
INSTITUTO POLITÉCNICO NACIONAL

CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

Laboratorio de Ciberseguridad

Persistent Intrusive Evaluation

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRÍA EN CIENCIAS DE LA COMPUTACIÓN

P R E S E N T A:

Ing. Gabriel Mart́ınez Mendoza

Director de tesis:
Dr. Eleazar Aguirre Anaya

Ciudad de México Diciembre 2016

Resumen

Evaluación Intrusiva Persistente Debido a la importancia que el soft-
ware, las redes de ordenadores y los sistemas en general han logrado en
muchas áreas, es importante asegurarse de que funcionará no sólo correc-
tamente, sino también de manera segura entendiendo que los sistemas, en
general, están continuamente expuestos a numerosas amenazas. Para ello, es
necesario probar la seguridad de un determinado sistema mediante recursos
y experiencia reales de un atacante, además, para representar una evaluación
a largo plazo, se necesita que la evaluación persista en la búsqueda de una
vulnerabilidad explotable como una contraparte lo haría. En el trabajo ac-
tual se aborda un nuevo enfoque para una evaluación de seguridad a largo
plazo en busca de posibles ataques explotables; está destinado a represen-
tar una vigilancia constante en la manera que una contraparte lo haria sin
conocimiento específico de un objetivo en particular, sino una prueba de
caja negra. Se diseña una manera de lograr una llamada evaluación intru-
siva persistente y se desarrolla un caso de estudio para probar escenarios que
ilustran cambios comunes que podrían alterar la exposición a amenazas de
un sistema evaluado, como la nueva divulgación pública de una vulnerabili-
dad y las actualizaciones del sistema, Obteniendo resultados interesantes en
el descubrimiento de patrones de ataque, y su explotabilidad de una man-
era persistente, de una manera que represente la seguridad de un sistema
continuamente a través de los cambios mencionados.

i

ii

Abstract

Persistent Intrusive Evaluation Due to the relevance that software,
computer networks and systems in general had achieved in many areas, it
becomes important to ensure that it will perform not just correctly, but also
securely understanding that systems, generally speaking, are continuously
exposed to numerous threats. For this, it is needed to test the security of a
given system by means of actual attackers resources and experience, further-
more, to represent a long term evaluation, it is needed for the assessment to
persist in the search of an exploitable vulnerability as a counterpart would
do. In the current work a novel approach for a long term security evaluation
in search of possible exploitable attacks is addressed; it is meant to represent
a constant surveillance in a counterpart manner with no specific knowledge
of a particular target, but a black box testing. It is designed a way to achieve
a so called persistent intrusive evaluation, and a case of study is developed
to tests at scenarios illustrating common changes that would alter the threat
exposure of an evaluated system, such as new vulnerability public disclosure,
and system updates, obtaining interesting results at the attack pattern dis-
covery, and exploitability in a persistent manner, in a way that depicts the
security of a system continuously through the mentioned changes.

iii

iv

Summary

The present work is organized as follows.

Chapter 1 Presents and introduction to the topic at hand, and introduces
the objectives, justification and boundaries for the instrument proposed
within this work to develop automated security testing in a persistent
manner.

Chapter 2 Includes the related work on main subjects for the works pro-
posal, it also implies the principal ideas on which the security testing
instrument is based to be automated.

Chapter 3 Presents the theoretical framework, introducing the definitions
and theory about the subjects addressed within this work, based on
the related work.

Chapter 4 Addresses the analysis and design on the instrument to auto-
mate security tests including the founding components, as well as the
considerations; further it describes the implementation performed for
testing.

Chapter 5 Introduces the tests experiments including the tests performed,
considerations and results.

Chapter 6 Provides conclusions on the design and the contributions achieved,
as well as presents future work.

Bibliography

v

vi

Thanks

This work was supported by the Consejo Nacional de Ciencia y Tecnología
(CONACYT),the Centro de Investigación en Computación (CIC), the Instituto
Politécnico Nacional (IPN), from México, and the Universitat Politècnica de
Catalunya · BarcelonaTech (UPC).

This work is dedicated to every person involved, in one way or another, in its
development and research.

To my family . . .

vii

viii

Contents

Resumen i

Abstract iii

Summary v

Thanks vii

List of Figures xiii

List of Tables xv

1 Security Evaluation Generalities 1
1.1 Problem statement . 3
1.2 Objective . 4

1.2.1 General objective . 4
1.2.2 Specific objectives . 4

1.3 Project justification . 5
1.3.1 Boundaries . 5

1.4 Text organization . 6

2 Related Work on Security Evaluation 7
2.1 Classification of security testing models 8
2.2 Fault Injection security testing approach 9
2.3 Vulnerability Detection approach 11
2.4 Vulnerability Scanners comparison 12
2.5 Fuzzy Testing . 13
2.6 A wider approach to security evaluation 14
2.7 Proposed model for persistent evaluation 15

ix

3 Theoretical Framework 17
3.1 Penetration Testing . 17

3.1.1 Planning and preparation 19
3.1.2 Information gathering and analysis 19
3.1.3 Vulnerability Detection 20
3.1.4 Penetration Attempt 20
3.1.5 Analysis and reporting 21
3.1.6 Clean up . 21
3.1.7 Limitations of Penetration testing 22

3.2 Knowledge Representation . 22
3.2.1 Knowledge base construction 24

3.3 Evolution strategy . 25
3.3.1 Evolutionary strategies principles 25
3.3.2 Mutation and parameter control 26

4 Analysis and Design 27
4.1 Analysis on related work . 27
4.2 Proposal Design . 29

4.2.1 Enumeration . 29
4.2.2 Knowledge representation 31
4.2.3 Search method . 35
4.2.4 Design Integration . 38

5 Case of Study 41
5.1 Code Development . 41

5.1.1 Knowledge Database 41
5.1.2 Enumeration . 44
5.1.3 Evolution strategy . 45

6 Tests and Results 49
6.1 Test Scenario . 49

6.1.1 Expected Results . 50
6.1.2 Target selection . 50
6.1.3 Results scoring . 52

6.2 Testing experiments . 53
6.2.1 Testing case one . 55
6.2.2 Testing case two . 57
6.2.3 Testing case three . 59

x

6.2.4 Testing case four . 61
6.3 Result Analysis . 63
6.4 Comparison to related work 68

Conclusions and Future Work 71

Bibliography 73

xi

xii

List of Figures

1.1 Vulnerability disclosure not covered by pentesting 4

3.1 Small example knowledge graph. Reprinted from [1] 23

4.1 Flow diagram on enumeration phase 31
4.2 Knowledge graph of a general misconfiguration attack 33
4.3 . 34
4.4 Knowledge graph on attack patterns 35
4.5 PSO gbest algorithm . 37
4.6 Design integration flowchart 40

5.1 Entity Relation model for knowledge database 42
5.2 Enumeration results example 45
5.3 Evolution strategy attack pattern execution example 47

6.1 Attack pattern added to knowledge DB over Vulnix 56
6.2 Attack pattern added to knowledge DB over Metasploitable . 56
6.3 Attack scoring testing case one Metasploitable 57
6.4 Attack scoring testing case one Vulnix 58
6.5 Configuration corrected . 59
6.6 Attack scoring on testing case two 59
6.7 Testing case three attack pattern fitness 60
6.8 Attack scoring on test case three 61
6.9 Vulnerable version update test 62
6.10 Attack scoring on testing case four 63
6.11 Software update scenario repetition 66
6.12 Software update scenario repetition with search method change 67

xiii

xiv

List of Tables

3.1 Subject Predicate Object example, Adapted from [1] 23

4.1 Towards automation based on related work 28

5.1 Configuration Vulnerability attack patterns 42
5.2 Implementation Vulnerability attack patterns 43
5.3 Parameter example on CVE-2007-2447 43

6.1 Reported attack patterns by selected vulnerable OS distribution 51
6.2 Vulnerable Distributions . 52
6.3 Attack scoring . 53
6.4 Number of vulnerabilities discovered for each OS distribution . 54
6.5 Comparison with current related work 69

xv

xvi

Chapter 1

Security Evaluation Generalities

One of the main security concerns related to organizations are attacks against
the organization assets, such as its computer systems; according to Howard
and Logstaff[2], an attack can be described as "a series of steps taken by an
attacker to achieve an unauthorized result.", according to this definition, an
attack, can take several steps to be concluded, and it is commonly aimed to
get an unauthorized result in favor of the attackers, which is understood as an
intrusion, perpetrated by an intruder, in this case, the attackers. Even when
it is a common belief that an attack, or intrusion, may generally be performed
by well experienced, expert personnel, some of it can be executed by people
without expert knowledge because of the specialized tools that make some of
the attacks easier even for non experienced personnel; having this in mind, it
is very important for organizations to deal with attacks as a continuous pro-
cess, understanding that some intrusions can be executed easily and therefore
more frequently, furthermore, it is highly desirable to recognize, prior to an
actual attack, if the organization assets are exposed to any of these threats,
therefore the penetration testing process also referred as pentest comes at
hand, which implies gathering information and performing attacks by secu-
rity expert personnel, aiming to find weaknesses at the organization goods,
before an attacker could take advantage of it. A good approach to pene-
tration testing is presented by Chan Tuck[3] published by SANS institute,
in the manner Tuck describes the penetration testing is performed for two
main reasons, one is to test the intrusion detection and response teams, the
second goes in a way to increase the security awareness, by exposing threats
or vulnerabilities probably not considered earlier to the administrators and
owners; nevertheless the penetration testing process presents some limita-

1

2 CHAPTER 1. SECURITY EVALUATION GENERALITIES

tions, it is also important to consider, such as the access limitations on the
tester side, which may not allow the test to overcome on certain vulnerabili-
ties that would be evident to personnel with a higher level access, in addition
the penetration testing process aims to determine vulnerabilities within cer-
tain time, if any vulnerability gets discovered after the test this would not
be disclosed by it, this means that once done, the constant changes on the
organization systems, due to updates, or new vulnerabilities being exposed
publicly, could lead an attacker to succeed in attacking the organization as-
sets. Additionally, there are well known, publicly disclosed, vulnerabilities,
related to a concrete version of software, these vulnerabilities, being publicly
known, can be exploited by any attacker, either an experienced one or not,
but there is no certainty that it will be exploitable at a particular given tar-
get, furthermore, it is needed to consider vulnerabilities, not in the actual
code, but within the configuration, which can lead to information disclosure
or further elaborated attacks, this wrong configuration can be difficult to
asses for an unexperienced system administrator, and even if the service got
wrongly configured, it is not sure whether the attack can take place or not,
as those wrong configurations could be exploited in more than one way.

Security Evaluation Terminology

Penetration Test (pentest) is "the process of attempting to gain access to re-
sources without knowledge of user-names, passwords and other normal means
of access"[4].

Target is the computer system to be subject of the penetration testing.
Black box testing refers to a kind of examination where "...penetration

tester does not have complete information about the system being tested"[3].
Persistence from this work’s perspective "... means that the adversary is

determined (often formally) to accomplish a mission... does not necessarily
mean that they need to constantly execute malicious code on victims com-
puter. Rather they mantain the level of interaction needed to fulfill their
objectives"[5]

Generation. In the context of an evolutionary algorithm, a generation is
a complete iteration of the algorithm process.

1.1. PROBLEM STATEMENT 3

1.1 Problem statement

The purpose of this text is to introduce a novel approach for penetration test-
ing, in a persistent manner, performed in an automated fashion, to overcome
the persistent problems not covered by the execution of a pentest process,
such as new vulnerabilities disclosed, and changes on the system under test-
ing among pentest executions, this comes to avoid uncertainty on attack
exploitability between pentest executions and to cover a continuous time of
testing vulnerabilities to verify its exploitability before it could an attacker
could take advantage of it. Vulnerabilities can be described as "a weakness in
a system allowing unauthorized action"[2], and can be from different kinds
described as follows. Design vulnerability, a vulnerability inherent in the
design or specification of hardware or software whereby even a perfect im-
plementation will result in a vulnerability. Implementation vulnerability, a
vulnerability resulting from an error made in the software or hardware im-
plementation of a satisfactory design. Configuration vulnerability, a vulnera-
bility resulting from an error in the configuration of a system, such as having
system accounts with default passwords, having “world write” permission for
new files, or having vulnerable services enabled [2]. Understanding this could
be shown at any time, as indicated by Northcutt et al "It’s important to un-
derstand that it is very unlikely that a pen-tester will find all the security
issues. As an example, if a penetration test was done yesterday, the organi-
zation may pass the test. However, today is Microsoft’s “patch Tuesday” and
now there’s a brand new vulnerability in some Exchange mail servers that
were previously considered secure, and next month it will be something else.
Maintaining a secure network requires constant vigilance."[4] this can be ex-
emplified in figure 1.1, understanding that such changes will be continuous
and that security must be assured constantly as described earlier. For such
outcome to be achieved, it is needed to come up with a mechanism to both
represent and store the actual knowledge of an attacker, as stated in work
by Northcutt et al the main difference between an attack and a pentest is
the permission, so to automate the test it is needed, represent and store the
attacker knowledge in order to be used at the actual analysis in an automated
manner, to determine suitable attack patterns and test it, in addition it is
needed a way to persist in the attack and find the most suitable time and
parameters to take advantage of the attack at a particular target system, and
to link it up to the knowledge representation to determine the effectiveness
of each attack tested at the target, this can be described as follows: The

4 CHAPTER 1. SECURITY EVALUATION GENERALITIES

Figure 1.1: Vulnerability disclosure not covered by pentesting

knowledge representation would include both, the attack stages along with
its proper parameters to be chosen at the attack execution; to further im-
plement it, being able to determine whether or not it succeeded at the given
target. In addition the attack knowledge must be tested to determine the
feasibility of it to succeed automatically, which implies a search method to
both, test and evaluate each attack.

1.2 Objective

1.2.1 General objective

To design a persistent instrument to evaluate the exploitability of
an intrusion attempt on a given target, through the representation
of knowledge in combination with an evolutionary strategy as a
search method to reduce the possibility of an intrusion prior to an
attack by a counterpart

1.2.2 Specific objectives

• Based on previous effort to automate pentesting, consider the objective
of bringing persistence to it to develop a persistent evaluation.

• Determine the knowledge representation for storage of attacker’s knowl-
edge in a generic manner to craft attack pattern from it, in order to be
generic, scalable and portable.

• Determine the search method at use to describe the attack testing in a
persistent manner.

• Choose the proper mechanism to correlate the stored knowledge to
search method and the attack testing results.

1.3. PROJECT JUSTIFICATION 5

• Determine the threat metrics to be used to evaluate each attack pattern
tested in terms of threat metrics and its parameters.

• Determine testing experiment scenarios and considerations to gather
persistent evaluation results.

1.3 Project justification

The security assessment is a necessity in any organization, understanding
that it is highly desirable to determine the concrete exploitability of a certain
attack at a given target system, recognizing that an attacker deals with some
limitations on a black box attack, as technical details on the target are not
available for the attacker, in such fashion, attackers must carry on with the
attack by means of the knowledge and experience of them, this means that
any intention for an automated pentest tool, is highly desirable to overcome
the security assessment at a given target considering changes along time of
the system’s production stage. To achieve this, it is needed to represent the
expert knowledge concerning attacks, and relate it to a search mechanism to
automate the attack as well as determine the suitable parameters targeted
to succeed at the system under testing. The relation implied is hard to
achieve as both, the knowledge and attack tools, are subject to expertise by
the attacker during execution time, most of the time this is achieved by the
experience and it could be not well documented for automation purposes, as
the knowledge posses multiple variables, in such way of thinking, it is needed
a common framework to automate and test each attack in a similar manner
as an expert would perform it, this benefits the organizations by showing
the possible attacks before it would occur, this aims to aware the system
administrators and owners, understanding that such attacks may take place,
and that corrective actions must be taken; after which, it is also needed to
know if the actions taken were enough to improve the security of the system,
which the automated instrument can actually accomplish as well.

1.3.1 Boundaries

This work does propose an instrument intended for long term security as-
sessment with realistic expert knowledge and attack execution, nevertheless,
it does not imply directly any sort of defending mechanism at the system

6 CHAPTER 1. SECURITY EVALUATION GENERALITIES

under testing to be evaded by the attack, furthermore it is limited to some
representative attack patterns carried on to generic targets, in order to de-
termine the correct instrument functioning, in addition to this the attacks
are limited to those prone to be implemented or executed by known tools,
understanding that this works approach does not include the attack execu-
tion tool development. To take into account security measures at a target,
and more advanced attack patterns, further stages in conjunction with the
suitable knowledge shall be proposed.

1.4 Text organization
Chapter 1 Begins with an introduction to security evaluation, and its im-

portance, as well as a general vision of what it is needed to achieve it,
it continues with a brief description of the proposed instrument given
the investigation problem, and continues presenting the objective, jus-
tification and boundaries.

Chapter 2 Includes the related work on which the proposal will be based,
it recalls knowledge representation models as well as efforts to either
automate security evaluations such as pentesting, and some proposed
methods to automate and chose from given options.

Chapter 3 Describes the theoretical framework, it does include the refer-
ences on which the work will be established, considering the references
and definitions used during the work explanation.

Chapter 4 Contains the design of the proposed evaluation , it does recall
the related work as well as the definitions to accomplish the complete
design and its considerations for testing.

Chapter 5 Details a case of study on de development of an instrument to
achieve the designed evaluation for testing.

Chapter 6 Introduces the tests experiments including the tests performed,
considerations and results.

Conclusions and Future Work Provides conclusions on the design of the
evaluation and the testing case ogf study as well as the contributions
achieved and presents future work.

Chapter 2

Related Work on Security
Evaluation

The security evaluation process corresponds to several single problems, some
of them addressed at different scopes under dissimilar circumstances, as the
evaluation process includes the actual rating of certain attack patterns, as
well as the corresponding representation for the results assessment, this is
intended to prevent possible security issues by resemble attack scenarios in
a controlled fashion; thereby by maintain control of the attack, it can be
measured in some way the level of exposure to potential attacks. As it might
be expected, this assessment can be complicated if carried manually as it
requires diverse knowledge and tools; in this understanding, work has been
done concerning different areas comprising various stages and processes of
the security evaluation; such ideas will be retaken for the development of
an instrument that can jointly carry out the security evaluation to deliver
results that indicate the current status on the security of a system in terms
of its exposure to known attack patterns.
In this chapter there will be explored the related efforts developed on behalf
of bring some improvement on security evaluations, the main ideas aimed to
automate attacks to assess the security as well as approaches closer to the
pentesting automation in which this work main proposal will be founded.

7

8 CHAPTER 2. RELATED WORK ON SECURITY EVALUATION

2.1 Classification of security testing models

As discussed by G. Tian-yang et. al[6], the main methods on security testing
can be organized among several categories. Authors discuss that a formal
security testing method, is complex to achieve, due to great variety of pos-
sibilities presented on a computer system, therefore, security testing based
on models, is a major issue on security testing assessment, as it allows the
systems behavior to be represented in a less complex and more general way
by a model.
Some of the modeling includes, fault injection, in which vulnerabilities at
implementation, it is in the code, are tested and manipulated, fuzzy testing,
which allows testing several aspects of security, such as incident response, the
so called fuzzy inputs, bring the opportunity to search for abnormal behavior
by using random inputs to a system; and vulnerability scanner, that looks
for already known public vulnerabilities with help of specialized tools, and
compare results to security threats found in each case.
The classification aims for a system representation, as an entity observed as
a black box, or from the inside by changing aspects of it and test repeatedly.
Some of the most complete related work in terms of automated security as-
sessment include the work by Neha Samant[7] in which the possibility of car-
rying out a security evaluation automatically is discussed, considering attacks
on known protocols as well as Denial of Service ones, taking such attacks as
the basis for automated attack execution. The work is presented as a stand
alone application which is meant to help on the security evaluation pentest
process, it offers a control console to be operated, as it offers a variety of
DOS (Denial of Service) attacks, and several protocol abuse attacks, the tool
requires the operator to enter the appropriate parameters for each attack;
also the results must be interpreted by the operator and the attack scope is
limited to those already included in the tool, such coverage is very limited
range of possibilities of attack, besides it focuses only on the availability of
the evaluated system, although it can be easy to execute a Denial of Service
attack, it is necessary to consider more elaborated attacks altogether with
publicly known vulnerabilities to have a better approach to full assessment
on the security of a system. In the work presented by L. Gen, Wang Bailing
et al[8] it is possible to observe as an approach to a more complete tool for
testing security in a way more wide, using a database of knowledge, unlike
the work of Neha Semat[7], it can be tested among a larger attack database,
which allows for greater variety of tests and their results; In addition, simu-

2.2. FAULT INJECTION SECURITY TESTING APPROACH 9

lates more elaborate attacks, which require a series of steps to be completed
therefore, the scope is limited with an expert staff to simulate such attacks,
however, the work presented still requires an operator to decide the attack
parameters and the time to perform it, this limits the ability of the tool con-
sistently deliver information concerning the status of security system without
having to repeat the evaluation manually.

On the other hand, there have been focused on solving work only separate
parts of the steps in the security assessment process; previous work considers
as a good approach described what is required for carry out a security as-
sessment automatically, even though in both cases an operator is necessary,
however it is possible to rescue main ideas of each one of these approaches
to be resumed in a more complete instrument.

2.2 Fault Injection security testing approach

Fonseca et al[9], discuss a fault injection mechanism, based on fault injec-
tion model, to be used in testing the security, in the paper this is limited
to a web application, it consists in overriding or removing some functions
to sanitize manually typed inputs, the inputs consist mainly in text strings,
which subsequently are used to complete a query to a database; this missing
sanitization function are considered as vulnerabilities, due to the fact that
raw inputs can reach the database queries, this missing input sanitization,
considered as a vulnerability, is included intentionally on the code of certain
application to test the security under not considered scenarios.
Vulnerabilities are controlled by removing the sanitization functions because
the concrete action is known to testers, therefore, automatic attack aims only
to SQL injection vulnerabilities which are aimed to be miss from considera-
tion by the missing sanitization functions, the paper presents experimental
results with this scope considering specific queries as payload. In a later up-
date to this work [10], the very same method is used to test security mech-
anisms such as Intruder Detection Systems(IDS) and vulnerability scanners,
this is done by reviewing the queries to the database itself, after an attack
is performed, as, if the attack was successful, queries must change depend-
ing on the payload used, with this information, the false positives reported
by the IDS are known explicitly; on the other hand, vulnerability scanners,
are tested to find the injected, and therefore, controlled, vulnerabilities; ac-
cording to these results, tested vulnerability scanners had poor performance

10 CHAPTER 2. RELATED WORK ON SECURITY EVALUATION

at finding such vulnerabilities, and IDS false positives were not as low as
it could be expected. The paper’s results seems to have a wider scope on
security testing, including code review, by removing some actual code’s func-
tions, and security team response, the scope on vulnerabilities and attack is
actually pretty limited, attack construction is limited to predefined queries
for SQL injection.
Also, considering that the test is done in a white box scenario, full access to
code is provided, and database queries are collected in the database itself;
this may be useful for security testing on the web app, providing factual
information about cases not considered at the app implementation, and the
security mechanisms it considers; but having a limited attack scope, some
security concerns may not be evaluated, for example other to SQL injection
vulnerabilities; nevertheless, the formal methodology may be used to aim
for a scenario including several security mechanisms as well as an implemen-
tation considering different inputs to be tested for security testing, with a
wider scope on attacks, understanding that the methodology used aims to
find issues at different security levels, we can think that, narrow this aim,
and giving it a wider scope on attacks can be done with similar results.

Morais et al [11], issued the fault injection, by an attack-vulnerability-
intrusion model, consisting of the following, a fault is considered, as a result
of a successfully attacked vulnerability, to intrude a system. The main dif-
ference here is that attacks are generated through an attack tree, which is
developed under code’s specification, code is analyzed to determine all pos-
sible states derived from inputs and actions, the codes possible states are
displayed as a tree, then those states leading to unauthorized results are
identified, specially those aimed to achieve an intrusion. The methodology
to construct such trees is described briefly, first of all, attack intentions must
be clear, the attacker capabilities, and the attack models to construct the
tree, then attack scenarios are generated and refined. In a later work Morais
et al[12], introduced the concept of threat, identifying and modeling, to as-
sess the known vulnerabilities and generate the attack scenarios based on
this information.
The proposed model by Morais et al[12], includes the vulnerability assess-
ment, and, attack related to it; attack scope may be wider depending on the
vulnerabilities found, this wider scope can lead to considering more circum-
stances and, possibly, determine more potential attacks against a target, if
that possibility is what it’s looking for, it offers more options for the attack

2.3. VULNERABILITY DETECTION APPROACH 11

depending on its final goal, nevertheless, it is presented as a static approach,
as if there is any change on the subject of test, the attack tree may not be
adequate to this new scenario. On the other hand, we can think about a
protocol, as well known steps followed by software, in a more general scope,
with this in mind, the general behavior of a piece of software can be modeled,
and attacked, making this approach feasible of good results in a less specific
scenario.

2.3 Vulnerability Detection approach

So far, the models reviewed consider only the security tests on controlled and
well defined environments, as we have discussed, this narrows the search on
attack scope and the feasible applications. As part of a different approach to
security testing, by attack injection, S. Member and N. Neves[13] presented
a much wider approach not requiring vulnerabilities to be known, due to it
discovers it.
The main idea on this approach is to generate and find inputs to a system
that would not be handled correctly by it, as malformed requests, extremely
long inputs, etc., so it is needed to know some aspects of the target system,
for example how system inputs are formed and responded, such behavior
can be interpreted as a protocol for such system as it can be a known one
like SMTP or TCP, by knowing such information it is possible to determine
if a particular input was not handled correctly by observing a missing step
on the system’s protocol for that particular input, which may point to a
vulnerability, in such observation consists the security test itself; the main
difference with the previously cited papers by Fonseca et al [9][10] is that, in
Member, Neves[13] approach, the only thing needed to know is the protocol
for that particular system, which in general is standard for certain services
such as SMTP or SSH, in the paper, the model is explained with the test
case of a service running on a computer, and in Fonseca et al[9][10] papers,
full access to code is needed to test.
Neves and Member’s approach[13] seems to have a wider attack scope with
more emphasis on finding target system’s protocol mismatches, nevertheless
it lacks of some features presents in previous revisited works, such as the
attack main goal, as this just seeks for unusual answers based on the target’s
system protocol specification, it is not for sure if such behavior can lead to
an intrusion, or a Denial of Service; also, it is not considering the already

12 CHAPTER 2. RELATED WORK ON SECURITY EVALUATION

known vulnerabilities, which can be used, with help of this attack scope, to
test more cases and reach the system intrusion, if that was the case.

2.4 Vulnerability Scanners comparison

Up to this point we have issued some methodologies and tools to inject at-
tacks and vulnerabilities, as a way to test the security on a system, neverthe-
less, there are still some commercial use tools, aimed to detect vulnerabilities
on a wide scope of applications and services, as we have seen, the test scope
is limited, as it becomes more specific to certain goal, application or vulner-
ability, even in S. Member and N. Neves[13] papers proposal, it is needed to
know the exact protocol to find vulnerabilities.
Commercial use vulnerability scanner tools cope with generic testing prob-
lem, by letting the input to be any app or service, testing against well known
vulnerabilities, but, as we may expect, this generic testing, has to deal with
false positive and false negative cases; this kind of testing is black box access,
as it does not require access to anything but the service, this is of course a
complex issue and, it is limited to certain restrictions in many cases. J. Bau
et al.[14], presented a research conducted among several commercial vulnera-
bility scanner tools, aiming to detect opportunities for future research, based
on detection rate for certain vulnerabilities; for the most part, commercial
tools perform well for well known and most common vulnerabilities, such
as Cross Site Scripting (XSS), and SQL injection, nevertheless, all of this
applications had poor to none performance at looking for second order SQL
injection, achieved when there is already a malicious record on the database
that, when retrieved, can be used to alter further queries, in addition, false
positive rate was observed at up to 50% during the comparison among the
scanners, and low detection rate for advanced vulnerabilities was observed
as well, as the above mentioned second order SQL injection, exemplified in
J. Bau et al.[7] results. On the other hand, A. Doup et al.[15], discuss the
use of commercial tools aimed explicitly to web applications, together with a
web crawler, used to detect state changing on the web application, to test it
more deeply, by gathering more complete search on the web application, as
it may change its behavior under certain state circumstances, however, this
novel approach, has to cope with the problem of false positives, as it only
extends the search scope, by running different instances of the very same tool
for other states on the web application.

2.5. FUZZY TESTING 13

Even with all issues related to commercial tools for generic usage, these are
still largely used to conduct security evaluation, such as pentesting, the low
detection rate on some vulnerabilities and false positives, are balanced with
the adaptability of such tools, as it may be used to conduct test among sev-
eral distinct kinds of application, services and systems, although, these tools
do not inject or generate attacks, these are still the first approach to gather
information and possible vulnerabilities when performing a security evalu-
ation, so, such tools must be considered, at the goal of generating attack
injections.

2.5 Fuzzy Testing

As most of previously revisited proposals, the main problem here is the test
case generation, which leads to attack injection, as part of the testing mod-
els, there is the Fuzzy model, which generates test cases, randomly, and test
them all, a variation of this is to use genetic algorithms to generate test cases,
and prove them, as attacks injected; A. Avancini and M. Cecatto[16], offer
an approach to such attack generation.
The main idea here is to find a useful representation, and fitness function,
for the genetic algorithm, to assess how effective, in terms of its goal, such
attacks can be; in A. Avancini and M. Cecatto[16] proposal’s, genetic algo-
rithm inputs are represented by Strings, and they are mixed, in a process
called crossover, by splitting the string in parts, and mixing different inputs
to obtain a great variety of strings, as the payload changes every time and it
can be generated as an attack.
Besides the novel approach to this construction, the fitness function, that
evaluates the attack itself, requires a flow graph to be constructed, in order
to determine the attack effectiveness, in terms of the attack goal presented
on the flow graph; such processing can only be achieved by a full understand-
ing of code, which implies a white box testing. Also, as initial population is
created randomly, it is possible that no genetic algorithm input can achieve
the flaw state, indicating the attack success, and, it will take longer for the
algorithm to find such individuals through genetic algorithm generations.
As fuzzy testing aims to cope with larger attack scopes, this may be com-
plicated to test, as it must be determined the correct representation of in-
dividuals in each case as inputs or responses, and, a proper fitness function
must be placed. This scope, as genetic algorithms, may be placed for difficult

14 CHAPTER 2. RELATED WORK ON SECURITY EVALUATION

problems, this is, with an enormous search space, or difficult to evaluate, in
terms of computing effort and functions. Nevertheless, in addition with pre-
viously stated methodologies and tools, this kind of algorithms may be used,
not exactly to obtain test cases, but to choose among sets of them.

2.6 A wider approach to security evaluation

Having considered the security evaluation stated previously it can be recalled
the knowledge database that referred to in the Bailing work of Wang et al[8]
the idea of a knowledge database adds flexibility to the evaluation as well as
their possible results, however, mentioning that knowledge representation as
it is described and used, lacks flexibility to generate new attack patterns from
those previously stored, in addition, the parameters to use for each pattern
of attack must be known by the operator, so it is necessary for the operator
to determine the most appropriate according to each case.
There are several options for knowledge representation considering the pur-
pose that is pursued, in the work of Davis et al[17] describes the necessary
properties to represent knowledge in general. In the work of Kevin Murphy
et al [1] knowledge representation is described by means of graphs, so that
each noun can be represented as a node, which relate to other nouns through
vertices as verbs, indicating the relationship between the two nouns.
Thus it is possible to relate different attack patterns to form all the ramifica-
tions of a single attack, according to properties presented for each evaluating
system; this enables not only the flexibility of an attack pattern, if not also
the standardization of stored knowledge, as well as its easy interpretation
and understanding, in order to make the process easier both to cure graph
knowledge as to interpret the results and to add new attack patterns from
the general description.
Continuing this train of thought, it is necessary to mention something very
important during security assessment, we could say that this is the begin-
ning evaluation process in a black box type, i.e., without knowledge about
what is available or installed on the system to be evaluated; the initial step
is precisely to determine, with any method, the availability of some specific
software in the system being evaluated, so that when an attack gets executed,
this has the best chance of being successful.
As mentioned in Neha Semant work[7] there are different ways to get informa-
tion about evaluating system, one of the simplest is to initiate a connection,

2.7. PROPOSED MODEL FOR PERSISTENT EVALUATION 15

for example by TCP protocol, to expect the response header which must
include a successful response in case a service is running and listening at a
given port, this information is useful to select the most suitable attack pat-
terns to be simulated on the system under evaluation.
Of course that should be considered various methods of obtaining such infor-
mation, as this process is extremely important when considering, for example,
vulnerabilities on specific versions of software, whose attacks will be able to
be successful only in very specific scenarios, allowing more precise selections
of attack patterns to evaluate.

On the other hand the Work proposal by Xue Qiu et al[18], proposes an
automated approach for the whole pentesting process, including the recog-
nition and vulnerability assessment, to do so they propose a pushdown au-
tomata that requires the whole process to be fulfilled, and the acceptance
state determines the set of exploitable attacks, the proposal relies on the au-
tomata definitions among rules and discoveries to determine suitable attack
patterns for a certain goal, nevertheless unlike L. Gen, Wang et al [8] it does
not seem to be easily scalable, as knowledge base is highly related to the au-
tomata definition and it is, in some way tied to it, in addition, the proposal by
Semant Neha [7], does include parameter selection for each available attack,
in the case of Xue Qiu et al [18], the parameter are not explicitly mentioned
in such understanding, it does not seem to include parameter selection for
elaborated attacks, in such fashion, it lacks of flexibility as well as from a
generic view of attacks to be easily scalable and understandable for users.

2.7 Proposed model for persistent evaluation

In the current work it is proposed a design to achieve persistent intrusive
evaluation, which implies the main ideas carried from related work, first of
all, the way of testing by instantiating attacks for different scenarios, here
recalled as a long term pentesting, as in the work by G. Tian-yang et. al[6],
it is considered discovery on the evaluation of attacks. Unlike the work by
Fonseca et al[9] and Member, Neves[13], the aim on the evaluation is to
be black box type, understanding that in such works, detailed information is
needed, for specific cases and the proposed model is desired to be generic case
useful, for this, generic information and general case is needed. The current
work’s proposal relies on the idea shared by L. Gen[8], Neha Semant[7], and
Xue Qui et al [18], about storing information knowledge on how attacks are

16 CHAPTER 2. RELATED WORK ON SECURITY EVALUATION

performed, such information is in general not well documented and diverse; to
overcome such difficulty on store such varied knowledge the work by Kevin
Murphy et al. [1] does comes handy by a natural language description of
elaborated attacks to be stored.

In addition the work by J. Bau et al.[14] and A. Doup et al.[15], includes
the commercial and public tool usage to determine vulnerabilities and its
boundaries, this gives the idea of bringing tools already existent for specific
tasks at the model with the intention to be generic in usage, but not limited
the model for such tools.

The proposal by A. Avancini and M. Cecatto[16], recalls the genetic algo-
rithms to overcome the security testing, the idea would be recalled to develop
a search method on evaluating attacks on a long term pentest process.

By recalling such ideas it is proposed an instrument design which be able
to determine information about a system, also to include knowledge storage,
on how to perform attacks in a general way, as well as a search method to
evaluate the suitable attacks at a given system on a pentest fashion.

In addition, the major proposal revisited, does not cover a larger period
of time which seems as an opportunity area to be addressed within cur-
rent work’s proposal, also, the recall of main ideas here presented, such as
knowledge storage and representation, and parameter selection, to be fulfilled
automatically by testing the actual attacks.

In the present chapter, the efforts and models to pursue security evalua-
tion on an automated fashion were recalled as well as it major influences on
the current work’s proposed model, in addition, the general description on
the proposed model was addressed.

In next chapter, the theoretical framework on security evaluation, pen-
testing, knowledge representation and Evolution strategies as search methods
will be discussed to contribute to the model designing.

Chapter 3

Towards Persistence, Theoretical
Framework

The current chapter presents the main topics in which the present work’s
proposal is supported, the chapter is aimed to issue the needed concepts
to develop the complete approach for the work objective, which means it
would be abridged to some definitions, nevertheless, this can be extended for
specific objectives when the intention goes for some very particular issue as
some points on this proposal can be discussed in more that one way from
different perspectives.

3.1 Penetration Testing

In order to assure the security of a system it is necessary a process to assess
it, the penetration testing comes to help with this issue, as it is a manner
to identify existing vulnerabilities at a given system, according to a SANS
(SysAdmin Audit, Networking and Security Institute) it "usually involves the
use of attack methods conducted by trusted individuals that are similarly
used by hostile intruders" [3]; this may include the actual execution of a
reported vulnerability, it is basically an attempt to breach the security of
a network or system, to later on, report the findings to the owner of the
system so they can fix the found problems. It must be considered that the
penetration testing results do not endure for large periods of time, the pentest
is only the vision of a system’s security at a given time, during which the
vulnerabilities or wrong configurations do not change. The actual difference

17

18 CHAPTER 3. THEORETICAL FRAMEWORK

between the penetration test and an genuine attack is the permission given
by the system owners, it must attempt to gain entry to system’s resources
without knowledge on any means of access [4]. The pentest is not actually
mean to find all the security vulnerabilities, as carried with limitations, also it
can report a system as secure one day, and a public vulnerability can expose
the system on next day, this means that the security of a system or network
must be guarded constantly. For this work we will understand vulnerabilities
as "a weakness in a system allowing unauthorized action"[2], and can be from
different kinds described as follows.

• Design vulnerability, a vulnerability inherent in the design or specifi-
cation of hardware or software whereby even a perfect implementation
will result in a vulnerability.

• Implementation vulnerability, a vulnerability resulting from an error
made in the software or hardware implementation of a satisfactory de-
sign.

• Configuration vulnerability, a vulnerability resulting from an error in
the configuration of a system, such as having system accounts with
default passwords, having “world write” permission for new files, or
having vulnerable services enabled [2].

For this text purposes there will be considered the configuration vulnerabil-
ities, also referred as wrong configurations and the implementation vulnera-
bilities, related to code.

The penetration testing process involves several stages which can be
summed up as follows[3].

1. Preparation and planning

2. Information gathering and analysis

3. Vulnerability detection

4. Penetration attempt

5. Analysis and reporting

6. Cleaning up

3.1. PENETRATION TESTING 19

3.1.1 Planning and preparation

In order to successfully conduct a penetration test it is needed to agree with
system administrators and owners, the appropriate goals for the test to be
reported, the most general case of the pentest goal is to demonstrate that
there exists some executable vulnerabilities at a given target, in this stage
it is also important to determine the time frame in which the test will be
executed as well as the results and actions taken during the test, this implies
a good understanding between the testers and administrators or owners to
minimize the risk of any further affectation, as the test does actually carry
on with execution of attacks, this must be considered to affect the behavior
of the system, in a controlled manner, planning on the test must include legal
agreement and protection in case anything goes wrong.

3.1.2 Information gathering and analysis

After the planning it is needed to gather as much information as possible
from the target system, it can be seen as the beginning of actual interaction
between testers and the system subject of the test. The information gather-
ing can be achieved by the use of several specialized tools. Information can
be retrieved from diverse sources and techniques, a network survey can be
useful to determine the reachable systems on the network, as well as server’s
basic information, such as IP addresses, and host names. Thereafter, further
information must be acquired, one common way to do this, is to perform a
port scanning, which implies retrieving open ports and services running on
the target system; the result of the information gathering stage should be a
list of systems and IP addresses alongside reported open ports, information
about the operating system as well as running services present at the target
system. In addition, information can be addressed at public or open sources,
such as web pages; public information can also be used to disclose specific
details about a system under evaluation.
There exists several methods and tools to perform the enumeration on sys-
tems, as this is an interesting task not just for attackers, but for adminis-
trators and security auditors or pentesters; one of the best known tools to
perform system enumeration is Nmap [19], which includes several methods
and options to perform the enumeration it is capable of performing port scan-
ning as well as software versions and Operating System (OS) enumeration
to determine the version of it at a black box system to be tested, Bailing et

20 CHAPTER 3. THEORETICAL FRAMEWORK

al [20], used the tool to implement elaborated attacks, from enumeration to
attack phase by adding plug-ins to the tool.

3.1.3 Vulnerability Detection

Once the information is gathered it gets required to determine the vulner-
abilities existing at the target system related to the information disclosed.
To achieve this it is necessary for the testers to have at their disposition a
collection of exploits and vulnerabilities to be chosen for each case, in this
sense, the knowledge of the testers is the most relevant part of this stage;
nevertheless, some of this vulnerability exploit pairs can be correlated by
automated tools. The results of this correlation is very important to deter-
mine the next steps on attempting an attack on the target system, given the
vulnerabilities found.

3.1.4 Penetration Attempt

Having the information collected, it can be determined the suitable targets
as ports or services, to be subject of the penetration attempt, maybe not
all the information or ports and services may be subject of an attack, but
those which are, should be determined in the earlier step and the attack
must be executed against it. This attempt execution can be carried out by
some specialized tools, commonly requiring customization, this can be used
to perform the actual attack attempt, but, it must be clear that, even when
a vulnerability gets recognized at a given target, it does not imply that it
will be exploitable easily, so it can be understood that the attack attempt
may not succeed even when a vulnerability or exploit was discovered. In
addition to exploits and vulnerabilities, there can also be attempted to gain
access by password cracking, this consist in trying to guess the appropriate
user password pair to access a service such as FTP or SSH; the methods to
attempt a password cracking can be summed up as follows:

• Dictionary attack. This consist in trying word list from a dictionary
file.

• Hybrid attack. This approach tries variations of words in a dictionary
file.

• Brute force. Tests all possible combination of characters.

3.1. PENETRATION TESTING 21

This kind of password cracking attacks can also be executed by some
specialized tools, depending on the service prone to this attack. In addition
to this method, social engineering can be used to try to retrieve sensible
information such as passwords directly from people at the organization, this
approach aims to exploit the human resource and can be used for password
hijacking, depending on the limitations on the penetration testing that were
agreed on the planning stage.

3.1.5 Analysis and reporting

Having conducted the attacks as part of the evaluation, it is needed to report
the findings to the system administrators and owners, the report will include
a brief description on the process followed as well as the vulnerability findings,
this must be separated to give emphasis on those considered more relevant to
the organization security, in addition there must be reported the vulnerable
scenarios found, the detailed list of any information acquired during this
process as well as the vulnerabilities found and its description, to end with
suggestions on how to manage such vulnerabilities and fix the scenarios found.
For this work’s proposal, the evaluation is not meant to have an explicit end,
for such reason, the report and analysis will bring up as a threat metric on
the successful attack patterns found at a given time, this is reported in a
constant manner leaving the corrective action suggestions to the system’s
administrators.

3.1.6 Clean up

After attempting any attack, it is necessary to clean any trace of the test,
this can be achieved by keeping a detailed list on the actions performed, if
any change was done to the target system it must be reported and cleaned
up, taking into account that this stage must not compromise the normal
work on the organization operations. Even though this stage is not explicitly
considered for the current’s work evaluation proposal, it is needed to have
it in mind as the evaluation does consider the attack outcome to be limited
by design, this is, it’s not considered any change or further damage to the
system beyond an unauthorized remote access, fur such reason, the clean up
stage is dismissed from current work’s proposed evaluation.

22 CHAPTER 3. THEORETICAL FRAMEWORK

3.1.7 Limitations of Penetration testing

This kind of testing is not able to identify all the security issues as it is gen-
erally carried on as a black box exercise, which means that no information is
available for the tester, this implies that any other vulnerability easily discov-
ered by a higher level user may not be achieved by this kind of testing, also,
the test is not capable to offer information about new vulnerabilities, spe-
cially those disclosed after the test is performed; even if no successful exploit
was found it does not mean that the system is secure, as new vulnerabilities
can be disclosed in the near future, the configuration may change over time,
further updates on existing software or new services activated, such actions
imply that the penetration testing can be understood as a limited snapshot
of the system’s security at a given time. The snapshot is limited to the at-
tacks evaluated and the duration of the test, if any change occurs further
to the evaluation, it will not be covered by the assessment and this must be
performed again.
On the other hand, the pentester skill must be stored to carry the test for
larger periods of time as this work’s design proposes, in the next section the
knowledge representation considered for the design is briefly explained.

3.2 Knowledge Representation
Knowledge can be understood in terms of the role it plays according to the
task at hand, as stated in a work by Davis et al. [17] , this can be described
as:

• It can be used as a substitution for the thing itself, to take into account
consequences related to a word.

• It is a theory of intelligent reasoning.

• A medium for pragmatically efficient computation.

• A set of ontological commitments, which gives context to a word.

• Is a medium of human expression as a language in which things are
said about the world.

The knowledge representation by itself is not a data structure, the task
for knowledge representation to be worked in this work , can be determined

3.2. KNOWLEDGE REPRESENTATION 23

Table 3.1: Subject Predicate Object example, Adapted from [1]
subject predicate object
(LeonardNimoy profession Actor)
(LeonardNimoy starredIn StarTrek)
(LeonardNimoy played Spock)
(Spock characterIn StarTrek)
(StarTrek genre ScienceFic

Figure 3.1: Small example knowledge graph. Reprinted from [1]

as a medium of human expression, from which it can be communicated to a
machine something about the world. It must be reminded that the knowl-
edge aimed to be represented in this work corresponds to that from attackers
experience, this is, knowledge about how to perform an attack given a certain
system, in which case, the task to communicate something, as a medium of
expression, is adequate as it is being tried to communicate the specialized
tools what to do in order to perform an attack, in this way, according to the
work by Davis et al. [17], it is needed to overcome the generality and the
expression of knowledge represented. In such way of thinking the cognition
representation as a knowledge graph can be implemented to describe and ex-
pressing ideas. The representation by a knowledge graph is useful to achieve
machine readable information, in the work by Nickel et al [1] the knowledge
graph is described as simple as a relation between a subject and an object
by a predicate, this relation indicates a fact, for example the next relation
can represent facts, an example can be found on table 3.1.

Under this assumption the graph gets constructed by adding nodes as
subjects and predicates, and edges as predicates, from this understanding
the graph does represent knowledge as well as communicating it, being able
to be understood with not much effort, a brief example of a knowledge graph
can be found at figure 3.1.

24 CHAPTER 3. THEORETICAL FRAMEWORK

3.2.1 Knowledge base construction

The knowledge represented in a graph needs to be complete and accurate
according to the relations stored, as this is a complex task to achieve, there
exists several approaches to build up a knowledge base, as a graph can be
seen as a special case of a knowledge base, the construction can be classified
in four main groups:

• Curated. This approach creates the relations manually by a closed
group of experts.

• Collaborative . This approach creates relations manually by n open
group of volunteers.

• Automated semi-structured. The relations are extracted automatically
from semi-structured text by defined rules or regular expressions.

• Automated unstructured. Relations are extracted automatically from
unstructured text by natural language processing techniques.

Commonly the more accurate results are achieved by curated approaches,
nevertheless, this requires human experts to grow the graph. This kind of
knowledge base is aimed to represent a wider approach on general knowledge
of any kind, with possible relations among any two nodes.

Having considered the knowledge base construction it is needed to con-
sider the task of creation itself to obtain a knowledge base as a graph. This
is the most complicated approach to generate a knowledge base since it must
rely on the expert to be curated properly this can be a hard task to achieve,
but it can be easily carried out by defining boundaries to which it must
communicate, in such way, graph knowledge can be limited by some sub-
jects to be easily understood, this can be seen as a closed world assumption
[1], in which only the explicit relations are considered to be fact, the other
approach, an open world assumption, can be interpreted in any way, as a
relation may be understood to not be on the graph, but to exist in reality.
So, for some limited scopes, it can be generated a knowledge graph under a
closed world assumption in a curated approach to give specific interpretation
on the knowledge stored.

3.3. EVOLUTION STRATEGY 25

In addition to the knbowledge representation it is needed a way to actually
test the attacks retrieved and stored by the knowledge representation, in the
next sect

3.3 Evolution strategy

It can be understood as an evolution strategy an algorithms that are most
commonly applied to black box optimization problems in continuous search
spaces[21], from algorithmic point of view this methods sample new candi-
date solutions stochastically. This search principles are based on those by
biological evolution, such search can address an optimization problem by
implementing a repeated process of small variations to candidate solutions
followed by selection in each iteration, also called a generation, to generate
new candidate solutions, this is done based on the best fitness of each can-
didate solution. This strategies are commonly used to address the problem
of optimization as a black box exercise under continuous search spaces, it is
considered a function f(x) that is the object of optimization and a candidate
solution denoted as x, there is no other assumption over f(x) other that
it can be evaluated for every candidate solution x, the main problem is to
generate solutions x with values of f(x) prone to the optimization searched.

3.3.1 Evolutionary strategies principles

Evolutionary strategies rely on principles from biological evolution, it is as-
sumed a set of candidate solution also called individuals, composed by the
actual parameters for the candidate solution, and the fitness value; in a gen-
eral way the evolution consist of the procedure:

1. One or several parents are picked from the population (mating selec-
tion) and new offspring are generated by duplication and recombination
of these parents.

2. The new offspring undergo mutation and become members of the new
population.

3. Environmental selection reduces the population to its original size.

26 CHAPTER 3. THEORETICAL FRAMEWORK

From this it can be retrieved the main principles that can be specified ac-
cording to the task at hand. For this work purposes the most important
principle to understand is the mutation and parameter control.

3.3.2 Mutation and parameter control

Mutation on candidate solutions implies adding small random changes to
an individual; these changes are typically applied to all variables from the
candidate solution. The variation on changes performed can be controlled
by parameters related to the context and may vary over time, this is called
parameter control, and it serves as a boundary to the mutation on candidate
solutions, the parameter control can either be fixed or vary over time. Pa-
rameter control is not always directly inspired by biological evolution, but it
is indispensable to evolutionary strategies.
While evolution strategies can be a complex issue, due to the many consid-
erations and options prone to the strategy itself, the most important issue
to consider within this work’s boundaries, is the fact that it can iteratively
compute a fitness function and that it would change the parameters on a big
search space, which comes handy for this works proposal. Further detail on
the evolution strategy will be addressed on Analysis and design chapter.
As presented during this chapter, the recalled concepts can be matched with
the ideas from related work understanding that the relation among this is
the object of the proposed design, also, it is needed to understand that the
concepts related are mainly aimed to achieve persistence, understood as a
long term continuous interaction between tester and the system under eval-
uation.
In the next chapter the particular details on analysis and design for the
current work’s proposal will be addressed.

Chapter 4

Persistent Intrusive Evaluation
Analysis and Design

The present chapter will disclose the analysis and recall from related work on
security evaluation, knowledge representation and evolution strategy to de-
velop the current work’s proposed design for a persistent intrusive evaluation,
and the specifications on the design proposed will be presented.

4.1 Analysis on related work

The pentesting process is intended to cope with the uncertainty of knowing
whether the attack would be exploitable or not, as it actually tries the attack
and reports the findings. On the contrary, pentest process requires a security
expert, as the only limitation on which attacks to perform is the expert
knowledge of those performing the pentest, and as stated previously, this
can be expensive. The current work proposes a new approach, without the
supervision of an expert, by having the knowledge representation stored,
and trying each suitable attack, exploring over some parameters options,
over a large period of time, aiming to verify whether or not each suitable
attack can be exploited at a system under testing even through the changes
and updates that can be applied to it over time, intended to mimic the
behavior of a well motivated attacker as persistence. According to Tipton
and Nozaki [5] persistence can be understood as "...means that the adversary
is determined (often formally) to accomplish a mission... persistent does
not necessarily mean that they need to constantly execute code on victim

27

28 CHAPTER 4. ANALYSIS AND DESIGN

Table 4.1: Towards automation based on related work
Title Knowledge DB Elaborated Attacks Recognition Parameter Control Time coverage

Design and Implementation of a Network
Attack Platform Based on Plug-in Technology[8] Plugin Yes previously

performed
Operated
manually Snapshot

Automated
Penetration Testing[7] Hardcoded No previously

performed
Operated
manually Snapshot

An Automated method
of penetration testing[18] Hardcoded Yes Automated None Snapshot

computers ... they execute a "low and slow" approach to continuously gather
information through sustained monitoring for long-term presence. They wait
patiently for the appropriate time to strike.", understanding that this kind of
behavior, from a counterpart is dangerous for an organization, and it aims to
be not noticed until the actual attacks takes action, which implies that the
design is also aimed to self-test the security of a certain system, additionally
this could lead to prevention on exploitable vulnerabilities at the system,
by discovering exploitable attack patterns at the system under testing, to be
corrected before an attack by a counterpart could take place. Additionally, as
this means to have a permanent pentesting process running, it is important
for the design to be harmless for the system under testing, understanding
that the tests are actually attacking the system, it is expected that such
attacks do not alter the usage of any particular service, as this may affect
the exploitability of a certain attack pattern, leading to erroneous results as
well as unauthorized results, which is not what the design is intended for.

Considering the recalled related work, it can be considered the two main
related work proposal for the complete design aim, to determine how to
achieve automation on pentesting, as it rely on similar objective, as proposed,
the design can be divided in knowledge DB, the search method, and the tests
performed, as the aim is automation, the level of interaction with users shall
be limited, a comparative on such subjects of interest can be seen at table
4.1.

From the comparative we can recall that, for the most part, parameter
selection and search method are complete unaware of automation, which is
the main issue to be addressed, understanding that this is the crucial stage
to perform an attack, by correlating it and determine the necessary steps and
instructions to execute it, as well as needed parameters in such a way that
this can be operated without interaction from any personnel. In addition,
the knowledge DB, as hard coded and plugin based, can be not so flexible
to add new knowledge or to apply new methods to it, which would also be
addressed within the design.

4.2. PROPOSAL DESIGN 29

First it will be discussed the proposal details and general layout, later it
will be discussed the test scenario and results, last there will be the conclu-
sions and further work.

4.2 Proposal Design for a persistent intrusive
evaluation

The proposed design integrates basically three main elements, correspond-
ing to the main intrusion phases according to Heberlein et al [22], an attack
consists of three phases; the preparation phase, in which the attacker must
obtain information about the system target of the attack, it is needed to
acquire general and system specific information from various sources. The
attack stage, this is where the actual attack takes place, considering the in-
formation collected on the previous phase and performing the most suitable
attack in each case, this considers the attack as a chain of actions. Finally,
the post-attack phase, which implies the attacker goal, it can be completed
by stealing or disseminating information, as in spam, or decrease the system
capabilities, as in a Denial of Service (DOS) attack. Considering this de-
scription of an attack, the proposed design considers two of the mentioned
stages, not considering the post-attack phase, as the goal is not to actually
affect the system, or disseminate any information, but to prevent an attacker
from doing it, the proposed design integrate three main aspects described as
follows. The enumeration of the system under testing, to retrieve informa-
tion about the system, and possible attack points, the knowledge storage, to
be used on demand, instead of having an expert performing a pentest every
time, and a search method, which allows the proposed design to perform
the tests, and persist over this testing as well as respond to changes at the
system under testing, and the knowledge stored; this will also allow to search
among different parameters for each attack pattern. In next sections it will
be explained each main component.

4.2.1 Enumeration

System enumeration, also known as recognition, is a complicated task to
achieve, for instance there could be security controls intended to prevent at-
tempts to gather information at a system, and that information itself may

30 CHAPTER 4. ANALYSIS AND DESIGN

not be easily gathered from the system even when getting access to the sys-
tem, similarly, OS enumeration, as well as software version are complicated,
prone to interest tasks.
Some work has been done in such area, Yarochkin et al. [23], proposed a
modification to the Xprobe tool, aimed to reduce the traffic generated by
the enumeration process, which can be used to detect and block this kind
of efforts on the defensive side, in addition, several works aim to determine
the OS of the target system, the most common approach is by Time To Live
(TTL) responses, which may vary from OS to OS, an example can be found
on work done by Vanauble et al. [24], in which TTL approach is used to
determine OS on routers.
For the purpose of this design it is needed to perform a port scan, to deter-
mine the open ports, having in mind that the well known ports correspond
to known services, therefore it can be known which services are running and
try out the misconfiguration attacks, as this attacks does not rely on any
particular version, but in the service itself, later, it can be determined the
system specific software versions, to match known vulnerabilities, the cited
tool offers both solutions and flexibility to extend the enumeration over large
periods of time, trying to avoid some security control methods, which is de-
sirable for the design.
In addition, for the design, the enumeration must be repeated over large pe-
riods of time, to determine if there is any change either at the system under
testing or at the knowledge stored, by any new vulnerability or attack pat-
tern added to it, in either case, the suitable attack patterns must be found
and generate the test instances. This can be summed up in the figure 4.1,
it can be noticed that this is an ongoing process, designed to find suitable
attack vectors at any particular time.

Also, there must be a way for the enumeration to evade security controls,
if any, to do so, in a very general way, there would be retry delays on each
test, intended to deal with firewall filtering, by decreasing enumeration traffic
on large periods of time and gathering information, this intents to imitate
the behavior that an attacker could present at a certain system while in the
preparation stage of an attack. Such functionality can be described as fol-
lows, if at any given enumeration results, there is less information discovered,
such as less open ports found, the delay time among tests sent by the tool will
be increased pseudo-randomly, this behavior intends to cope with possible

4.2. PROPOSAL DESIGN 31

Figure 4.1: Flow diagram on enumeration phase

pattern recognition at the security control in order to evade it and be able
to gather information from the system being evaluated.

4.2.2 Knowledge representation

Knowledge is a complicated concept to deal with, it implies description and
interpretation, there have been work done on how to use it by represent-
ing it through several methods, although knowledge representation has the
intention to describe the natural world and its richness according to Davis
et al. [17], it can be specialized over certain subjects L. Gen, Bailing et
al [20], did use a basic concept of knowledge representation to store attack
patterns as dll extensions, so a complete attack pattern would be available
for a certain tool; the approach used to store the attack knowledge was to
craft the attack patterns, by hand, and later on use the complete attack
pattern at once, the attack parameters must be selected by user at runtime
being the final user the expert responsible for the attack to succeed by get-
ting the right parameters, this kind of representation does not allow certain
patterns to be flexible, as if there is another use for the same attack, a new
.dll will be needed to include this new pattern, leading to redundant storage
and narrowing the flexibility of the design. On the other hand, a more flexi-

32 CHAPTER 4. ANALYSIS AND DESIGN

ble solution for knowledge representation is by a knowledge graph, in which
knowledge is stored as the relation between nodes which represent nouns,
by axis representing verbs relating the nouns, this representation aims to
be extensible and easy to understand, as knowledge gets stored as natural
language phrases, this was explained by Nickel et al, to be used alongside
machine learning techniques [25]. Although it is a good approach to repre-
sent knowledge, it is technically complicated to create the knowledge graph,
for instance, one node, as any noun, could be linked to many other nouns on
different circumstances, moreover, if it is not linked to any particular node
it can be assumed that there could be a relation, that was just not stored
at that particular knowledge graph, this is called an open world assumption.
The interpretation and crafting of knowledge graphs depends highly on the
kind of problem it is aimed to solve.
According to Nickel et al. [25], there exists several open projects of general
knowledge graphs, created either automatically, or curated by hand, as this
is the main technical problem while creating a knowledge graph which de-
pends on the method of creation and the description of the knowledge aimed
to be represented, it can imply a bug effort to achieve a knowledge graph
to be filled. The proposed design includes the knowledge representation as
a knowledge graph, as stated earlier, it could be a complicated task. Never-
theless, it offers flexibility at knowledge storage, and, being represented as a
natural language phrase, is much more intuitive for interpretation purposes.
In addition, as a graph can be as complicated as the curator decides it; the
design aims to store attack patterns in an intuitive yet general way, so it can
be further extended to unknown or not previously considered attack patterns.
To represent an attack pattern it is needed to describe, as in natural language,
in a general form, considering that attacks may be performed over several
ways, including many steps, here comes handy to impose some constraints
to the knowledge graph; first of all, the extension, as sated earlier the scope
aims to represent attack knowledge, nevertheless, attacks are not meant to
be performed in an ordered way, as this is more an outlaw activity there are
no general rules to perform an attack, in addition, for certain attacks some
specialized knowledge is needed in the way of reverse engineering, analysis
and reading comprehension.
Understanding that the scope gets limited to attack patterns on the follow
criteria, there is no need of analysis or reverse engineering, as this compli-
cated task still needs actual human interaction, the attack pattern is limited
to get an unauthorized access, this means no further action is considered once

4.2. PROPOSAL DESIGN 33

the unauthorized access is achieved, no privilege escalation is considered, as
the attack concerns more about weak spots to access any organization assets,
this also means that DOS attacks are not considered. Next, for the general
description on attack patterns, it is considered on two specific cases, first,
the configuration vulnerability, also called missconfiguration, is considered as
elaborated multi stage attacks, including several steps to be executed with
different parameters in each step; and the vulnerability exploits, related to
an implementation vulnerability which aim to be single step over specific
software version discovered through the enumeration stage.
For instance, the misconfiguration attack is proposed to be generally de-
scribed as a: Precondition Presenting a Misconfiguration which Cause the
Attacks Steps Leading to an attack Outcome, the graph representation of
such description, as in a knowledge graph can be seen at figure 4.2.

Figure 4.2: Knowledge graph of a general misconfiguration attack

This describes in a general way how misconfiguration attacks can be
placed considering that such vulnerabilities may occur at any software ver-
sion, on the other hand, the implementation vulnerability attacks are more
specific on software version exposed to it, additionally, there could be a re-
ported implementation vulnerability, but no available exploit which needs to
be considered, because of this, an attack by implementation vulnerability is
proposed to be described as a Precondition matching a CPE showing a CVE
vulnerability that Has an Exploit Leading to an attack Outcome. Such pro-
posal on both attack kinds considered aims to correspond with the attacks
at hand for the evaluation proposal to be fulfilled. The graph representation
of such description on a general implementation vulnerability attack can be
seen at figure 4.3.

As stated, it is needed to include up to date information about implemen-

34 CHAPTER 4. ANALYSIS AND DESIGN

Figure 4.3:

tation vulnerabilities to be retrieved and related against the system under
testing, such information is retrieved from the National Institute of Standards
and Technology (NIST) from the U.S. department of commerce through the
Common Vulnerabilities and Exposures (CVE) feeds, which concerns to and
are updated in a constant basis by the same institution.
The second version of this feeds includes the list of all software showing
vulnerabilities, giving the chance to retrieve such information, and correlate,
more precisely on the enumeration findings, to accomplish this, the use of the
CPE, which stands for Common Platform Enumeration, a standardized way
to describe software and hardware by version and release, comes useful, the
use of CPE to match vulnerabilities follows the standards of NIST on CVE
data feeds, which allow having recent information about public vulnerabili-
ties, and disclose such information by CPE, as a NIST standard, nevertheless,
it is also possible to match information such as product name and version, to
match different sources; having in mind that the main vulnerability source
would be the NIST CVE data feeds.

Once considering the description as stated before, the attack patterns
can be described in such way to craft the knowledge graph, an example of
this graph, abridged, can be seen at figure 4.4, it includes the patterns by
misconfiguration and implementation vulnerabilities exploits; as the scope
states, the attack pattern must look for an unauthorized access, therefore,
the outcome is considered as a remote terminal, in the figure can be seen that
some attacks can be performed for several misconfiguration as well as the
fact that an exploit for an implementation vulnerability could affect several
version of the software.

4.2. PROPOSAL DESIGN 35

Figure 4.4: Knowledge graph on attack patterns

The knowledge graph is intended to comply with the attack pattern de-
scription proposed above, to include several attack patterns from configu-
ration and implementation vulnerabilities to include such patterns at the
actual test, it can be seen that the graph can be separated by clusters, such
as attacks, vulnerabilities CPE, etc, giving a chance to grow the graph from
already known circumstances to develop new attack patterns. It is intended
that this graph can be expanded, by collaborative effort, being intuitive to
expand as by describing any attack, in the terms already mentioned in nat-
ural language terms.

4.2.3 Search method

The main part of the penetration testing process, is to actually try an at-
tack to verify if it can be exploited against certain system, to do so, several
specialized tools are used by security experts during the pentesting process;
understanding that each attack can be challenging in terms of analysis or
reverse engineering, several tools, for different scopes are needed during the
process, including forensic and reverse engineering tools; for the purpose of
this work, as stated before, it is not considered the analysis or further ex-
ploitation, but only instantiation on specific attacks over a network. Nmap

36 CHAPTER 4. ANALYSIS AND DESIGN

[19] offers flexibility to instantiate elaborated attacks, including dictionary
attacks and user enumeration, as shown by Bailing et al[20], nevertheless, it
is also needed to include the parameter choosing on each suitable attack, to
test it at the system being evaluated, done in an automated fashion. The test
are meant to handle changes, either at the system under testing considered
internal, such as updates, or at the knowledge database, as external changes
such as new vulnerabilities disclosure; to accomplish such goal it is needed
to persist both, at the enumeration and the attack evaluation, testing both
continuously at the system being evaluated.

Evolution approach

Srivastava et al [26], worked on security test for software, using an evolution
approach, by a genetic algorithm, this is, software inputs were altered, by
genetic mechanisms, and tested over the software flow graph, in which, the
insecure paths were marked, this allowed the testers to find suitable inputs
for insecure behaviors on the software. In general evolution heuristics deal
with the problem of finding most suitable combination by given outcomes, as
a minimization iterative problem; on the same way, this kind of heuristics can
be used to search on a changing search space, in such case, the new minimal
will be approximated over the algorithm long term execution. In the same
way of thinking, the Particle Swarm Optimization (PSO) algorithm comes
handy, as it is simple and complies with evolution heuristics, by testing itera-
tively a collection of candidate solutions, called population of individuals, by
mutating each one individually, and keeping a global best record (gbest), on
each individual best result during the algorithm execution, if the result im-
proves, the global best record gets updated, any other case, it is just skipped,
each iteration on this algorithm is called a generation, this means that each
possible solution, called an individual, was tested once. Figure 4.5 shows the
general flowchart of the particle swarm optimization algorithm.

Fitness function

For evolution heuristics, it is very important the result on the problem tried
to be solved, as this represents what the algorithm is looking for, for evolution
heuristics, this is called the fitness function, for instance evolution heuristics

4.2. PROPOSAL DESIGN 37

Figure 4.5: PSO gbest algorithm

are commonly used in minimization problems difficult to calculate by stan-
dard methods, the main technical problem at using an evolution strategy is
the usage of a fitness function which allows the quantification of the problem
variable aimed to be optimized.
For this design, the function is actually related to attack patterns previously
determined to be suitable to the system under testing and its feasibility to
be exploited at it considering the following; as an attack can take multiple
steps to be performed, and those steps are meant to achieve an unauthorized
access, the degree of advance over such path must be represented, and as

38 CHAPTER 4. ANALYSIS AND DESIGN

stated before, the main considered goal is to achieve an unauthorized access
as a remote terminal, for which all paths must have the same goal, and there-
fore, a maximum common result. With this in mind, it is proposed a way to
calculate the fitness function on each attack pattern shown in equation (4.1).

fitness = (Nsuccess)/(Ntot) (4.1)

where Nsuccess, represents the number of successfully performed steps
over an attack pattern on the system under testing, and Ntot describe the
total number of steps of the attack pattern tested.

As an example, lets consider the following attack pattern:
precondition-> user enumeration-> dictionary attack-> unauthorized ac-

cess
Which includes 4 steps, asNtot, and, assuming, that the dictionary attack

could not be performed successfully, but previous step could, only the first
two steps on this attack pattern would be exploitable; so the fitness on this
example is presented in equation (4.2).

fitness = 2/4

fitness = 0.5
(4.2)

Indicating that over such particular attack pattern, just half of the nec-
essary steps, to gain an unauthorized access, can be placed, at the system
under testing.

As this is an exhaustive search method, it will try eventually, all possible
combinations on candidate solutions, the main purpose for this heuristics is
to deal with huge search spaces. For this design purposes, the search space
is actually quite limited on the candidate solutions, which are the attack
themselves, on the other hand, considering every possible change available
either at knowledge database or the system under testing, the search space is
actually quite huge considering the time as a variable to fit the attack within
time on the suitable change at the right time.

4.2.4 Design Integration

Having considered the three main aspects to be fulfilled on the design, next
it is presented the complete design, in which each main phase interacts as

4.2. PROPOSAL DESIGN 39

follows; first of all, the enumeration stage gathers information about the
system under testing, as stated above, the enumeration must be performed
repeatedly, and retrieve information related to services running at the system
being evaluated the specific software version for such services as well as the
kind of service interpreted as the port number opened, this is later related
to information stored in the knowledge graph, as preconditions of an attack
pattern that could be suitable for the system being evaluated relating also
software versions through CPE (Common Platform Enumeration) informa-
tion retrieved from enumeration.
Once it is related, attack patterns , suitable for the system under testing,
are generated and passed to the evolution strategy algorithm, to be tested
over large periods of time and among changes, in fact, there are two major
actions occurring simultaneously, the enumeration process, which gathers in-
formation and correlates changes at the knowledge database, derived from
knowledge representation as stated before, to form the attack patterns to be
tested in concordance with such knowledge information; and the evolution
strategy algorithm, which tests the attack patterns and modify its parame-
ters aimed to get the best result on each attack pattern.
The complete flowchart on the design is presented in figure 4.6, enumeration
stage and the evolution strategy algorithm are separated yet related process,
each one executed individually, but associated by the enumeration discovery,
as this is the main issue to determine information for which attack patterns
would be suitable for the system under testing, according to the enumeration
performed.
The integrated design intends to be representative on the behavior that a
persistent attacker could met while trying to achieve an unauthorized access
against a particular system.

During current chapter the details on proposal design to achieve a persis-
tent intrusive evaluation was addressed, including the corresponding stages
such as enumeration and search method through evolution strategy, from
such design it can be recalled the main subjects brought to mind by the re-
lated work, also it is needed to consider the design application as black box
testing which comes at hand when talking about the knowledge representa-
tion, to overcome the generic use of this design on security evaluation.

40 CHAPTER 4. ANALYSIS AND DESIGN

Figure 4.6: Design integration flowchart

For next chapter a case of study is addressed for implementing the evalu-
ation on a selected scenario to determine the results on persistence that the
design aims to achieve.

Chapter 5

Case of Study

In the current chapter a case of study on a brief development to achieve
the persistent intrusive evaluation, based on the proposed design to achieve
it is presented as well as the details on code integration in addition to the
data and tools employed. The development was performed using Python
version 2.7, the tools at hand are NMAP[19] for enumeration, and Metasploit
framework[27] version 4.12 for attack injection.

5.1 Code Development

5.1.1 Knowledge Database

By this point, it must be clear that, knowledge graph approach, aimed to
describe attack patterns, goes under graph data structure capabilities, under-
standing that, by design, there will be just a couple of queries from time to
time over the data structure, since it is more meant as a knowledge database,
provided by the knowledge graph description process creation. In this way,
the knowledge storage is performed in a traditional relational database, in-
stead of an adjacent matrix, or a linked list, as this graph representations
are more meant to perform several operations over the graph as a whole,
and, for this design purpose, it is just needed to store the knowledge, and
to query it from time to time; in this manner, knowledge database gets con-
structed and stored as a relational database over a file, and queried when
required, being able to be modified at any time, leaving the concurrence over
writing and reading to the DB management system understanding that the

41

42 CHAPTER 5. CASE OF STUDY

most common operation would be the query, keeping in mind that no more
concurrence beyond the enumeration would be needed. Therefore, in figure
5.1 it is presented the entity relation model of the knowledge database, con-
structed based on the knowledge graph representation described above; as
stated earlier, the main goal here is to represent the knowledge in an intuitive
yet general way, and to be able to query it. For the purpose of the current
work, the only outcome considered is the unauthorized access, so it will not
be considered during querying the database.

Figure 5.1: Entity Relation model for knowledge database

The knowledge database is stored using the sqlite database management
system, as this does not require a running server instance or further configu-
rations, it offers the SQL functionality with few limitations and flexibility to
implementation, this allows the instrument to be easily implemented. An ex-
ample of the configuration vulnerability attack patterns stored at the knowl-
edge database can be seen at the table 5.1 the information does include the
commend to execute the actual attack, at the Metasploit framework, as well
as the next step on the attack pattern; it can be noticed that intermediate
steps can be shared by different attack patterns.

Table 5.1: Configuration Vulnerability attack patterns
Configuration
Vulnerability port Attack

name
Command
module

Next
Step Score

VRFY enabled 25 User enumeration smtp auxiliary/scanner/smtp/smtp_enum Dictionary attack 10
Rservices enabled 513 Rlogin auxiliary/scanner/rservices/rlogin_login 12
Rexec enabled 512 Rexec auxiliary/scanner/rservices/rexec_login 12

Rsh login 514 Rsh login auxiliary/scanner/rservices/rsh_login 12
Finger 79 Finger enumeration auxiliary/scanner/finger/finger_users Dictionary attack 10
Java rmi 1099 Java rmi auxiliary/scanner/misc/java_rmi_server Java rmi exploit 40
NFS scan 2049 NFS scan auxiliary/scanner/nfs/nfsmount search_private_ssh_keys 12

As the attack patterns also consider the implementation vulnerability, the
knowledge on how to execute such attacks, and the specific software version

5.1. CODE DEVELOPMENT 43

and CPE, the information on such attack patterns can be seen at table 5.2,
it is noticed that some vulnerabilities does not include exploit information,
as it is not available by the tool. In addition, there can be noticed that the
same vulnerability may apply to different software versions.

Table 5.2: Implementation Vulnerability attack patterns
CVE product version port exploit cpe

CVE-2004-2687 distccd v1 3632 exploit/unix/misc/distcc_exec cpe:/a:apple:xcode:1.5
CVE-2004-2687 distccd v1 3632 exploit/unix/misc/distcc_exec cpe:/a:samba:samba:2.18.3
CVE-2007-2446 Samba smbd 3.X 139 exploit/linux/samba/lsa_transnames_heap cpe:/a:samba:samba:3
CVE-2007-2447 Samba smbd 3.X 139 exploit/multi/samba/usermap_script cpe:/a:samba:samba:3
CVE-2007-2447 Samba smbd 3.X 139 exploit/multi/samba/usermap_script cpe:/a:samba:samba:3.0.0
CVE-2007-2447 Samba smbd 3.X 139 exploit/multi/samba/usermap_script cpe:/a:samba:samba:3.0.4:rc1
CVE-2010-2063 Samba smbd 3.X 139 cpe:/a:samba:samba:3
CVE-2010-2075 Unreal ircd 6667 exploit/unix/irc/unreal_ircd_3281_backdoor cpe:/a:unrealircd:unrealircd:3.2.8.1

On the other hand, the parameter control works by the specific parame-
ters met at each attack pattern, such parameters must include the necessary
information for the attack to be executed, and the acceptable values by the
attack injection tool, in the current work it is used Metasploit, an example
on such parameters for the CVE-2007-2447 can be seen at table 5.3, it can
be noticed that each parameter can be select within a range of values, also
included at the knowledge database, such values are meant to be selected
each execution by the evolution strategy algorithm. According to the design,

Table 5.3: Parameter example on CVE-2007-2447

Parameter Min
Value

Max
Value

ConnectTimeout 5 15
SMB::VerifySignature 0 1
SMB::VerifySignature 0 1

SMB::ChunkSize 400 600
SMB::VerifySignature 0 1
SMB::VerifySignature 0 1

the knowledge DB needs a feed to retrieve new vulnerability entries disclosed
and published by NIST as CVEs, these are commonly updated and retrieved
as XML files from the NIST data feed[28], from which it can be acquired such
information about new vulnerabilities, nevertheless, the information about
available working exploits for such vulnerabilities must be curated manu-

44 CHAPTER 5. CASE OF STUDY

ally, as it relies on the Metasploit framework available information, which is
limited; this can be a subject for further work additions.

5.1.2 Enumeration

The proposed design does consider the enumeration to retrieve information
from the system at evaluation, to do so it is needed to consider the appropri-
ate tools to achieve such development, as stated previously, the pentesting
process rely on some specialized tools, for each stage of the test, for instance
as recommended on the document by Chan Wai [3] from SANS institute,
NMAP [19], includes several, if not all, the previously related methods to
gather information about a certain target, from which it can be mentioned
the running services at the given system that can be interpreted from the
ports open at it and the software versions needed to recall implementation
vulnerabilities, such information needs to be compared against the stored
knowledge to retrieve the suitable attack patterns and its parameters, the
developed code does the request for the tool and retrieve the information, to
correlate the suitable attack patterns to the knowledge DB, the development
pseudocode can be seen at listing 5.1.

1 c l a s s Recon (thread ing . Thread) :
2 de f run (s e l f) :
3 whi le True :
4 Execute NMAP enumertion
5 f o r s e r v i c e in t a r g e t :
6 Determine s u i t a b l e attack pat t e rns
7 #inc lud ing implementation and con f i g u r a t i on v u l n e r a b i l i t y
8 i f Attack pat t e rns not in Current t e s t ed :
9 Acquire f l a g

10 Update Current Tested
11 Release f l a g
12 Wait pseudo random time
13 i f l e s s s e r v i c e s found :
14 I n c r e a s e de lay randomly
15 e l s e :
16 Wait pseudo random time

Listing 5.1: Enumeration code example

The connection with the NMAP tool, is achieved by the python library
correspondent to the NMAP project, this allows the instrument to both,
perform enumeration requests, and to receive detailed information about

5.1. CODE DEVELOPMENT 45

a particular target, the correlation with the stored knowledge previously
presented will bring up the individuals to test at the evolution strategy search
method.

The enumeration is executed as a thread related to evolution strategy by
the flag as a semaphore and the current tested attack patterns to determine
those not being tested by the evolution strategy at a given time and being
able to include it at the search method.

The correlation is pretty straightforward from the enumeration informa-
tion gathered, from services name versions and CPE information related to
the preconditions stored at the knowledge database as presented earlier. An
example of the disclosed information by enumeration can be seen at figure
5.2, it can be seen that enumeration gets enough information to determine
the suitable attack patterns according to the data stored in the knowledge
database.

Figure 5.2: Enumeration results example

5.1.3 Evolution strategy

The main aspect about the evolution strategy in the fitness function calcu-
lation, as stated in the design, it is totally related to the successfulness of
a certain attack pattern, such information can be retrieved and interpreted
from the Metasploit framework console output once the attack pattern step

46 CHAPTER 5. CASE OF STUDY

gets tested by it; the attack step parameters are stored alongside the knowl-
edge information in the DB as explained earlier, so it can be retrieved at each
time and mutated within the limits stated at the knowledge DB, once the
attacks are tested, each result is stored in the results DB for further analysis
as the actual result of a given attack pattern at a certain time against the
target system. The pseudocode on the evolution strategy development code
is shown at listing 5.2, the current attack patterns are updated from enumer-
ation, and the evolution strategy runs as a separated thread communicated
through global variables for attack patterns and a flag as a semaphore to
update the attacks if needed.

1 c l a s s Attack_test () :
2 Wait f i r s t enumeration r e s u l t s
3 Connect to Metasp lo i t Framework
4 whi le True :
5 Obtain cur rent attack pat t e rns
6 i f f l a g not acqu i red :
7 f o r attack pattern in Current t e s t ed :
8 Mutate attack parameters
9 Send attack pattern to Metasp lo i t framework

10 Calcu la te attack pattern f i t n e s s
11 i f new f i t e s s > Current t e s t ed :
12 Update Global bes t
13 e l i f new f i t n e s s < Current t e s t ed f i t n e s s :
14 I n c r e a s e worsen counter
15 i f worsen counter > t r e sho l d :
16 Update Global bes t
17 Store Resu l t s on DB
18 Wait pseudo random time
19 e l s e :
20 #i f enumeration f i n d s a new su i t a b l e attack vec to r
21 Acquire f l a g
22 Update Current Tested Attack pat t e rns
23 Release f l a g

Listing 5.2: Evolution strategy pseudocode (abridged)

The evolution strategy does implement pauses between each generation,
in the understanding that, changes will occur within large periods of time,
the aim of the search method is to maintain a low profile interaction, yet
it does persist in the search of an exploitable vulnerability, either at the
enumeration or the exploitation stage.

To actually exploit the attacks, it is used the Metasploit Framework con-
nection library for python, this allows the interaction with the tool to perform

5.1. CODE DEVELOPMENT 47

the attacks and retrieve the outcome of such attacks, bringing the ability to
determine if it succeed or not and for fitness calculation. The commands
to execute at each particular attack are included as part of each individual
retrieved from knowledge database as explained earlier, as well as the param-
eters prone to it, which are mutated during the evolution strategy execution.

As a result of the search method the attack steps, the parameters used, the
start and finish time as well as the attack execution outcome are retrieved
as part of the current generation attacks tested, an example of it can be
seen at figure 5.3, it can be noticed that the actual code string tested at the
Metasploit framework is included as well as the parameter values, the fitness,
outcome and needed information for the evolution strategy execution.

Figure 5.3: Evolution strategy attack pattern execution example

On the current chapter the development code for a case of study on the
proposed design as a developed instrument was addressed to determine the
feasibility of it to be implemented and perform evaluation on a persistent
manner; it is needed to consider the limitations on the developed instrument
as the selected tools are mean to be used over a limited scenario, and the
knowledge graph was manually curated bringing boundaries to the attacks
the developed instrument would perform, nevertheless the behavior , as per-
sistence may be achieved to determine the design feasibility on such long
term evaluation.

Within next chapter, the detailed test scenario as well as the results
achieved would be presented as well as some analysis on such results.

48 CHAPTER 5. CASE OF STUDY

Chapter 6

Tests and Results

In the present chapter it is presented a test scenario for the case of study
developed code from previous chapter, considering the design and case of
study code to achieve a persistent intrusive evaluation, it is needed to consider
a test scenario related to the considerations made for the evaluation to be
persistent, the details on such scenario and the results obtained are shown.

6.1 Test Scenario

Having considered the details about the design, it is needed to plan how to
test if the design and its developed code would actually work on a functional
environment, for this, it is considered that the main issue about the design
is to actually perform attacks over a system, as a matter of fact, it is needed
to test a system, previously known to be vulnerable, understanding that
prior to performing the attacks it is needed to know if certain attack is
actually exploitable, to determine if the design does actually find and exploit
successfully a suitable attack and gather the correct outcome of it. Lets
remember that it does propose a sort of automated pentesting in a black box
exercise for this, the scenario must be well known to overcome the results as
successful or not during each generation execution given that no information
about the target is available to the developed instrument, and it just relies on
the knowledge DB and the information disclosed by the enumeration stage
of the instrument.

As being part of a pentesting, it is convenient to think about known sce-
narios, this is, systems vulnerable by design, which allow penetration testers

49

50 CHAPTER 6. TESTS AND RESULTS

to try their skills, or to follow established steps as in "capture the flag" ex-
ercises, this publicly known systems can help to know whether the design
would place and exploit a suitable attack pattern, considering, it is already
reported to be possible to do it. For the current work purposes, three of these
systems where chosen as testing scenarios, the details on such scenarios and
vulnerable OS distributions is presented next.

6.1.1 Expected Results

The current work is intended to come up with the design and proof of con-
cept concerning an instrument to perform automated penetration testing by
means of stored knowledge, including the actual examination of the attack
and its corresponding results as a manner of long term security assessment
in an active fashion, including new vulnerability disclosure as well as miscon-
figuration and some other attacks, showing the exploitability changes under
variable conditions of the target system, such as updates or new vulnerabil-
ities disclosed by trusted organisms.

6.1.2 Target selection

Due to the nature of a penetration test,a system and its information can
get compromised, it is performed in agreement with system administrators,
regarding of the confidential information that can be disclosed in the pro-
cess, understanding this, it is clear that a common approach for pen-testers
to practice, is to have popular distributions prone to vulnerabilities, in such
fashion, several OS distributions are available for testing as virtual machines.
For instance several of this vulnerable OS distributions include not only soft-
ware vulnerabilities, but also, vulnerable configurations on known services, in
fact, as this OS distributions are prone to be exploited, there are several ex-
ploitable attack patterns over it. On the current work three examples of this
vulnerable OS distributions are considered given that such OS distributions
represent well reported vulnerability exploitation and different representative
case of the available options.
Metasploitable, Vulnix, and Fristileaks, include wrongly configured services,
as well as software vulnerabilities, in the case of Fristileaks it represents a
"capture the flag" exercise, for which some analysis is needed to exploit the
presented vulnerabilities, on the other hand, some suitable attacks, over these
vulnerable distributions, do need some analysis or reverse engineering to be

6.1. TEST SCENARIO 51

exploited and, as stated earlier, such attack patterns are not considered for
the current work, in such case, the identifiable and prone to be tested, attack
patterns over each vulnerable OS distributions, are presented in table 6.1.

Table 6.1: Reported attack patterns by selected vulnerable OS distribution
Target Known Attack Vectors (included on Knowledge DB) Search spaces
Fristileaks Web admin enumeration ->Dictionary Attack ->Shell PHP Threads,Dictionaries, Attempts, Time

Vulnix
User enumeration (smtp,finger) ->Dictionary attack over SSH Threads,Dictionaries, Attempts, Time
User enumeration (smtp,finger) ->Dictionary attack over rlogin Threads,Dictionaries, Attempts, Time
Mount smb share ->Generate ssh keys ->save .ssh authorized key ->SSH login Time

Metasploitable

User enumeration (smtp,finger) ->Dictionary attack over SSH Threads,Dictionaries, Attempts, Time
User enumeration (smtp,finger) ->Dictionary attack over rlogin Threads,Dictionaries, Attempts, Time
Mount smb share ->Genarate ssh keys ->save .ssh authorized key ->SSH login Time
Telnet port 1524 ->Backdoor login Time
Metasploit exploit modules ->remote terminal Threads,Dictionaries, Attempts, Time

Here it is referred as search space the applicable parameters on each attack
pattern, over which the evolution strategy algorithm can search in addition
to the time and changes over the system or the knowledge database, such
behavior is interpreted as persistence in terms of the definition at use by the
current work[5].

The main features for each OS distribution are described as follows. Fris-
tileaks consists in a capture the flag scenario, this allows the practice of
analysis and reverse engineering over vulnerable configurations and imple-
mentation at a web page, the "capture the flag" exercise implies that there
is a way to intrude such target, but the vulnerabilities to do so, rely on some
human interpretation of code comments and analysis. The Fristileaks distro
allows testing the instrument on a known vulnerable target, yet complex to
attack, it is a representative, well documented example of a "capture the
flag" exercise, it is expected that the instrument development obtain poor
results at the intrusion as this requires some analysis beyond the reach of the
knowledge representation here proposed. This aims to represent a portion of
the available vulnerable distributions, prone to be attacked, and the actual
potential vulnerability disclosure limitations on the proposed instrument.

The Vulnix distribution is a well documented example of vulnerable dis-
tribution to perform testing, in this is represented some configuration and
implementation vulnerabilities. The aim is to determine the successfulness
on the developed instrument to both, identify and exploit such vulnerabili-
ties, this distribution does not allow any change or sort of administration, so
this can be seen as a fixed scenario, on the target side.

The Metasploitable distribution includes several configuration and im-
plementation vulnerabilities, this is also well documented by its developers

52 CHAPTER 6. TESTS AND RESULTS

and it does allow all sort of changes and administration. In this case it is
aimed to serve as a live scenario, to perform both, changes at the knowledge
DB, understood as external threats, such as vulnerability disclosure, and to
perform corrective actions, to allow the system to determine the changing
conditions on the security at this target over a period of time. The main
features for each distribution can be seen at table 6.2

Table 6.2: Vulnerable Distributions
Distro Features Fixed

Fristileaks Capture the flag, needed of some analysis Yes
Vulnix Multiple implementation and configuration vulnerabilities Yes

Metasploitable Multiple implementation and configuration vulnerabilities No

As the system under testing will be each of the vulnerable OS, it is im-
plicit that, the developed instrument would have a way to reach the system
under testing; because of that, the network topology is not considered for
the testing.

6.1.3 Results scoring

With a view to obtain results easily understandable, it is needed to imple-
ment a scoring to the successful results, as different attack patterns may not
represent the same impact on the system under testing, in terms of scoring
several considerations can be done about the attack itself, according to Mark
Mateski et al. in a work by Sandia Report [29], some aspects of the threat
can be useful to measure the potential impact on the system under testing,
as for giving a score based on how can those vulnerabilities actually be ex-
ploited and what is needed for a person to accomplish it, for instance, it can
be recalled that the most important condition about threat metrics can be
narrowed to the time it takes to accomplish a successful attack attempt, the
needed knowledge from an attacker, and the stealth to carry on the attempt.
Taking into account such factors, the scoring gets constructed for each at-
tack, in the mentioned terms, to determine the security level at a given time
as a report for further analysis and to take corrective measures according
to administrators criteria. The scoring table can be seen at table 6.3. The
attacks scoring on each attack attempt is determined by the average on each
attack individual steps scoring and the total number of steps as shown in
equation (6.1).

6.2. TESTING EXPERIMENTS 53

Table 6.3: Attack scoring
Time score Knowledge score Intensity score Stealth (delay) score
Months 1 Specilized 1 High 1 High 1
Weeks 3 Technical advanced 3 Medium 3 Mediium 3
Days 5 Technical basic 5 Low 5 Low 5
Hours or less 25 Basic/none 25 One shot 25 None 25

∑n
i=1 (Sct + ScK + ScI + ScSt)

n
(6.1)

Where n is the total number of steps on each attack, and Sct,ScK ,ScI and
ScSt are the score of each attack step on terms of time, knowledge, Intensity
and Stealth, each score is the sum of each category according to the step’s
qualitative categorization. For example, an attack pattern carried within
hours, needed of basic knowledge, with low level of intensity, understood as
few requests needed to accomplish the attack, and no stealth needed would
be scored as presented in equation (6.2).

score = 25 + 25 + 5 + 25

score = 80
(6.2)

6.2 Testing experiments

Having proposed a way to represent and store attack patterns knowledge
and later a search method to test them, there are two main issues to test
at this design, first of all, the attack pattern actual exploitability, this is,
that it gets exploited and that it could be retrieved actual true information
about its success or failure on the system under testing; and, in the other
hand, whether or not the design will include changes, either at the knowledge
database, or at the system under testing, corresponding to an exploitability
change on an attack pattern or a new one not previously tested. Because of
this, there are some experiments of interest.
At first we have the vulnerable distributions, prone to be attacked, as the
developed instrument is intended for black box testing, it does not include
knowledge or details about any target in particular, for instance, it just in-
cludes generic knowledge similar to attackers knowledge to be implemented
during an actual attack, for this, it is first necessary to sum up the results in

54 CHAPTER 6. TESTS AND RESULTS

terms of how did the instrument performed at discovering possible vulner-
abilities and its later exploitation, in this case it was referred to developers
information, on each distribution case, to rely on the available vulnerabil-
ities according to them, the number of vulnerabilities discovered for each
distribution is shown on table 6.4.

Table 6.4: Number of vulnerabilities discovered for each OS distribution

Distro
Exploitable

vulnerabilities
(reported)

Potential
vulnerabilities

found

Vulnerabilities
exploited (avg)

Fristileaks [30] 2 1 0
Vulnix [31] 4 6 1.5

Metasploitable [32] 6 11 6

As expected, the Fristileaks distribution requires actual reverse engineer-
ing, and further analysis, which is out of the scope on the knowledge repre-
sentation postulated, therefore, it is expected the no exploitation available
for such distribution, proving the knowledge boundaries on the instrument
developed. On the other hand, the Vulnix and Metasploitable distributions
offer either implementation and configuration vulnerabilities, because of this,
there are several not reported by their developers, vulnerabilities were found
as potentially exploitable, nevertheless, just some of them were actually ex-
ploited by the instrument, proving that some vulnerabilities need analysis or
related knowledge not available at the instrument’s knowledge DB.
According to the reported vulnerabilities the attack patterns applicable to
it, the instrument did find and exploit those not needed of analysis or re-
verse engineering but not those needed of such capabilities not present at
the design or the instrument developed, this behavior was expected, as the
knowledge representation is not aimed to represent further more advanced
knowledge needed for this, as analysis and reverse engineering are much more
elaborated to be automated, nevertheless, the instrument includes vulnera-
bilties prone to real world and, as results show, it was able to determine and
exploit most of them, automatically, without any knowledge from the actual
target, such results are presented later for each case. The show vulnerability
assessment done automatically, which can be understood as part of the pen-
testing process, for the next, the persistence is tested as part of the complete
design and developed instrument, which is accomplished by testing changing
scenarios as a real target may experience, this will be described as follows.

6.2. TESTING EXPERIMENTS 55

First of all, how the design will deal with changes at the knowledge
database, as stated vulnerabilities can be made public at any time, and
the proposed design must allow testing over this new vulnerability disclo-
sures, next, it will need to cope with changes at the system under testing,
this includes updates, or configuration upgrades to correct any vulnerability
showed earlier; this has to be made while the testing is still in progress as
the actual testing will take long time to be concluded; and both conditions
tested over larger period of time, which aims to test if the exploitability and
system availability are affected by this tests.

The tests will be presented as follows, first tests done by adding a vulnera-
bility to the DB to be added for testing, later a vulnerability added that is not
exploitable even when it is found suitable for the system under testing by the
enumeration and knowledge DB correlation, and finally, the complete test re-
garding changes at both sides, the DB and later the system under testing for
a large period of time. In each case, the exploitability of an attack pattern is
implicit, as this attack patterns are considered from known reported attacks
on the vulnerable OS distributions, and, furthermore, the fitness reported
for each attack vector, correspond to each attack vector exploitability.

6.2.1 Testing case one

The first case test is to start the complete designed process, against a vulner-
able OS distribution, and later add , to the knowledge database, a vulnera-
bility and its corresponding exploit; it is expected that, as the enumeration
process is running constantly, it will eventually find the new suitable attack
pattern, and this will be added for testing at the evolution strategy algo-
rithm. On this way, there was added a new vulnerability and its exploit for
two distributions, as shown on figure 6.1.

As seen, the NFS scan, which corresponds to a vulnerability added to
the knowledge database during the first generation of the evolution strategy
algorithm, and it was added to it at 2nd generation with a fitness of 1 for
that particular attack pattern, indicating that this vulnerability can be suc-
cessfully exploited at the given system being tested, in this case the Vulnix

56 CHAPTER 6. TESTS AND RESULTS

Figure 6.1: Attack pattern added to knowledge DB over Vulnix

Figure 6.2: Attack pattern added to knowledge DB over Metasploitable

OS distribution. The test was also done over the Metasploitable distribution,
in which, the attack pattern for a vulnerability and its exploit were added to
the knowledge database, during the fifth generation of the evolution strategy
algorithm, and it was added and tested by the sixth generation of it, this
can be seen at the figure 6.2. At figure 6.3 can be seen that, as for this case
the new vulnerability added its scored highly in terms described at table 6.3,
the new attack pattern gets a higher threat metric, this is important to be
considered on security awareness.

In both cases the vulnerability was added for testing a few generations
after it was added to the knowledge database, this is the expected behav-
ior on the design, nevertheless, this could represent a disadvantage, as any

6.2. TESTING EXPERIMENTS 57

Figure 6.3: Attack scoring testing case one Metasploitable

vulnerability publicly exposed can be tried to be exploited as soon as it gets
publicly known, nevertheless, it is considered that not all reported vulnerabil-
ities could have a working exploit by the time they are made public. On the
other hand, the scoring shows the same behavior, but, understanding that
it does not get a full unauthorized access, it is only scored as information
gathering as shown on figure 6.4.

6.2.2 Testing case two

For the second case, it is considered an update over the system under testing,
not to add a new attack pattern, as this was partially considered on the first
case, but to correct a configuration vulnerability to show the exploitability
results changing over such corrective action, for this, the vulnerable SMTP
configuration, prone to user enumeration, was corrected to avoid information
gathering techniques, this was done only on the Metasploitable OS distri-
bution, because this is the only selected OS distribution that allows system
administration, understanding that the other distributions are just for a "cap-
ture the flag" exercise and not a wider solution to perform pentesting. For
the Samba configuration correctness, it can be seen that the fitness of the
attack pattern diminishes for the next generation of the evolution strategy

58 CHAPTER 6. TESTS AND RESULTS

Figure 6.4: Attack scoring testing case one Vulnix

algorithm after the correction gets applied, nevertheless, as the algorithm
just keeps record of the global best, meaning that if no improvement is got
on fitness, the results would not be altered, the behavior is altered to give a
penalty on the results, to accomplish this, it is considered a penalty for each
fitness value minor to the global best, if three of this are reach, the global
best has to be updated to reflect that the individual being tested met the
worsen threshold on fitness, so it can recall the results over next generations
, the test done on this kind of update are shown on figure 6.5, it can be
seen that the Samba vulnerability gets unexploited by the sixth generation,
in addition, the VSFTP service related exploit is not always exploitable, as
it can be seen on the same figure.

In addition, after each attack pattern gets scored, it can be seen that not
all attack patterns can be considered equally threatening for the system under
testing, as some of them, require less effort and are executed successfully, the
scoring on this test case can be seen in figure 6.6 , it can be noticed that the
vulnerability related attacks are better scored and, because of that, would
need actions to overcome the threatening situation.

6.2. TESTING EXPERIMENTS 59

Figure 6.5: Configuration corrected

Figure 6.6: Attack scoring on testing case two

6.2.3 Testing case three

It is considered an example of the previous cases shown before over a larger
number of generations and experiencing both changes at given times, for
instance, it is first submitted an update to database, and later on, the SMTP
misconfiguration gets corrected to verify the results on a composed scenario
by a larger number of generations being able to carry on the attacks for a
larger amount of time and having a reduced impact on the system tested.

60 CHAPTER 6. TESTS AND RESULTS

It can not be assured that the tests will have no repercussion on the system
tested, as it is in fact an attack, in fact, at this point it is expected some minor
impact on the system, nevertheless, it is expected the the impact would not
be significant for the system availability, in such case , it is contemplated to
test it for larger periods of time to determine the system behavior at, first
, not to induce a system outage, being it partial, or any service attacked,
or to the whole system, and second to determine that exploitability results
will hold for large periods of time, this means that the attack considerations
can take place at any instance with no interaction from previously exploited
attacks, being able to obtain realistic information of an attack exploitability
each time.

Figure 6.7: Testing case three attack pattern fitness

The results are shown on figure 6.7, it can be seen that attacks can still
be exploited over larger number of generations, this can be understood as
the service still being available, and attacks being exploitable independently
from previous generations, it can also be noticed the SMTP configuration
corrected during the last generations and the addition of the DISTCC service
related exploit by the tenth generation, understanding that this results can
be carried on for large periods of time, responding to changes and proving
not to have a significant impact to the system under testing.

In this case it can be noticed that the vulnerability added gets a higher
threat measurement impact on the target system as shown at figure 6.8, in

6.2. TESTING EXPERIMENTS 61

Figure 6.8: Attack scoring on test case three

addition, the misconfiguration correctness can be seen as a low level action,
taking into account the scoring as presented in figure 6.8, this results show
the importance of having a scoring system on the attacks tested, as some of
them represent a higher threat in the terms mentioned at table 6.3, like the
implementation vulnerability exploits such as the IRC Backdoor attack or
the DISTCC related exploit.

6.2.4 Testing case four

For the last testing case, the intention is to show a more complex scenario,
as it corresponds to the case where it can be seen the security assessment
against a known vulnerability, over certain software version, moreover, as
the version gets updated the vulnerability shall be corrected, however the
security would only be assured for a limited time, as new vulnerabilities are
discovered in a continuous basis, for instance, after few generations, new
vulnerability over the updated version is added to the knowledge database,
showing the common behavior of vulnerabilities and giving the idea of the
importance of security assessment, as it is not the same security status as
times goes by, and new vulnerabilities are discovered, and exploits are made
public. For this test, the vulnerable software is samba on old releases, in this

62 CHAPTER 6. TESTS AND RESULTS

case the 3.0.20 and the 3.0.26 to include already known working exploits on
both version, aiming to simulate the response to a vulnerability correctness
by an update, this shows the process from the vulnerability being added to
the exploitability on the target system, and the eventual correction due to a
system update. As seen in figure 6.9, the Samba related exploit does work,
from its discovery, simulated by adding the information to the knowledge
DB, to its correctness by a system update on samba version, nevertheless,
the exploit does work again after few generations.

Figure 6.9: Vulnerable version update test

On the other hand, by scoring this kind of attacks it can be seen the major
impact on the security of the given system, as it is easily exploitable and
gets a higher score, however, the update does impide the attack to succeed
for a period of time as shown on figure 6.9, after which it gets exploitable
again, this changes can be seen on this test, understanding the importance
of knowing that regular tests may not came up with the new exploitability
after the update. To complete the results the attack scoring is evaluated for
this scenario, it is noticed that the exploitability, even after the update gets a
higher value, indicating the threat measurement for such vulnerability, such
scoring is presented at figure 6.10.

6.3. RESULT ANALYSIS 63

Figure 6.10: Attack scoring on testing case four

6.3 Result Analysis

As shown earlier, the results’ main purpose is to improve the security aware-
ness, and to reflect the changing conditions on system’s susceptibility to
attacks, on either corrective actions, or new discoveries on knowledge. The
main results are in the changing conditions under different circumstances for
the previously mentioned selected vulnerable distributions, according to the
limitations and vulnerabilities prone to each vulnerable target.

Knowledge DB update

For the first testing case the susceptible targets tested were the Metas-
ploitable and Vulnix distributions, due to its multiple vulnerabilities it was
able to demonstrate the exploitability of each new vulnerability added to the
knowledge DB, and the awareness brought by the instrument by the actual
exploitation of these vulnerabilities, as it can be seen in figure 6.1 during first
generation, the NFS scan vulnerability was added to the knwoledge DB, as it
was suitable for the Vulnix distribution, this was successfully exploited and
therefore reported with fitness of one. It can also be seen that the User enu-
meration by SMTP is possible, but the dictionary attack was not successful
on this case, which can be interpreted as that passwords are not as weak, for

64 CHAPTER 6. TESTS AND RESULTS

being included in a common dictionary, this can be seen by the fitness of 0.5
on this vector at trying the attack on the Vulnix distribution shown stacked
to be differentiable from each attack pattern.

On the other hand, in the Metasploitable distribution, the vulnerability
added was the distcc exploit which is an exploit related to the CVE-2004-
2687, exploitable at targets running the distccd daemon, which allows the
attacker to an unauthorized remote access, as it can be seen at figure 6.2
the attack gets exploited successfully by the sixth generation, given that the
vulnerability was added during the fifth generation execution and that it was
not known to the instrument before that time.

In addition, for both cases the scoring gets different impact on the target
machine, as it can be interpreted, an NFS scan just avails some information,
when the distcc exploit does actually bring unauthorized access, for which the
scoring must be higher, the attack scoring on each case can be seen at figures
6.3 and 6.4. From such results it can be seen that the Vulnix distribution,
related to 6.4, its less prone to high scored attacks, and therefore, slightly
more difficult to get accessed by unauthorized means, which corresponds to
reality, as Metasploitable is more easy to intrude that the Vulnix distribution,
this proof of concept represents the conditions of the changing environment in
which systems are actually used, as new vulnerabilities may become available,
and there could not be awareness on how secure are the systems until an
actual attack takes place taking advantage of some of these.

Corrective actions

On the third testing case it must be observed that the test scenario includes
both actions to be determined by the instrument, first of all the addition on
the knowledge database of a new vulnerability publicly disclosed, and its cor-
respondent execution, and later a configuration correctness, which includes
the execution update due to the configuration corrected, both actions can
be understood as the changing conditions over large periods of time during
which exploitability of attacks its expected, this fluctuation can be seen in
figure 6.6 and 6.5 at the 7th generation as the php argument injection ex-
ploit was not known previously to it, and that the samba misconfiguration
got corrected by the 10th generation, this implies that the system was, in
the first case able to determine the new vulnerability to be suitable at the
target system, and that it exploited such vulnerability successfully then, also,
it must be understood that, from the point of view of an attacker, whit no

6.3. RESULT ANALYSIS 65

knowledge about the target system, this is implicit by the black box testing
assumption, the samba exploit is no longer available, which diminishes the
potential unauthorized actions performed by an attacker against the system.

Software update scenario

By the forth testing scenario it must consider an update on the target system,
to be determined by the system given that this case was not considered
earlier and that such case corresponds to a common approach on security at
organizations, understanding that, it must be clear that the update action
must impact the exploitability and in available exploits to be used by the
search method if any. For instance, this scenario is intended to cover the
whole process of a vulnerability in the implementation, this is, the discovery,
exploitability and the correction of that by an update, as seen by an attacker
with no knowledge of the target system, this behavior can be seen at figure
6.9 and 6.10, the implementation vulnerability is determined to be suitable
and executed by the 20th generation, and the update occurs at the generation
25, but, for the threshold implementation, this is visible at the results by 28th
generation, being unexploited by the 29th generation.

Nevertheless as shown in figure 6.9, the vulnerability related to Samba
gets exploitable again after few generations, such scenario gets repeated in
order to determine the cause of such behavior, the results on such repetitions
are shown at figure 6.11, from it it can be seen that the behavior is not
replicated, as the update affects the attack exploitability and it does not get
exploited again.

In addition, to try to determine the causes of such results at figure 6.9;
it is presented an update on the search method, this update was performed
by adding the velocity calculation for each parameter value on each attack
pattern, in a similar manner as in the PSO algorithm, to try to give more
emphasis on the exploitation over high fitness results, the velocitu calculation
pseudocode is shown at listing 6.1.

1 f o r attack params in cur rent attack pattern
2 Vel_max=(Max value − Min value) /2
3 New Vel = Vel prev + (2∗ (Random(0 ,1)) ∗(Current param value −

Global bes t param value)) +(2∗(Random(0 , 1)) ∗(1.0−Global bes t
f i t n e s s))

4

5 i f (New Vel < Vel_max) :
6 New Vel= Vel prev + New Vel

66 CHAPTER 6. TESTS AND RESULTS

Figure 6.11: Software update scenario repetition

7 e l s e :
8 Vel new= Vel_max
9 New param value = Current va lue + Vel new

10

11 i f (New param value < Min value) :
12 New param value = Min value
13

14 i f (New param value > Max value) :
15 New param value = Max va l

Listing 6.1: Velocity calculation for attack parameters (abridged)

With this update at the search method, the scenario test was repeated
for software update at Samba, the results are shown in figure 6.12

It can be seen at the figure that the behavior presented could not be
reproduced; this could mean either of two cases, an error at the developed
instrument, or a circumstance not considered derived from persistence. For
the first case, an error at the developed instrument is likely to happen, nev-
ertheless, the behavior was not shown at any other of the tests performed,
furthermore, the results obtained are highly related to the Metasploit frame-
work responses, so this results, if mistaken, could be related to such tool,
which seems very unlikely. On the other hand, persistence, as an objective
from the design and the developed instrument, can carry out such circum-

6.3. RESULT ANALYSIS 67

Figure 6.12: Software update scenario repetition with search method change

stance over long enough periods of time, as presented in figure 6.9, the 35
generations test is long enough to consider constant interaction, as well as
persistent attack attempts, which could cause the abnormal exploitation,
that could not be reproduced, even at later manual attempts at the particu-
lar target; this may imply time, interaction and parameter search on a limited
scenario, which comes at hand as persistence. It can be assured that such
behavior was derived fro persistence owing to developed instrument design,
but it seems likely, as it shows an unexpected, hard to replicate result, that
may not be achieved in any other way, giving that an error was not achieved
in any other scenario, in similar conditions.

The results show the behavior and vision af a well motivated attacker
without any known on particulars at the system under testing, implying the
changes due to corrections made to the target and new knowledge determined
due to public sources. In this case as the test universe is declared, the result
lie within the declared vulnerabilities, already reported over the vulnerable
system prone to the testing, this helps to determine that the instrument was
able to determine such available knowledge, from public sources, and apply it
to attack a system, and persist, given that it is already known whether or not
such attacks can be exploited at the given system, it was also determined that
the instrument could correctly determine so, given that, from the instrument

68 CHAPTER 6. TESTS AND RESULTS

implementation point of view, there was no specific information about the
target itself, in this understanding the instrument was able to build and test
attack vectors and test it against the system determining its exploitability
on each case, without any interaction from human operators.

6.4 Comparison to related work

Results shown can be either described as security awareness, understood in
terms defined at table 6.3, or as proof of flaws present at the system under
testing, furthermore, the tests aim to prove the exploitability of an attack
under changing conditions, improving the awareness of security in a persis-
tent manner. Based on the results provided by Bailing et al.[8] it can be
interpreted the contribution on automation, and persistence among changes,
the expected contribution was on the engagement on the knowledge represen-
tation, and the search method, which allowed the instrument to implement
the attacks without external interaction, this results, on multi steps attacks
exploitation, and recognition were included by Bailing et al [8], nevertheless,
this includes human interaction on the correlation over information discov-
ered, and the actual attacks; on the other hand, the work proposed by Semant
Neha [7], includes some attack , but the relation and actual execution is al-
ways performed by an operator, as in the case of Bailing [8]; the persistence
would only be achieved by a person testing the security of a given system
continuously. The work by Semant Neha[7] includes attacks for Denial of
Service; mainly aimed to made a service unavailable, from different methods,
from this work we can recall the collection of available attacks, nevertheless,
whether the attacks can actually take place at a certain system or which to
be used, is determined entirely by the operator, in such understanding, the
proposal includes the persistence as automation by the instrument achieved
by the knowledge storage, flexible and prone to be scalable in a generic man-
ner and the correlation with the proposed search method to determine at
first the suitable vulnerability, and the exploitability of it at a given tar-
get. As previously observed, the work proposed by Xue Qiu [18], recalls a
pushdown automata to overcome with automation, nevertheless, the effort
to cover more widely the variety of attacks lacks of multi step ones, as well
as from parameter selection done explicitly, as it is not shown on their work.
The main contribution achieved by the current work’s design lies in the fact
that the automation actually goes in away to determine the evaluation of

6.4. COMPARISON TO RELATED WORK 69

the security on a system in a constant way executed by the persistence of
the actual instrument and the parameter selection provided by the search
method by evolution approach, and the ease of scalability understood by the
knowledge representation and attack graph curating from diverse sources.

The current proposal compares to the related work by the results on
persistence understood as the time it covers by the actual evaluation, it is
also possible to compare the different techniques used for recognition and
knowledge representation, which this proposal addresses to overcome the
persistence in time, the comparison can be seen at table 6.5 for each of the
major related work.

Table 6.5: Comparison with current related work
Title Knowledge DB Elaborated

Attacks Recognition Parameter
Control

Time
coverage

Design and Implementation of a
Network Attack Platform

Based on Plug-in Technology[8]
Plugin Yes previously performed Operated manually Snapshot

Automated
Penetration Testing[7] Hardcoded No previously performed Operated manually Snapshot

An Automated method
of penetration testing[18] Hardcoded Yes Automated None Snapshot

Current work’s proposal Knowledge
Graph Yes Automated

persistent
Evolutive
approach Constant

In this chapter the details on tests scenarios, results obtained and analysis
on it were addressed to determine suitable tests to overcome the design and
development considerations to achieve a persistent intrusive evaluation, it was
determined that such design and the corresponding developed instrument as
a case of study, could carry on over major scenarios contemplated giving
that such scenarios would represent real changes presented at system, that
are relevant to be evaluated at the security, over changing conditions.

In the next chapter, the conclusions, contributions and future work are
presented given the results obtained.

70 CHAPTER 6. TESTS AND RESULTS

Conclusions and Future Work

The current work presents a novel approach to achieve security penetration
testing in an automated fashion, to provide real factual feedback on a sys-
tem’s security related to its vulnerabilities at a given time continuously; it
lacks some aspects of the actual pentesting process such as detailed report-
ing, nevertheless, it is a basic approach to be worked on by adding further
recognizance and exploit assurance to cover more specialized cases and deal
with more complicated scenarios and security controls, this aims to be a tool
to help, on first instance, at the specialized security tester, by performing
simple, yet compound test over certain system, leaving the further analysis
to the expert; additionally it would support the system administrator unex-
perienced at security issues, which as the knowledge representation allows it,
can intuitively check where are the security flaws at the system under his or
hers administration are placed. One of the main limits at this work is the
feasibility to avoid security controls, it was added some very basic approaches
to achieve this, nevertheless, as security controls can be implemented in sev-
eral ways, it may not successfully avoid some of them, for this, additional
work must be placed on security controls and ways to avoid them, and to
add such knowledge to the database for this further work is needed.

Contributions

During the present work it was presented a novel design based on related ap-
proaches for pentest automation, with such base, it was added a new way to
store the knowledge as recalled from related work, it aims to be scalable and
flexible to allow easier scalability and a wider approach on the attacker knowl-
edge, as well as a search method to automate the actual testing alongside the
parameter selection for each attack attempt; it was possible to represent and
store attack patterns as well as determine whether or not it succeed by the

71

72 CHAPTER 6. TESTS AND RESULTS

search method and to vary the parameters over time to overcome changes
at the target system. It was determined a way to engage information at a
certain knowledge representation, and the search method, proposed as a evo-
lution strategy, to comply the persistence on pentesting security evaluation,
this implies, that the instrument can act as an external attacker, without
known of the target specifications, and that this behavior on the attacker
boundaries can be determined by the systems owners and administrators in
a continuous manner, availing the capability to determine more promptly a
new threat or whether or not the actions taken towards security were enough
to stop attacks, from attackers’ point of view.

Future Work
On the other hand, the designed instrument lacks of automation on the
knowledge feed, as it must be curated manually, this is an opportunity area
to develop an automated stage on this feed, to provide a stronger instrument,
capable of giving aid to security assessment with less effort and trustworthy
information about the security of a system at a given time continuously as
a persistent attacker could do it. In addition, the enumeration stage, in
which testing mainly relies, is implemented at a very basic level, it would
be needed some extra effort to overcome further analysis on information
gathered and its authenticity, as it may be the first line of defense to provide
fake information as a security control, further, information gathered may
be compared to determine, more precisely, software versions and services
provided by the target system , such work can be placed separately, as the
design allows modular work on each stage.

Bibliography

[1] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review
of relational machine learning for knowledge graphs,” arXiv preprint
arXiv:1503.00759, 2015.

[2] J. D. Howard and T. A. Longstaff, “A common language for computer
security incidents,” Sandia National Laboratories, 1998.

[3] C. T. Wai, “Conducting a penetration test on an organization,” SANS
Institute. Retrieved January, vol. 11, p. 2004, 2002.

[4] S. Northcutt, J. Shenk, D. Shackleford, T. Rosenberg, R. Siles, and
S. Mancini, “Penetration testing: Assessing your overall security before
attackers do,” Sponsored by Core Impact, SANS Analyst Program, vol. 3,
no. 6, p. 22, 2006.

[5] H. Tipton and M. Krause Nozaki, Information Secu-
rity Management Handbook, Sixth Edition, Volume 6. CRC
Press, 2012. [Online]. Available: http://www.amazon.com/
Information-Security-Management-Handbook-Edition/dp/1439893136

[6] G. Tian-yang, S. Yin-sheng, and F. You-yuan, “Research on software se-
curity testing,” World Academy of science, engineering and Technology,
vol. 70, pp. 647–651, 2010.

[7] N. Samant, “Automated penetration testing,” Ph.D. dissertation, San
Jose State University, 2011.

[8] L. Gen, W. Bailing, L. Yang, B. Xuefeng, and Y. Xinling, “Design and
Implementation of a Network Attack Platform Based on Plug-in Tech-
nology,” network, vol. 7, no. 3, pp. 195–204, 2013.

73

http://www.amazon.com/Information-Security-Management-Handbook-Edition/dp/1439893136
http://www.amazon.com/Information-Security-Management-Handbook-Edition/dp/1439893136

74 BIBLIOGRAPHY

[9] J. Fonseca, M. Vieira, and H. Madeira, “Vulnerability & attack injection
for web applications,” in Proceedings of the International Conference on
Dependable Systems and Networks, 2009, pp. 93–102.

[10] ——, “Evaluation of Web Security Mechanisms Using Vulnerability &
Attack Injection,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 11, no. 5, pp. 440–453, 2014.

[11] A. Morais, E. Martins, A. Cavalli, and W. Jimenez, “Security protocol
testing using attack trees,” Proceedings - 12th IEEE International Con-
ference on Computational Science and Engineering, CSE 2009, vol. 2,
pp. 690–697, 2009.

[12] A. Morais, I. Hwang, A. Cavalli, and E. Martins, “Generating
attack scenarios for the system security validation,” Networking
Science, vol. 2, no. 3-4, pp. 69–80, 2012. [Online]. Available:
http://link.springer.com/10.1007/s13119-012-0012-0

[13] S. Member and N. Neves, “Vulnerability Discovery with Attack Injec-
tion,” IEEE Transactions on Software Engineering, vol. 36, no. 3, pp.
357–370, 2010.

[14] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Au-
tomated black-box web application vulnerability testing,” Proceedings -
IEEE Symposium on Security and Privacy, pp. 332–345, 2010.

[15] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
a state-aware black-box web vulnerability scanner,” in Presented as part
of the 21st USENIX Security Symposium (USENIX Security 12), 2012,
pp. 523–538.

[16] A. Avancini and M. Ceccato, “Towards security testing with taint anal-
ysis and genetic algorithms,” in Proceedings of the 2010 ICSE Workshop
on Software Engineering for Secure Systems. ACM, 2010, pp. 65–71.

[17] R. Davis, H. Shrobe, and P. Szolovits, “What is a knowledge represen-
tation?” AI magazine, vol. 14, no. 1, p. 17, 1993.

[18] X. Qiu, S. Wang, Q. Jia, C. Xia, and Q. Xia, “An automated method of
penetration testing,” in Computing, Communications and IT Applica-
tions Conference (ComComAp), 2014 IEEE. IEEE, 2014, pp. 211–216.

http://link.springer.com/10.1007/s13119-012-0012-0

BIBLIOGRAPHY 75

[19] G. F. Lyon, Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure, 2009.

[20] L. Gen, W. Bailing, L. Yang, B. Xuefeng, and Y. Xinling, “Design and
implementation of a network attack platform based on plug-in technol-
ogy,” network, vol. 7, no. 3, 2013.

[21] N. Hansen, D. V. Arnold, and A. Auger, “Evolution strategies,” in
Springer Handbook of Computational Intelligence. Springer, 2015, pp.
871–898.

[22] L. T. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and
D. Wolber, “A network security monitor,” in Research in Security and
Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium
on. IEEE, 1990, pp. 296–304.

[23] F. V. Yarochkin, O. Arkin, M. Kydyraliev, S.-Y. Dai, Y. Huang, and
S.-Y. Kuo, “Xprobe2++: Low volume remote network information gath-
ering tool,” in Dependable Systems & Networks, 2009. DSN’09. IEEE/I-
FIP International Conference on. IEEE, 2009, pp. 205–210.

[24] Y. Vanaubel, J.-J. Pansiot, P. Mérindol, and B. Donnet, “Network fin-
gerprinting: Ttl-based router signatures,” in Proceedings of the 2013
conference on Internet measurement conference. ACM, 2013, pp. 369–
376.

[25] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review of rela-
tional machine learning for knowledge graphs,” Proceedings of the IEEE,
vol. 104, no. 1, pp. 11–33, 2016.

[26] P. R. Srivastava and T.-h. Kim, “Application of genetic algorithm in
software testing,” International Journal of software Engineering and its
Applications, vol. 3, no. 4, pp. 87–96, 2009.

[27] Rapid7. (2016, July) Metasploit framework. [Online]. Available:
https://www.metasploit.com/

[28] NIST. (2016, September) Cve data feed. [Last accessed 30 September
2016]. [Online]. Available: https://nvd.nist.gov/download.cfm#CVE_
FEED

https://www.metasploit.com/
https://nvd.nist.gov/download.cfm#CVE_FEED
https://nvd.nist.gov/download.cfm#CVE_FEED

76 BIBLIOGRAPHY

[29] M. Mateski, C. M. Trevino, C. K. Veitch, J. Michalski, J. M. Harris,
S. Maruoka, and J. Frye, “Cyber threat metrics,” Sandia National Lab-
oratories, 2012.

[30] Ar0xA. (2015, December) Fristileaks capture the flag. [Online].
Available: https://www.vulnhub.com/entry/fristileaks-13,133/

[31] R. User. (2012, sep) Vulnix. [Online]. Available: https://www.
rebootuser.com/?p=933

[32] Rapid7. (2012, may) Metasploitable 2. [Online]. Available: https:
//community.rapid7.com/docs/DOC-1875

https://www.vulnhub.com/entry/fristileaks-13,133/
https://www.rebootuser.com/?p=933
https://www.rebootuser.com/?p=933
https://community.rapid7.com/docs/DOC-1875
https://community.rapid7.com/docs/DOC-1875

	Resumen
	Abstract
	Summary
	Thanks
	List of Figures
	List of Tables
	Security Evaluation Generalities
	Problem statement
	Objective
	General objective
	Specific objectives

	Project justification
	Boundaries

	Text organization

	Related Work on Security Evaluation
	Classification of security testing models
	Fault Injection security testing approach
	Vulnerability Detection approach
	Vulnerability Scanners comparison
	Fuzzy Testing
	A wider approach to security evaluation
	Proposed model for persistent evaluation

	Theoretical Framework
	Penetration Testing
	Planning and preparation
	Information gathering and analysis
	Vulnerability Detection
	Penetration Attempt
	Analysis and reporting
	Clean up
	Limitations of Penetration testing

	Knowledge Representation
	Knowledge base construction

	Evolution strategy
	Evolutionary strategies principles
	Mutation and parameter control

	Analysis and Design
	Analysis on related work
	Proposal Design
	Enumeration
	Knowledge representation
	Search method
	Design Integration

	Case of Study
	Code Development
	Knowledge Database
	Enumeration
	Evolution strategy

	Tests and Results
	Test Scenario
	Expected Results
	Target selection
	Results scoring

	Testing experiments
	Testing case one
	Testing case two
	Testing case three
	Testing case four

	Result Analysis
	Comparison to related work

	Conclusions and Future Work
	Bibliography

