use strict;

use 5.010;

my %h;

while (<>)

{

 chomp;

 next unless /^([nv])\|([0-9]+)\|(.*?)\|([0-9]+)\|/; # $1 -

$4

 $h {$1.$2} .= " $3_$4";

}

say "\@attribute $_ {0,1} \%$h{$_}" for sort { lc $h{$a} cmp lc

$h{$b} } keys %h;

Step 7. Compile the ARFF data file – Stage 1.

PROGRAM DESCRIPTION

Reads the text files generated at Step 5 and Step 6

Outputs the first part of the ARFF file

#!perl -w

use strict;

use 5.010;

open FULL, $ARGV[0]; # the file generated at Step 6

open INITIAL, $ARGV[1]; # the file generated at Step 5

my @full = <FULL>;

while (<INITIAL>)

{

 chomp;

 my %h;

 unless (/^$/)

 {

 for my $full (@full)

 {

 unless (index $full, $_) # found

 {

 print $full;

 die "Double match for $_" if exists

$h{$_};

 undef $h{$_};

 }

 }

 }

 say unless keys %h;

}

Step 8. Compile the ARFF data file – Stage 2 (final).

PROGRAM DESCRIPTION

Reads the text files generated at Step 2, Step 4 and Step 6

Outputs the final version of the ARFF file

#!perl -w

use strict;

use 5.010;

$| = 1; # do not use buffer for output

my $cnt_of_attributes;

my %n_by_attribute;

open F, "< $ARGV[0]" or die $!; # the file generated at Step 6

while (<F>)

{

 next unless /^\@attribute (.*?) {/; # $1

 $n_by_attribute {$1} = $cnt_of_attributes++;

}

$cnt_of_attributes--;

close F;

warn "$cnt_of_attributes attributes except the category\n";

my %hypernyms_by_word; # construct a database

open F, "< $ARGV[1]" or die $!; # the file generated at Step 4

while (<F>)

{

 chomp;

 next if /^$/;

 die unless /(.*?)\|(.*)/;

 $hypernyms_by_word {$1} = $2;

}

while (<STDIN>) # the file generated at Step 2

{

 chomp;

 # my ($w1, $w2, $category) = ("v_dar_9", "v_tomar_4",

"yes");

 die unless /^(\S+) +(\d+) +(\S+) +(\d+) +(\S+)(+% .*)?$/;

 my $w1 = "$1_$2";

 my $w2 = "$3_$4";

 my $category = $5;

 my @a = (0) x $cnt_of_attributes;

 $a [$n_by_attribute {$_}] = 1 for split '\|',

 ($hypernyms_by_word {$w1} . '|' . $hypernyms_by_word {$w2});

 push @a, $category;

 say +(join ',', @a), " % $w1 $w2";

}

Step 8. Read WEKA classifiers output.

PROGRAM DESCRIPTION

search for the line: ----------------- bayes.AODE ----------------

and print "bayes.AODE" (its the name of one of the classifiers)

search for the 15th line of numbers after the line

=== Stratified cross-validation ===

and print this line

#!perl -w

use strict;

use 5.010;

my $line;

my $nextline;

my $counter;

while (my $line = <>)

{

 if ($line =~ /^-----------------\s(\w+\.\w+)/i)

 {

 print $1;

 print "\n";

 }

 if ($line =~ /^=== Stratified cross-validation ===/)

 {

 for ($counter = 1; $counter < 16; $counter++)

 {

 $nextline = <>;

 }

 my $numbers = chomp ($nextline);

 print "$nextline", "\n";

 }

}

Chapter 11. Future Work

We plan to do the following:

1. To experiment with different ratios of training and test sets of Spanish verb-non

 collocations.

1. To evaluate the performance of machine learning algorithms for more lexical

functions.

2. To analyze errors of classifiers.

3. To test other classification techniques which were not examined in our experiments.

4. To study the effect of other features, such as WordNet glosses.

5. To experiment with a word space models representing various similarity measures

between collocations.

6. To experiment with context-base representation of data. Context can be represented in

the form of grammatical relations between words.

7. To experiment with other association measures to estimate distance between verb-noun

collocations which belong to different lexical functions.

8. To experiment on English verb-noun collocations.

Author’s Publications

1. Olga Kolesnikova, Alexander Gelbukh. Semantic relations between collocations—A

Spanish case study. Revista signos (JCR), ISSN 0035-0451, Vol. 45, No. 78, March,

2012, to appear.

2. Alexander Gelbukh and Olga Kolesnikova. Supervised Learning for Semantic

Classification of Spanish Collocations. Lecture Notes in Computer Science N 6256,

ISSN 0302-9743, Springer, 2010, pp. 362–371

3. Olga Kolesnikova and Alexander Gelbukh. Supervised Machine Learning for Predicting

the Meaning of Verb-Noun Combinations in Spanish. Lecture Notes in Artificial

Intelligence N 6438, ISSN 0302-9743, Springer, pp. 196-207. Best paper award (1st

place) at MICAI-2010, the Mexican International Conference on Artificial Intelligence,

received over 300 submissions from 34 countries.

4. Olga Kolesnikova and Alexander Gelbukh. Using WEKA for Semantic Classification of

Spanish Verb-Noun Collocations. J. Research in Computing Science, ISSN 1870-4069,

2010, to appear.

5. Alexander Gelbukh and Olga Kolesnikova (2011). Multiword Expressions in NLP:

General Survey and a Special Case of Verb-Noun Constructions. In: Sivaji

Bandyopdahyay, Sudip Kumar Naskar, Asif Ekbal (Eds.). Emerging Applications of

Natural Language Processing: Concepts and New Research, IGI-Global Publishing

House. In the process of reviewing.

6. Olga Kolesnikova and Alexander Gelbukh (2011). Semantic Annotation of Spanish

Verb-Noun Collocations. Computación y Sistemas (indexada por CONACYT). In the

process of reviewing.

In Conferences and Workshops

7. Poster “Automatic Extraction of Lexical Functions”, the 5th Workshop on Human

Language Technologies, October 3, 2008, Sta. María Tonantzintla, Puebla, Instituto

Nacional de Astrofísica, Óptica y Electrónica.

8. Talk “Automatic Extraction of Lexical Functions”, the 4th Colloqium on Computational

Linguistics, UNAM, September 1, 2009.

9. Poster “Automatic Extraction of Lexical Functions”, the 6th Workshop on Human

Language Technologies, October 30, 2009, Sta. Matía Tonantzintla, Puebla, Instituto

Nacional de Astrofísica, Óptica y Electrónica.

10. Talk “Using WEKA for Semantic Classification of Spanish Verb-Noun

Collocations”, the 11th Conference on Computation CORE-2010, May 26-28, 2010,

Centro de Investigación en Computación del Instituto Politécnico Nacional (CIC-IPN).

11. Poster “Corpus de las Funciones Léxicas”, the 7th Workshop on Human

Language Technologies, October 21-22, 2010, Sta. María Tonantzintla, Puebla, Instituto

Nacional de Astrofísica, Óptica y Electrónica.

Revision of Research Articles

1. Additional reviewer, the 9th Conference on Computation CORE-2008, May 28-30,

2008, CIC-IPN.

2. Additional reviewer, the 10th Conference on Computation CORE-2009, May 27-29,

2009, CIC-IPN.

3. Additional reviewer, Journal “Procesamiento del Lenguaje Natural”, Revista nº 44,

March 2010.

4. Reviewer, the 13th Internation Conference “Text, Speech and Dialogue”, Brno, Czech

Republic, September 6-10, 2010

5. Additional reviewer, “International Journal of Computational Linguistics and

Applications”, Vol. 1, No. 1-2, January-December 2010.

Awards

Best paper award (1st place) at MICAI-2010, the Mexican International Conference on

Artificial Intelligence, received over 300 submissions from 34 countries.

Published:

Olga Kolesnikova and Alexander Gelbukh. Supervised Machine Learning for Predicting the

Meaning of Verb-Noun Combinations in Spanish. Lecture Notes in Artificial Intelligence N

6438, ISSN 0302-9743, Springer, pp. 196-207.

