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Resumen

El constante avance de la tecnologia y los nuevos requertiosieen el desempefio y
produccion de los sistemas digitales han requerido queosuesquemas de verificacion y
prueba sean propuestos. Como hace unas décadas Gordon . pedijo que el niumero
de componentes transistores en un circuito integrado scdtip cada dos afios asi como la
tendencia del desarrollo de nuevos dispositivos cada vepeatpiefios y con mayor complejidad
en su funcionamiento han producido que hoy en dia, tengamassiro alcance dispositivos
como: smart-phones, smart-watches, tabletas, dronequtadoras, etc. que contienen chips
con millones de dispositivos semiconductores procesamdn gantidad de informacién y
realizando diferentes funciones en pequefios intervaltisiigo.

La verificacion funcional representa una parte importanteleproceso de disefio de los
sistemas digitales debido a que los errores en hardwarka®suas costosos y es necesario
remplazar los dispositivos fisicamente. En el presentmjoade investigacion se propone un
nuevo método de generacion de altos porcentajes de cameftuncionales para la verificacion
de sistemas digitales. El método propuesto esta basadoamiidacion de meta-heuristicas
(Particle Swarm Optimizacion, Differential evolution atghm), el uso de modelos de cobertura
funcional y la simulacion de los dispositivos bajo verificac Dicho método representa un
método hibrido y a la ves una alternativa para complemeasagknicas actuales utilizadas para
realizar la verificacion funcional.

A diferencia de los trabajos previos donde se han utilizdgor@amos genéticos, en esta
investigacion otras meta-heuristicas como: Particle 8v@ptimizacion algorithm, Differential
Evolution algorithm son utilizadas para la generacion detores de prueba que maximicen
los valores de cobertura funcional. Estas meta-heursstiea sido utilizadas en diferentes
problemas de optimizacion obteniendo resultados commetitTambién, en esta investigacion
se propone una nueva version del algoritmo de evolucidrratitgal compacto para la
representacion binaria. Dicho algoritmo esta basado emimtipio del algoritmo genético
compacto ya que utiliza los valores estadisticos paraseptar a la poblacion, por lo tanto,
requiere menos recursos de memoria para su implementao#los| algoritmos basados en la
poblacion.

Para realizar la prueba de la implementacion a nivel RTL hdo gisefiadas diferentes
herramientas de software. Debido a esto, una plataformaftiease ha sido disefiada para
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conectar las herramientas de simulacion con los moduloemyubje de alto nivel. Esta
plataforma esta basada en los esquemas actuales paraallegbo la verificacion por medio
de de la simulacion de los dispositivos. La plataforma emdiun conjunto de maédulos
gue permiten utilizar diferentes algoritmos, escenariespdieba, asi como conectar las

implementaciones de los dispositivos con el entorno debaisie
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Abstract

The constant advance of technology and new requirementhi@nperformance and
production of new digital systems have required new testng verification schemes. A few
decades ago Gordon E. Moore predicted that the number cfistars on the components of
an integrated circuit would double every two years. Moreptlee new development trends
in devices allow for even smaller circuits, that perform sneomplex operations, permitting
the existence of devices such as smart-phones, smartegaticblets, drones, computers, etc.
containing chips with millions of semiconductors, with aalte of information processing and
performing many different functions in short time periods.

Functional verification represents an important desigregss partly because the errors in
hardware are very expensive and necessitate the replatefe device. In this research a
new test generation method is proposed in order to obtaim faiges of coverage for functional
verification of digital systems. The proposed method is thase the application of meta-
heuristic algorithms (Particle Swarm Optimization, Diffatial evolution algorithm), using
functional coverage models and simulation devices unddicagion. This is a hybrid method
and represents an alternative complementing existingnigobs used for functional verification.

Unlike previous studies where genetic algorithms have hessal, this research provides
other meta-heuristics such as a Particle Swarm Optimizagigorithm, and a differential
evolution algorithm which are used to generate test vedioas maximize the functional
coverage values. These meta-heuristics have been usedfareni optimization problems
obtaining competitive results. Moreover, this researappses a new version of the compact
differential evolution algorithm for binary representati This algorithm is based on the
principle of a compact genetic algorithm that uses statitinformation in order to represent
the population; therefore, it requires less memory ressifar implementation than algorithms
based on population.

In order to perform the device implementation test in a RegiSransfer Level (RTL)
different software tools have been designed. Due to thisftavare platform is proposed to
connect the simulation tools with the modules in high leagiguage. This platform is based
on current schemes to conduct verification through simutadievices. The platform contains a
set of modules that may use different algorithms, and testatos, as well as implementations
connecting devices to the test environment.
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Chapter 1

Introduction

Current digital systems have a large amount of resourcerpeng millions of operations
per second. Circuits included in smart-phones, laptofidets etc. permit complex devices
to have greater functionality complexity. Due to this, thgitdl design has a compromise
with the market times and technological advances. Duriegdibital systems design process,
several steps are involved; one of the most important isgdegerification. The verification
represents the biggest part of the total devices manufagtaost. The approximate cost of this
phase is estimated at about 60% of the total digital systesigdecost. Unlike software, the
errors in hardware designs are very expensive, becauseréepsire redesigning and physically
replacing the failed device. Also, because of the increaghea functionality complexity and
number of transistors of digital systems lately, the imaice of creating efficient designs and
reducing their verification time has generated the needsatemore efficient design verification
techniques. It means, techniques that reduce the time anehise the test coverage percentage
and because of this, different methods have been develogeatform the verification processes
and new software tools have been produced. Furthermorge gwdtware platforms have been
used with different digital systems, and the results oleiinave shown that it is necessary to
develop more efficient methods that can cover all designscase

The task of checking all input vectors in the device is unfdasbecause the coverage
space increases as the device complexity also grows. Glgneéng main objective of the
informal verification techniques is to increase design spamverage and changes for finding
errors in the digital systems design. When the verificatibrao implemented device is
performed in a hardware description language (Verilogt&8y&, SystemVerilog, etc), the

3
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verification engineers need to use specialized softwarks {@omputer Aided Tools-CAD,
Questa, Modelsim, Cadence, etc).

Lately, the complexity of digital systems has resulted ia tieed for new techniques and
tools. Different Electronic Design Automation (EDA) Conmpas provide different software
tools in order to perform the steps involved in the functiomaification. Different conferences
like Digital Automation Conference (DAC), Design Autonatiand Test in Europe (DATE)
have been created in order to publish and share the recemm@el/ concerning digital design,
automation techniques among other topics. Researches ifrdnstry and academics have
published different works related to the verification topic

Directed Functional Verification has an important role toetrwith the conditions during
functional verification. It has been detected that the psgaddom test generation methods are
not effective to cover hard cases, therefore, it is necg¢egropose new test vector generation
methods which can make an efficient search and exercisenalidunality.

Three different philosophies have been proposed in ordepeidorm the Functional
Verification: Static methods (formal methods), Dynamic moets (Which are based on
simulation) and Hybrid methods (which do not fall in formaldanformal methods).

Every philosophy contains different strategies in ordetet the functionality of a digital
system. However, at present, none of these methodologueslieeen enough to over pass the
different problems because the complexity of the functibnaf digital systems is increasing.
New challenges have appeared, some of them are: compgtdfitnodules, synchronization of
clocks, among others.

When functional verification is performed, one or more cager models are used. These
coverage models are based on a type of coverage structuogenage metrics, i.e., finite state
machine (FSM), statement, branch path, expression coveedg. The coverage model is a
fundamental piece for the verification methods represgrairgolden model to describe the
device behavior. Different ways to close the loop betweeretid of simulation and the new test
generation have been proposed. Coverage Directed Testdieng CDG) has been proposed
as a possible solution to this problem. Different experitadrave shown that directed probes
are promising because a small number of them can reach treecam@rage goal with respect to
the constrained random probes.

In this research we propose a new method which uses redunadylbmeta-heuristics in
order to generate sets of test vector sequences. We foclre drylbrid methods (based on the
simulation and meta-heuristics) since these methods hiataéned good results even though

4
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there is an increase in digital systems complexity. Theegsaemployed is based on the use
of coverage models for the devices verification processghvare built with relevant conditions
or coverage points representing the Device Under VeribioaDUV) full behavior. The main
problem consists in covering all hard cases since the oalstips between the CoverPoints and
the input data at the design are not trivial. Different tojiwas works that used meta-heuristics,
the proposed method can reduce the number of evaluatiodstagidtain test sequences that
exercise the coverage points.

This chapter presents an introduction to the Functionaifigation topic, the problem to
solve, the objectives, the justification and the contritmsiof the present work.

1.1 Functional Verification of Digital Systems

Functional Verification can be described as the applicatibmformation theory where
a redundancy and error correction code are required in daldeep the integrity of the
information through the design cycle.

Different from the traditional applications of informaticheory where the message is
preserved as itis sent through the communication charnieintentionally refined and becomes
less abstract during every transformation through thegtgsiocess. The design process can be
described as: incremental clarification put into the comication channel in every stage of the
design [1].

In most cases the definition of the Testing and Functionaifigation is confused. The
testing can be defined as a set of tests applied to the DeviderMerification (DUV) in order
to determine if the behavior in each test meets the spedifitait is a sample process where
not all aspects of the device are exercised, which meana tioéél subset of all possible device
characteristics is used.

In other words, testing consists of a set of stimulus applethe device in order to test a
particular test case or analyze the response of the perfmerizased on the expected behavior.
Figurel.1shows the testing and the verification into the design psoéBigital Systems.

Functional Verification is a comparative process. It inelsih wide set of techniques in
order to find faults in the behavior of a device. Functionalifiation shows if the hardware
or software meets the original specification requiremehlso, the functional verification does
not show the fault itself. It merely shows the presence ofreore

With the implementation of pseudo-random verification abd 980, it was possible to

5
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HW design manufacture

S silicon
specification

verification testing

Figure 1.1. Testing vs Verification.

explore the design limits using an automated test in ordeextrcise a range of inherent
variability in the functionality of a Digital System. Theastdard verification consists of:

e A standard context to the analysis which is used for the pies of the pseudo-random

functional verification.

e Standard inherent variables in the design.

e Standard interpretation of the specification which is usedigfine the variables and

ranges, rules and guidelines.

Simulation is most frequently used in Functional Verifioatof Digital Systems because it
is not necessary to build a complex model, or use sophistidaichniques. Figurg.2 shows
the verification which is performed by means of simulatiod &srmal verification of a digital
system. The dynamic verification (based on simulation) ases/erage model which represents
a golden model because this contains all device functigndlhis model is compared with the
results obtained at the end of the simulation which are savétk regression suit (where suit
is a database). In every iteration a set of directed testsowuged by a test generator module
using the information from the regression suit.

An important aspect of the Functional Verification is thedtional coverage which can be
defined as the percentage of verification objectives that tabe met. This is used as a metric
for evaluating the progress of a verification project in ortereduce the number of simulation
cycles expected in verifying a design. The coverage shoelebtricted to only those values
that could indicate the design is fully verified. Also, thadtional coverage is used to verify the
correct operation of a device by means of the representafiarcoverage model that contains
one or more coverage points.

The coverage points are grouped in sets which are best knewtoawerage groups. A
coverage group is a set of attributes, grouped togetheniqrgses of deployment in a common

6
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Directed Random
test test .
generatiol

Testbench

module clockgen
initial

begin

clk = 0;

end

always

#5 clk = not(clk);
end module

Y U v U

Logic simulator [ Formal method I

YES/NO

Property

Is FSM encoding
1-hol for all
executions

Figure 1.2. Functional Verification based on simulation vs Formal Veaifion.

correlation time. Also, a coverage group may contain daffilelements for different functions
to verify the specification of a coverage model. These elé¢snaay include a clock event, a set
of points, and weights for points, among others.

A functional coverage point can be a scalar value, a comddroan expression in a digital
system. For example, the “output data” variable, sincedtvariable that can take a set of values
(0,1,2,..2"—1). These values are better knowrtass(There is a glossary at the end the thesis).
Examples of coverage points include: the level of occuparicy buffer, an instruction code,
address write/read in a memory, an input to a register, ggckangitude, etc. The objective of
a coverage point is to ensure that all interesting and retexaues are observed in the sampled
value or expression. Moreover, a coverage hole is a poirtiwias not been exercised or tested
during the functional process. After a device simulatias important to analyze the produced
information in order to review the exercised points and thlesithat remain.

The coverage means the measure of the integrity of a test ™. coverage definition

7
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represents the number of met goals by the test set which ds ¥dgo, the functional coverage
is defined as the number of defined goals which are met durengdhfication process.

During the verification process the verification engineess a set of metrics in order to
measure the validation process based on the simulation.hé\beginning, they use basic
metrics which require little effort, after that, they usemmsophisticated metrics. A coverage
metric can be defined as a parameter or attribute which is asedunit in order to measure
the verification process in one dimension. There are diftekends of metrics: code coverage,
jump coverage, trajectory coverage, sentences coveragén ¢he next subsection some aspects
about functional verification are described.

1.1.1 Elements of Functional Verification

When Functional Verification for digital systems is perfeahn different elements are
involved. These elements include: A functional specifarati a verification plan, the
implementation of the device, among others. A functionaicdcation is the common source
for the implementation and the verification of a device. Galhg it is implemented in two
different documents with different abstraction levels:

1) The first one describes the requirements of the archiettube implemented. It details

the functions to be met by the device.

2) The second one is the specification of the device impleatient It describes the

implementation of the device architect in a blocks level.

A verification plan is what will be verified and how to collebgtverification information. It
defines what should be verified and how it should be verifiedreldeer, it describes the scope
of the verification problem and is used as a functional spatitin for the test environment.

The device implementation is the design in a register teapste levelRTL, which is
modeled in some hardware description langudBd.. It is based on the specification according
to the constraints and the prevision produced by the desigmeer.

Different from software, where only the code sentences nedxt verified, the hardware
designs need to meet the specific times in order to performetipeired functionally. Due to
this, it is necessary to implement the design in a temporaletiog language.

Figurel.3shows the flowchart of a general methodology in order to perfine functional
device verification. The methodology of the functional aage starts by the revision of the
specifications of the digital system; after that, the impmantation is performed. In order

8
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to perform the Functional Verification, a coverage modelngppsed. Given the model, a
verification plan is necessary. After the simulation is parfed, the results are checked and
if a coverage percentage is reached, the process finishiee tedt sequence is modified and is

used once more.

v
Review the digital system specification

¥

Analize the implementation of the design
at the level RTL (VHDL, Verilog, Systemverilog)

v

Propose a functional coverage model

v

Define a verification plan based
on the design

Y

Perform the functional verification of the
digital system based on a software system

not

Analize the results and measure
the advance in the coverage reached

Modifying tests

yes

Figure 1.3. General methodology for the functional verification praces

1.2 Problem to Solve

An important area for faults coverage is the Directed Fameti Verification. Typically in
industry, the digital systems have a set of conditions whietuld be met. In many environments
of industrial designs, the verification engineers are ngtired to write the formal proprieties
in order to prove that the behavior of the system is true. Heweest sequences are required to
search for errors and exercise the design functionalitinduhe performed process in order to
meet all required conditions.

The Directed functional verification performs an importaote in order to meet the
conditions of the functional specification. Due to the ingistency of the pseudo-random
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test generation methods in order to cover the hard casesertbmeers do not know the
requirements of the Directed Functional Verification tlgbwsimulation, especially with strict
market requirements.

Different criteria in order to perform the functional tegisneration of a digital system are
needed because exhaustive search in a device of small sizeqaire an exorbitant number
of test vectors. An example is given in [1] and it is as follov@ven a device which has N
inputs and M flip-flops(2¥)™ vectors can be needed in order to perform the full functional
verification. A modest size of a device can have 10 inputs &@dflip-flops (around 3 registers
of 32 bits). This device could requif@!?)!* or 219 for the full verification. It means if we
perform the Functional Verification using 1000 test vecliyrsecond, this can require 339, 540,
588, 380, 062, 907, 492, 466, 172, 668, 391, 072, 376,037,725 208, 993, 588, 689, 808,
600, 264, 389, 893, 757, 743, 339, 953, 988, 988, 382, 771,041 525, 133, 303, 203, 524,
078, 771, 892, 395, 266, 266, 335, 942, 544, 299, 458, 056,845 567, 848, 460, 205, 301,
551, 551, 163, 124, 606, 262, 994, 092, 425, 972, 759, 467,1885 001, 336, 336, 717, 048,
865, 167, 147, 297, 613, 428, 902, 897, 465, 679, 093, 821, %A, 784, 398, 755, 534, 655,
038, 141, 450, 059, 156, 501 years for the exhaustive tes fdrctional requirements should
be exhaustively tested through formal methods.

In this research the problem to solve consists in findinghestry vector sequences which
maximize the functional coverage percentage in a digitstkesy of regular size. It can be defined
as follows:

Given a binary spaceX = {0, 1} and a set of vector§ = {f,,,, ...,1,,} in order to verify
a given digital system with a functional coverage B. The pteim consists in finding a set of
binary test sequences T’ which maximizes B.

Where:t; € X, X = {0,1}"

Due to the increasing complexity of digital systems, thepetbrmance of the functional
test generation based on the requirements (the functigealifgcation) to be met is needed.
Therefore, the problem to solve consists of proposing a agethich produces the Directed
Test Generation of test vector sequences in order to magithezobtained coverage and reduce
the time which is used to verify a digital system.

10
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1.3 Justification

Currently, the cost of designing and manufacturing proadsdigital systems is greatly
impacted by the step of verification and testing of such systeloday, it is estimated that the
cost of functional verification process involves betweefrGihd 70% of the total cost. Also,
to perform the functional verification of digital systemsais open topic, since due to the high
complexity of these systems, time and understanding oftimporary results of the progress of
verification are required. That is, why does it take more iefficways to perform the functional
verification process?, and also, how to obtain high valughetotal coverage percentage that
is verified.

1.4 General Objective

To propose a new test vector generation method in order tergenoptimal functional
coverages in the Functional Verification of Digital Systamsg hardware simulation and meta-
heuristic algorithms.

1.4.1 Specific Objectives

e 1.-To design and build a software platform in order to perfdne functional verification

of Digital Systems.

2.-To design a module in order to configure the differenttsgii@s of the test vectors
generation.

3.- To design a new binary compact meta-heuristic algorithrorder to maximize the

functional coverage.

4.- To compare meta-heuristic algorithms (GA, PSO, CompatDE) and analyze the
obtained results.

5.- To propose and solve the different optimization prolde@molved in the generation of
optimal coverages for the different digital systems to brfieel.

1.5 Research and developed method

The methodology which is used in this research is compos#tedbllowing steps:

11
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e To perform the study of the state of the art related.

e To review the specification of digital systems to be tested.

e To analyze the implementation of the design at RTL level (MKDverilog,
SystemVerilog).

e To generate a verification plan based on the device to balteste

e To propose functional coverage models based on the furattspecification.

e To propose a heuristic criteria in order to perform the deddunctional verification.

e To make the Directed Functional Verification of the digitgst®ems based on a software
tool.

e To analyze the obtained results and measure the advancefofittional coverage which
is reached.

e To propose modifications of the verification process basetth@mbtained advances and
the digital system which is tested.

1.6 Scope of work

This research develops an automatic verification methodrdteroto perform Directed
Functional Verification of digital systems of medium size¢ore bus UART and FIFO memory)
that obtain high coverage percentages based on the exefosest of coverage points from the
functional coverage models.

1.7 Contributions

An improved methodologyin order to verify the functionality of digital systems bdse
on a hybrid method (meta-heuristic and dynamic methods}wutperforms the original
designs based on the verification.

A hybrid method which performs the Directed Test Vector Generation basetheta-
heuristic algorithms, coverage models and cost functions.

The application for first time of compact meta-heuristics to the Directed dtiomal
Verification.

A new schemain order to generate optimal functional coverage in digitetems.

12
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1.8 Organization

e Chapter 1. The fundamentals of this research are described. Thesdrdreduction,
Problem statement, justification, the main objective anéceig objectives, the
methodology, the scopes and the contributions.

e Chapter 2: Different techniques and methodologies which have beed userder to
perform the functional verification of digital systems areeq.

e Chapter 3: The main definitions about the functional verification area jpresented.
Moreover, a background is mentioned. Among these defirstaoa: functional coverage,
coverage metric, coverage models, etc.

e Chapter 4: The meta-heuristics background on the binary space isiglgkb.

e Chapter 5: The architecture of the proposed system and the proposedothetre
described.

e Chapter 6: The experiments and obtained results based on the propos#uthanare
shown and analyzed.

e Conclusions and future work are presented according to titaired results and the
development shown in the last chapters.

1.9 Resume

In this chapter the problem to solve, the objectives, thefjcgtion and the main problems
involved in the scope of this research are presented. Onttiex band, a new method of
test vector generation based on the union of dynamic teaksigbased on simulations of
digital systems by means of software tools), and meta-beitiechniques (Compact binary
Differential Evolution algorithm, Particle Swarm Optimatzon algorithm) is proposed. This
method performs the Directed Verification of digital systefMhe method uses coverage models
which represent the behavior of a digital system by meansset af coverage points. In order
to verify the correct operation of the Device Under Verificat(DUV) it is necessary to take
into account that one of the main characteristics is the teaifogic because the variables need
to be sampled in the correct times. Furthermore, it is necgde restrict the range of the input
values and the amount of tests based on the specificatioarttvice characteristics.

13






CHAPTER I

State of the Art

15






Chapter 2

State of the Art

2.1 Introduction

Due to the increase in the complexity of digital systems icerg years, the importance
of developing efficient designs and reducing their verifaratime has generated the need to
create more efficient design verification techniques, whecluce the time and increase the test
coverage percentage. Because of this, different methods lbeen developed to perform the
verification process. Moreover, new software tools havenlpgeduced [2—4]. However, these
software platforms were tested with different digital €yss, and the obtained results showed
that it is necessary to develop more efficient methods thatetaus have more confidence and
cover the most difficult design cases.

Functional verification has been performed by means ofreiffestrategies. Nowadays, there
are three different philosophies to perform the functiomalfication: formal or static methods,
dynamic or informal methods and hybrid methods.

Formal, or static methods, use a set of mathematical orabgipressions to represent the
device behavior which are based on the sets of formal testenvithese types of methods are
applied, a formal software platform is used for verificatiothese methods include theorem
proving, equivalence, and model checking. The advantageese methods is that all logical
functions can be proved based on a formal preposition séj.[5,

Dynamic methods are based on a run-time hardware simulasimg a software platform.
Generally, the main objective of these techniques is tegse the coverage of the design space
and the logical changes to find mistakes in the design duhiagsimulation. These types of
methods are commonly used in industry because they havenshoad results in spite of the
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increase in the complexity of functionality of digital sgsts. Furthermore, these methods can
test the full functionality, but it is difficult to ensure thitae design does not contain errors.

The third category is composed of the hybrid methods whieldafined as techniques that
do not fall under formal and informal methods because thesbads combine both techniques.
The main objective of a hybrid method is to address the vatiba bottleneck by enhancing
coverage of the traversed state space combining two or reohaigues, but that combination
to obtain better results is not trivial.

Another important aspect of the functional verificationhs theasurement of the progress
when the device is being verified. Different coverage metaie studied during the process in
order to measure how well the device functions are. Somes\sitkdying the coverage metrics
have been proposed [7-10]. Multiple metrics are used bedhesepresentation of the coverage
models is different from the strategy used.

Due to the fact that the relationships between the inputstancelevant events or conditions
are not trivial when the verification is performed, there aeey difficult cases to test during
the verification of a digital system. Using all possible yngest input sequences is not a good
strategy, especially when the device complexity is indrepdecause the simulation time is too
long. If a good strategy is not used, then a lot of time is wabBxause the same points are tested
repeatedly. Therefore, the importance of finding good testisnces to prove all characteristics
of device behavior represents one of the biggest challetmyése functional verification. In
the next section the introduction about Test Generatiorktorctional Verification focused on
coverage is described.

2.2 Coverage Directed Test Generation for Functional
Verification

In order to automate the verification process, a variety gfsta close the loop between the
end of simulation and new generation of tests have been peajppd@he Coverage Directed Test
Generation (CDG) has been proposed as a possible way to atgtttme verification process. We
can define the CDG as a heuristic which searches a finite sefjakgaces to probe the device
behavior using the information obtained at the end of theukitron. Different experiments
show that the directed probes are promising because a snmatier of them can reach the same
coverage goal with respect to the constrained random proHesvever, when the Coverage
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Directed Test Generation is applied, sets of holes are @etext the end of the simulation and
one or more conditions need to be tested in a new iteratioms Mians that one of the main
problems consists in exercising all functional coveragenévin the device, which is difficult to
solve due to the increase of functional complexity in citgui

Figure 2.1 shows a general schema of Coverage Directed Test Genefatidunctional
verification. In this schema, a set of stimulus scenariosnaitten in order to test the device.
Also, a verification environment is configured. This envir@nt connects the automatic
stimulus generation module with the device and the phykgal which is the interface between
the device and the generation of stimulus. Finally, whenvir&ication finishes, a coverage
report is created with the information about which part @& behavior was exercised. New test
cases are written based on the coverage information, theeps is repeated until a stop criteria
IS met.

Verification environment

! Automatic stimulus generation :

Physical layer

&) o) B

Stimul : Device Under :
Imulus : Verification : Coverage
scenarios : : reports

.....................................................

Figure 2.1. Coverage Directed Test Generation schema.

In the next section functional verification works based ortasesuristic algorithms are
presented. In the state-of-the-art that will be preserdtst different works were based on the
use of genetic algorithms and other meta-heuristic algmstin order to perform the coverage
directed test generation schema. However, there are @iff@gorithms that could be used in
this area.
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2.3 Meta-heuristics algorithms

Searching for sets of test sequences which adequatelyigxéne functional properties of a
system under verification is non-trivial. Deterministig@alithms are exponential in complexity
based on circuit size. Meta-heuristic algorithms have hessd extensively to manage the
growth in complexity in circuit tests. These types of altfumns can be defined as techniques
which control one or more heuristics by using mechanismis et of parameters. Moreover,
these may produce good solutions for problems which canmgblved in polynomial time in
other methods.

In 1975, John Holland published a bookdaptation in Natural and Artificial Systems
which showed that a evolutionary process (genetic algoittan be applied to solving different
optimization problems. The genetic algorithms use a pdjuiaof individuals (each one
represents a possible solution to a given problem) eachsiscaded to a fitness value. The
algorithm transforms the population using the Darwiniangple in each iteration until a good
solution is found. The evolutive algorithms have been usdtie verification methods to reach
higher coverage percentage values.

Some works were published with meta-heuristic methodsegpd functional verification,
especially using genetic algorithms [11-15]. The gendgorithm (GA) is a meta-heuristic
which has been used to solve different optimization prokléma useful way. These kind of
algorithms algorithm manages a population of individuatsng the analogy of the Darwinian
theory, where each individual is associated with a fithessevihat represents how good is
the population to solve a specific problem. After a numberahtng epochs, the best found
solution is an individual which has the best fithess valu0@l1, Mrinal Bose, et al. [13] used a
genetic algorithm to perform the verification of a PowerP€Ehdecture. The genetic algorithm
biases custom instructions for a pseudo-random geneifidierencoding used for chromosome
in the genetic algorithm had a fixed length, which represkatsequence of instructions to carry
out the system testing. The population size used for theighgowas small, because the authors
concluded that the time cost in the system simulation irsgeaBetter results were found using
this technique than using only pseudo-random generati@nweMer, nowadays there are more
efficient meta-heuristic optimizer algorithms.

Other work was carried out in 2006, Amer Samarah, et al. [5¢dua genetic algorithm
to generate directed tests. Each cell was used to represtnb@osome; this means each one
represented a random uniform distribution weight over tinats. A set of cells represented
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one possible solution. This method was tested with somdatligystems using coverage
points as a coverage metric, and good results were obtasied this methodology. However,
the used representation was very complex and the differenfiguration values were not
automatically generated. Therefore, an extensive knayeed evolutionary framework by the
user is necessary.

Also, in 2008, Haihua Shen, et al. [15] published a paperguaigenetic algorithm which
was included in a software platform to improve directed fioral coverage in a digital system.
The chromosome coding form was made based on the instrisgiamsed in the Device Under
Verification (DUV). They used a general processor based omanoved Godsonl as DUV.
The experiments found better results than the pseudo-nanveotor generation method. It was
concluded that the method helped to achieve non coveres émskincreased the hit rate in hard
cover cases.

On the other hand, some methods using the Ant Colony Opttiaiz@ACO) technique have
been proposed [16,17]. The Ant Colony Optimization techaitp a meta-heuristic which is
based on the swarm intelligence. The algorithm imitatesb#teavior of the ants finding best
paths from the initial state of the food source. The antscefar food by means of the feedback
of the pheromone placed by themselves and other ants whew#ike through the paths. Also,
in 2009, Min Li and Michael S. Hsiao [16] proposed a verifioatimethod based on the ACO
algorithm. The proposed method used the patches as a cevetgc, and they combined the
random generation vectors with a software tool that geasrtite different states of the digital
system. They found that the method could reduce the compu#hicomplexity in comparison
with the random generation and two heuristics based on thal@arithms.

Little work has been carried out on techniques for hardwamdfigation based on meta-
heuristics. However, now, there are more efficient optimipeta-heuristic techniques (i.e.
Particle Swarm Optimization algorithm (PSO), Differeh&aolution algorithm (DE)) [18].

The Differential Evolution algorithm which was proposed Bginer Storn and Kenneth
Price [19]. This is an evolutive algorithm based on the d#fece between two individuals and
a crossover mechanism to generate new possible solutiams.a@vantage of the algorithm is
that only better solutions are used to create a new popualafioe algorithm has obtained good
results in many optimization problems [20]. Moreover, id]#ve propose the use of a binary
Differential Evolution algorithm to perform the test seques generation for the functional
verification of a digital system. The main contribution whe application of a binary version
describing the behavior through different iteration nursbe
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This research differs in that the proposed test generatethad performs an efficient binary
search by mean of a new compact binary meta-heuristic #hgoiCompact-BinDE) using the
principle of Differential Evolution and the compact metadhistic algorithms. Also, a Particle
Swarm Optimization (PSO) algorithm is used. The proposetegly uses a hybrid heuristic
dynamic verification method to obtain sets of vectors thatimee the functional coverage
percentage during the verification of digital systems. Tle¢hrmd uses coverage models with sets
of points as a functional coverage metric in the binary domhi the case of Compact-BinDE
algorithm, one advantage is that the algorithm performsdaagon of memory requirements,
saving only some values of the possible solutions.

Table 2.1 shows some carried out works using meta-heuristic algostm order to verify
digital systems. In most of works genetic algorithms weredusnd the obtained results showed
that the performance was better than pseudo-random testagim.

Table 2.1.Works using meta-heuristic algorithms to perform funcéioverification

Year | Author Title Device Coverage

2001| Mrinal Bose A Genetic Approach to Automatjdoad-store reservation95 %
Bias Generation for Biased Randgrstation buffer
Instruction Generation

2002| Xiaoming Yu A Genetic Testing Framework forPath (code) coverage |67.8 %
Digital Integrated Circuits

2003| Shai Fine Coverage Directed Test Generation foprocessor Power PC | 94 %
Functional Verification using Bayesian
Networks

2006 Amer Samarah Automated Coverage Directed Tesspecman e Simple CPULOO %
Generation Using a Cell-Based Genetiand Router models
Algorithm

2008| Haihua Shen Coverage Directed Test GenerationGodsonl processor 92 %
Godson Experience

2013| Kelson Gent and Michael S. Hsiad-unctional Test Generation at the RTLTC99 benchmark 90-100 %

Using Swarm Intelligence and Bound
Model Checking

ed

2.4 Bayesian Networks and Markov Model approaches

The Bayesian networks are probabilistic graphical modelthis case, each node represents
a random variable and each edge between nodes representsobiabilistic dependencies
among the random variables.

These networks can express the joint probabilistic distidn compactly between variables
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and can express the conditional independence. These certitenprinciples from graph
theory, computer science, and statistics. Moreover, the8lan Networks contain conditional
parameter and network structure.

We define the number of nodes as n, anaenty, are the set ofX,’s parents, then the
conditional probabilistic distribution of; could be defined ap(X;|parent(X;)). So the
probabilistic distribution of the Bayesian networks is deti as:

n n

p(X) = l_Ilp(XZ-|X1,X2, o Xil1) = 1_[1(p(Xi|pa7"ent(Xi)) (2.1)

The Bayesian networks have been applied into this topiclaad/orks published show good
results. However, manual configuration is necessary tmparthe functional verification.

In 2003, Shai Fine and Avi Ziv [22] published the Coverageebied Test Generation
for Functional Verification using Bayesian Networks. Theyperimented with a model of a
PowerPC processor and a Storage Control Element (SCE) dBMnztseries system. They
concluded that the method provides the ability to perfornctional verification with feedback
(CDG), as well as the ability to cover hard cases and imprbeecbverage rate of progress.
However, some manual configuration was necessary for pertfoe verification.

On the other hand, Markov models are also approaches thigtlsewsed to do the coverage
of digital systems, which were introduced by Andrey Andragke Markov. These models are
statistic methods which use probability measurementsdquantial models of the represented
data by vector sequences. In 2007, llya Wagner, ValeriaaBeotand Todd Austin [23] proposed
a simulation technique of closed loop for hardware veriitcat They presented a tool named
StressTest, which was based on random instructions genéraimeans of a Markov directed
model with activity monitors. They used two micro-architees for the developed experiments
and proved that StressTest found more bugs with less effiart generation techniques of
random probes.

Other work carried out is [24] where Jian Wang, Huawei Li,lepaoposed a method based
on Markov analysis and a finite state machine models. Alsontbdel abstraction is made in a
manual way. Due to this, the fidelity of the model depends ehiliman intervention. They used
some benchmark circuits using the proposed method. Acuptdithe results, they concluded
that the proposed method was more efficient than constraaretbm simulation in abstract
state space exploring. Also, they mentioned that guidedilsition has much better efficiency
in target states exercising than the traditional abstriagtadces guided simulation.
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2.5 Methods based on mutations

This technique was originally proposed in the softwareglesihere a software program is
syntactically modified. The mutation analysis techniqueststs of the systematic application
of faults to the original hardware description (e.j. VHDLefog description). The hypothesis
is based on the original hardware implementation becaubesiimplementation is correct then
one or more faults applied could be detected during the fomak verification process.

A mutation is considered killed when it is detected by thertien of a test sequence during
the verification process, after that, the test sequenceesisato the test suite and is considered
efficient. Sometimes, an applied fault does not producefardiit behavior in the device then,
this fault is considered equivalent mutation. These cased to be considered in the verification
plan, to avoid waste in the simulation process.

An example of fault insertion is shown in the next code whaext operator is changed by
theand operator.

Listing 2.1. Example of fault injection

/I Before fault injection

D <= (A and B) or C

/I After fault injection: or < and
D <= (A and B) and C

There are different works using mutation analysis to sebugs in designs, however, one
problem with this technique is that a lot of time is requiraliffaults are evaluated.

A mutation is a single fault injected into a design copy. Facletest case, the mutant is
executed after the simulation of the original design andh lsinulation results are compared.
When the simulation is performed if there is any differentcna design output, then this test is
capable of killing the mutant. A huge database of mutantgmyang different predefined fault
injections is obtained. The number of mutations becomesakierage metric. The analysis is
a form to measure the quality of test data and show the maractaaistics for their capability
of simulating potential design errors and the propagatibthe erroneous behavior to some
monitoring points.

In 2011, Jorge Tonfat, Gustavo Neuberger and Ricardo RBis proposed a methodology
based on the verification methodology manual (VMM). This meblogy was used for the
verification of logic modules in a Gigabit Ethernet SwitchheTverification environment was
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composed of some modules which may be reused, for the funadtrerification of other devices.
The results obtained showed high coverage percentageg alethce under verification. The
obtained values were greater than ninety percent.

Also, in 2011, Xiaoke Qin and Prabhat Mishra [29], propose€canique that exploits the
structural similarity within the same bound as well as bemeifferent bounds. They concluded
that their approach saved time to rediscover the same kdgelér each core, without the
overhead of forwarding too many conflicting clauses. Theg gzat their approach is smaller
(2-10 times) compared to existing methods. They used tlogrrdtion from the first core for
test the next cores in a multi-core architecture.

Different works have been published using techniques bas@dutations [26—30]. In 2012,
Tao Xie, Wolfgang Mueller and Florian Letombe [30] proposederification methodology
based on the generation of mutations in the device unddication (implementation). In this
case a mutation was defined as a modification or alteratidmeadésign code. These mutations
served as a metric to guide the coverage progress duringntiiéesion. For each test case, the
mutations were simulated after the original design and kexhlts are compared. The tests were
performed with a microprocessor soft MB-LITE. The resultdained with this methodology
reported that the tests were verified in the majority, withazarage value in the number of
iterations. One problem is that a lot of simulations can bedus evaluate the mutations and
there are redundant mutations that increase the simulttien

2.6 Methods based on data mining

Data mining has been applied to design some verificationoadsthr his area has shown good
results in different methods according to researches. ,Asme works on data mining have
been applied to design verification [31-34]. For exampleBla Vasudevan, David Sheridan,
et al. in their work [35] proposed a methodology based on a aahing algorithm, which uses
a decision tree based on a supervised learning algorithrfor@éheir assertions are entered,
these are passed through a formal verification engine to ditethe spurious candidates. They
presented GoldMine, which is a tool for automatically gatieg RTL assertions. The method
proposed was divided into two spaces; one static and the dyimamic techniques. The static
analysis techniques were used to direct the data miningepsocAnd the dynamic technique
was used to simulate the device and obtain the coverageéseSoime their contributions are as
follows:

25



2.6. Methods based on data mining ﬁ

e Their method reduced the validation phase by distillingdan stimuli and achieves

coverage of unexplored spaces earlier than typical in tegdeycle.

e Their GoldMine tool was applied in the OpenSparc T2 processo

e They introduced an algorithmic design methodology basedth@n combination of

statistical, dynamic methods with deterministic, statethods.

They used the input coverage space to evaluate the coverageassertion. They said that
an assertion covers an entry in such a truth table if the gadfithe features are met. The input
coverage space of an assertion refers to the percentagetioftéible entries covered by that
assertion. They did to mention that though methodologiesode the RTL statement coverage
of an assertion, none have been implemented practicallyt@using input coverage space to
evaluate the coverage of an assertion.

Another work is [31] where Samuel Hertz, David Sheridan anolfha Vasudevan presented
a method generating assertions automatically in hardwevecels. This method involves a
combination of data mining and analysis of the registerdi@mlevel (RTL) design. Their
methodology uses a combination of data mining and statitysisa The experiments were
development using OpenSparc T2 processor. Their methgg@a@omposed of:

e Static analysis
Data generator
A-MINER
Formal verification
e A-VAL Evaluation and Ranking

They introduced an algorithmic methodology design subji¢t into the assertion
generation process. The combination of statistical, dyoanethods was novel in the context
of assertion generation. Their method abridged the vatidgthase by distilling random stimuli
and achieved coverage of unexplored spaces earlier thavakypthe design cycle.

On the other hand, in the work [32], When Chen, Li-Chung Waetgal., proposed a
methodology of knowledge extraction from constraineddman simulation data. The extracted
knowledge then was reused for two purposes:

e For producing more tests similar to those important ones

e For producing new important tests that, for example, caivaet assertions not covered

before.

Their methodology begins by extracting a list of conditioinem the assertions for
monitoring. A novel test with respect to these conditionglentified in the simulation. The
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extracted knowledge means the rules describing the speojpérties of the novel tests.

This methodology was based on the representation of pragranmultiple snippets of
instruction sequences of equal length k where k is usertggpmput. Their work proposed
a learning methodology to extract knowledge from simulatioconstrained-random processor
verification. They used a dual-thread low-power 64-bit Pofechitecture-based processor
core.

2.7 Functional Test Generation based on extraction of State
Machines

According to [36] the metrics based on finite state machings coverage of states,
transitions or paths in a representation of finite state mash(FSM). Some control portions
are represent better by a FSM’s collections interactingvben them. In this case, we can
use metrics defined by multiple state machines. For exanim@enetric of pars of arcs needs to
exercise all possible pars of transitions for each FSM’srotler par. The FSM’s can be classify
in two categories:

e Hand-written is a FSM’s which captures the behavior of th&gteat a high level.

e Finite State Machines extracted in an automated way fromdisgn description.
Typically, after the set of state variables is chosen, trggeis mapped with this set
in order to obtain an abstract FSM.

The metrics in the first category are less independent fremntiplementation details. The
variables of state in the metrics for the second categorypearhosen in a manual way by mean
heuristics. Generally, the small processors have a big ruoflpaths, but due to the simulation
cost is small then it is tolerable.

When the amount of details in the finite state machines (F&Misgreased then the precision
of the coverage metric is increased, but it produces anaseref complexity in the interpretation
of the coverage data.

In the case of designs which have a big amount of concurraerita@ovhere few iterations
of a FSM’s can produce a more difficult search of bugs, thezesample concerning metrics.
A set of test which covers all transitions of all possibletestaof control, can maximize the
probability of finding errors in the design while minimizitige simulation time. It is necessary
to distinguish between the data and control to extract tidrobpart of a design.
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In [37] luseppe Di Guglielmo, Luigi Di Guglielmo, et al. proped a methodology of
functional coverage based on the generation of finite e)aeathte machines. The results
obtained are compared with other generation methods basgeretic algorithms and pseudo-
deterministic methods.

2.8 Methods based on Theorem Proving

Theorem proving is a technique which begins with a specifal gad then it split this goal
in two or more sub-goals. These sub-goals are split agaldibgiproof trees. The proof trees
can be solved by: lemmas, axioms, decision proceduresctoay-evaluation runs among other
techniques. The proof is complete when all conditions aréied.

The methods based on Theorem proving use a model of theldig#@m which is a set of
mathematical definitions in mathematical formal logic. phheperties of the system are mapped
like theorems. These theorems are generated based on #fgstahs. The classic version of
theorem proving methods is based on high logic variantsgif brder. Software tools as HOL,
PVS and ISABELLE/HOL have been developed in order to perfirenfunctional verification
based on Theorem proving.

Theorem proving uses a constructive logic. An advantagsistsof the variation of a probe
which produces an executable version of the algorithm thatdeen verified. A disadvantage is
the constructive probes are stronger than classic probes.

Another advantage of these type of techniques is the metiardiest complex systems while
it does not review directly each one, each state, while tgelis commonly more expressive.
A disadvantage is that it needs the intervention of humadscagativity in order to finish the
probes increasing the verification time.

There are different works [38—41] using theorem provingreo to perform the functional
verification of digital systems. For example in [38], Mark Pagaard, Robert B. Jones and
Carl-Johan H. Seger presented the verification of an insbriéength marker (the IM) against
an implementation-independent specification of |1A-32ringion lengths. That was performed
by mean a combination between model-checking and theorewmngrtechniques. The theorem
proving guided the decomposition in different tasks inte limits of model-checking. They
concluded their method founds new bugs in the design angitived the original specification.

On the other hand, in [40] John O’Leary and Roope Kaivola gmesd an approach for
verification based on symbolic simulation (Relational STH)e method used a descomposition
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in a logical level by means theorem proving. The method watkeddnto a software tool in
order to outperform the symbolic simulation. They use rplitrs as devices under verification
concluding the proposed method is a good alternative impgdormal verification.

Also, in [39] Roope Kaivola and Mark D. Aagaard proposed thenbination of model-
checking and theorem proving in order to verify a floatingapaivider unit of an Intel IA-
32 microprocessor. They used a software tool which suppodetchecking and theorem
proving techniques. They concluded the main advantagdseafdpproach are: the safety of a
mechanically verified proof combined with the freedom of pdete control in order to perform
the verification of a complex device.

2.9 Methods based on Model Checking

Model checking technique was introduced by Edmund M. ClarieeE. Allen Emerson [42].
The technique consists in verifying that the logical coiodié follow to be true through all
reached states from the Device Under Verification (DUV). lirapriety is kept then Model
checking produces an opposite-example, it means, an éxequath which produces a state
where the propriety is false. Model checking can be usedribniéa set of specified functions
is met using a temporal logic language with respect to sysmavior model.

Definition 1 Model checkingis an automated technique that given a finite state model of a
system and a formal propriety, this reviews in a systema#ig ilva propriety is met for that
model. This technique is based on temporal logic. Tempaogitlidea means an equation
which is not static true or false in the model as it is in thegwsitional and predicative logic.
Also, temporal logic models contain different states an@quation can be true in some cases
and false in other [43].

A lot of dynamic systems contain components of state whic@dngk through time. For
example, sequential circuits, which contain flip-flops aadhes. Also, in this technique, the
models are defined as M which are transition systems andiptigsrasy which are equations
in temporal logic.

Model Checking can be specified in two ways:

e Model Checking global problem. Given a model of a finite structure, M, and an

equationy, a set of states is determinate in M which satisfy
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e Model Checking local problem. Given a model of finite structure, M, an equatiah,

and a state “s” in M determines if “s” satisfies

Where: The outputs consist in a “YES” if ¥ ¢ and “NO” in the other case. In the second
case, also, a path in the system behavior is executed, whaclupes the fault. This automated
generation of paths is a main tool in the design and the detect faults of the system.

The objective of model checking is to perform the functiovadification of the sequential
proprieties of a dynamic system. A dynamic system has a caemmf state, which changes
through time. The typical systems, are sequential cirauiteh contains delay elements such
as flip-flops and latches [44].

Different works have been carried out based on Model checkechnique. The
investigators, Javanand Asok Kumar and Ahobba Shobba ¥aandn [45] proposed a statistic
method using Model Checking in order to perform the verifaaof a schema for the multi-core
processor management. They used this technique in ordentplement the results obtained
during the simulation of the device with statistical resubtained by means of that technique.
They considered a set of properties to be verified based oohracteristics of time-out and
the adaptive power gain. In the results the obtained peagestwere over 80 % and 90 % for
different modules.

On the other hand, the researchers Ali Alphan and Sharadkgl#6] proposed a method
based on the validation on run time of a device using ModektKing. They considered the use
of a hardware on-chip in order to detect bugs using hardwertesces. According to obtained
results using this hybrid method, they concluded that thehnique obtains sentences which
help to Model Checking in order to obtain good results on mmetverification.

Other works were based on the Model Checking method [47-33jese methods use
Boolean satisfiability procedures (SAT procedures) or cachpepresentations of Boolean
functions such as binary decision diagrams. The algoritdeisrmine the states that satisfy
a model formula by a graph-theoretic analysis of the spadgki structure). One problem of
these algorithms is caused when the size of the state grapls g@xponentially with the number
of parallel components in the digital system.
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2.10 Resume

In this chapter, we described the importance of the funetioerification by the industry.
Also, different methods have been proposed in order to parthe Directed Coverage test
generation (CDG). This technique has represented an iantdeichnique for the test of digital
systems in real applications.

Among the carried out works, there are some works where ttigchal techniques have been
used. The main used techniques in the functional verifinatre: Genetic algorithms, Bayesian
networks, Markov models, Data mining, Mutations, etc. Eviechnique has obtained good
results. Moreover, some proposed techniques have reaatefilihctional coverage percentages
using different devices. Although, one disadvantage isri@st of these methods require a lot
of computer resources. According the researches theseodsetiere better than the pseudo-
random test generation method.

There are some works using evolutive algorithms as Gendgjorithms and swarm
intelligence. According the authors the methods usingethrasta-heuristic algorithms have
produce better results than the generation based on psandom generation. Also, we can
mention that there have been proposed new meta-heuristiBaicle Swarm Optimization
algorithm, Differential Evolution algorithm among otheSue to this, we propose the use of
these meta-heuristics in order to find test vector sequenaasximize the functional coverage
obtained from the verification of the devices. In the nextpteg the main definitions about
functional verification will be presented, also, the forrdafinition of coverage model, directed
functional verification, coverage metrics, etc. will be ciésed.
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Chapter 3

Digital Design and Functional Verification
of Digital Systems

Different devices such as smart-phones, tablets, lap-sopart-watches, drones, etc. contain
chips with millions of transistors on small encapsulatesccaxding to the Law of Moore
every eighteen months the digital circuits contain twice tlumber of transistors, therefore,
the complexity of their design and functionality is incrieas The design of digital systems
needs to meet the necessary and requirements accordirgdortient technology advances.

Functional Verification is one of most relevant steps dutimg design of digital systems.
Different from the errors in the software, the errors of lveack are more expensive because the
hardware devices need to be physically replaced. Due todhstant increase of functionality
complexity in digital systems new verification methods hbeen proposed. Moreover, new
software tools and platforms are used in order to reducertteeused to perform the verification
of devices. Compatibility and scalability are new challesgroduced by the new capabilities
of the digital systems.

Different elements are used in the Functional Verificaticeaa Moreover, the behavior of
a Digital System needs to be modeled in order to measure vantibp is exercised during the
Functional Verification process. Different software toate employed in order to model the
functional verification process for a device. Also, the eegrs review if the correct behavior
is met based on a representation which allows them to an#éigzeesponses of the device in
different conditions.

Figure 3.1 represents a diagram which contains three fundamentalealksnm the design
process of digital systems, which are: the design intengpecification and implementation.
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The main objective of Functional Verification is to overlapse three elements because if this is
achieved, the specification will be contained into the degigention, and finally, the intention
will be contained in the implementation of the device [1].

Specification

Design
Intent

Implementation

Figure 3.1. Design Intention diagram.

In this chapter, different elements about functional veatiion will be explained. For
example, the main definitions as digital system, functiamlerage, functional verification,
coverage model, among others will be explained. Also, tisegte modeling and simulation of
digital systems are described in order to perform the foneti verification process.

3.1 Digital systems design

Currently the design of digital circuits represents an agduse it involves human intention.
Therefore, the representation of the functionality of @igsystems can be mapped in different
implementations according to human criteria. The first stefesign a digital system consists in
organizing the requirements and characteristics whicmeeeled to translate all characteristics
to a physical device. Different abstraction levels are us@dder to represent the digital circuit.
In all abstraction levels, the intention is to improve thsiga phase reducing the effort during
that process.

An important aspect is the definition of Boolean functionsichhconstitute the main
elements of digital systems. A Boolean function can be défasefollows:
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Definition 2 A Boolean function is a functiofi: {0,1}"™ — {0, 1} for some me N.

A digital circuit can be described as a graphical represemaf propositional formulas where
common sub-formulas may be re-used by allowing what we aill fan-out greater than one.
A digital circuit can be defined based on a set of Boolean fanstas follows:

Definition 3 A digital circuit can be described as a set of Boolean functions which receives
a set of input sequencds = {iy, 1, ...,i,} to produce a se) = {og,o0s,...,0,} Of output
sequences. Wheie is the j,;, input data sequence accepted by the device gnd the k),
output data sequence produced by this.

A sequential digital circuit can perform one or more openasievery clock cycle, even ifit keeps
in the same state as the previous cycle. Basically, therevaréypes of circuits: combinatorial
and sequential circuits. The first type consists in circwitbout clock signal. The information
is processed immediately when a test sequence in injectbd atput. The second type consists
of circuits with one or more clock signals. The informatienprocessed based on the clock
cycles. The sequential circuits can be split in synchroramubsasynchronous. In the fist case a
sequential synchronous design can be defined as follows:

Definition 4 A sequential synchronous hardware design can be repredeaten finite state
machineM = (1,0, S,t,§, \,n, m) where:

n = number of Boolean inputs.

m = number of Boolean outputs.

t = number of Boolean state variables.

| = input space oR” inputs.

0 = output space o2 outputs.

S = state space of states

0: S x I — S'is the next state of the system.

A S x I — O isthe output function.

Taking account the last definitions in general way a digifatem can be defined as follows:

Definition 5 A digital system is a set of devices for the generation, trassion, processing
or storage of digital signals. This is a combination of degdesigned to manipulate physical
quantities or information that are represented in digitairh; that is, they can only take discrete
values.
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Other main term into the functional verification refers te ttevice behavior. A definition is as
follow:

Definition 6 The device behavioris composed of a set of logic functiofis I'* — ©™ where:
I'™ is the Cartesian productig x i X ... X i,
O™ is the Cartesian produciy x o1 X ... X o,

On the other hand, a digital system can be modeled usingefiff@bstraction levels. There are
four abstraction levels in order to represent and model iadligjrcuit.

e Structural representation. Is the representation witkigiials which constitute the device.

It is not necessary to specify the functionality of all magkibecause the objective is to
present the different signals and blocks of the device.

e Functional representation. Consists of the functionalftthe device. It can be described

as the black box representation of the circuit with input antput signals.

e Physical representation. The physical characteristich a8 weight, size, temperature,

etc.

In order to perform the functional verification of a deviceist necessary to make
the implementation of a digital system in a hardware desonplanguage i.e. VHDL,
SystemVerilog, Verilog. A hardware model means the impletaigon of a digital system
specification.

Digital systems modeling involves a set of steps which allbesimplementation of a device.
These steps are:

e Establish specifications.

e Define inputs and outputs.

e Capture the design (HDL schematic).

e Syntax verification.

e Model syntax (translate to an equivalent of logic gates).

e Functional simulation.

e Mapping (Becomes the equivalent of the logic gates to devesources to be

programmed. Backpropagation).

e Place and Route (placement, routing, internal intercoinmec

e Simulation times.

e Configuration.

e Depuration.
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Figure 3.2 shows the main steps for the manufacture of a digital circhitst, the design
engineer reviews the requirements and provides a spemficdthen, the device is in high level
modeling, that is, at a black box level describing inputs antputs to perform the functions
required in the specification. The next step is to captureharsatic design using a design
tool and a Hardware Description Language (HDL). Once thdempntation of the device is
completed, verification engineers review the implemeatatind the functional specification.
This process is conducted in order to produce a verificatlan. pAfter a verification plan is
proposed, the verification problem is defined and a set of@is{coverage metrics, verification
environment, test sequences) is proposed for verificafifter the implementation of the device
is completed, the device is mapped, placed and routed. ,Aftercomponent is packaged
and tested physically. In the next section the main elemainfisnctional verification will be
described.

3.2 Main elements of Functional Verification

There are different elements involved in the functionalifieation process. First, the
verification engineers need to review the specifications @bicument contains the requirements
and constraints of the device. Also, a verification plan isigleed based on the characteristics
of the implementation and the specification. This plan imeslwhat and how will be verified
during the verification process. There are different agpettthe verification plan some of
them are: the coverage measurement, the response cheokirigeastimulus generation. The
coverage measurement defines the scope of the verificatabiepn. It means, the type of
coverage metric, the coverage goals and events to be covdredesponse checking describes
how the responses of the device will be compared with theispeécesponses. The stimulus
generation consists of the set of techniques to be used @ tvdjenerate the test sequences.

The assertions represent conditions that must be met. &ddtware verification,
where only the assertions are then verified, in hardwareggdsghese assertions need to be
accomplished in a specific time. Due to this, it is necesszaitmplement the design in a temporal
language.

Figure. 3.3 shows the flow diagram of a methodology for performing thecfiomal
verification process. This functional coverage methodplstarts by reviewing the digital
system specification after analyzing the design implentemtar device. Based on the above,
a functional coverage model is proposed. Given that modéds hecessary to propose a
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verification plan. From this plan the verification engineeesform the functional verification
of the digital design. Once the simulation stage is overréisalts are reviewed and if a desired
percentage was reached, the process finishes and if notetifieation tests are modified and

the simulation is performed once again.

Review the digital system specification

¥

Analize the implementation of the design
at the level RTL (VHDL, Verilog, Systemverilog)

v

Propose a functional coverage model

v

Define a verification plan based
on the design

Y

Perform the functional verification of the
digital system based on a software system

not

Analize the results and measure
the advance in the coverage reached

Modifying tests

yes

Figure 3.3. General methodology for the functional verification praces

3.2.1 Functional Coverage

Coverage is the measure of the integrity of set of test. Imiartant to differentiate the
functional coverage and manufacturing fault coverageching used to assess the number of
faults in the manufacture of integrated circuit.

A definition of coverage is the number of goals achieved byté¢iseset applied. Generally,
the coverage is expressed as the percentage of defined lgaadse concretized. For example,
the percentage of sentences exercised from the RTL hardlgacgiption.

Functional coverage is based on the specification and thee dfgoverage metrics to be
recorded. This is used in order to measure the relevant ereisit characteristics of the Device
Under Verification (DUV). For instance, to measure an addias32 bits could generate 4
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billions of values. However, there are values numericaifiecent but functionally equivalent.

Therefore, the representation of these values by meanag@@oints can be made based on the

functionality. This strategy can reduce the search sphee,educing the verification time.
Functional coverage can be defined in terms of the devicevimates follows:

Definition 7 Functional Coverage represents the region of the deviceaweh which is
exercised by the stimulus at the input. It means the perger&the verification goals which
have been met.

Functional coverage is responsible for defining the speatifin and implementation of
metrics to be remembered.

Another definition of coverage is defined as the percentageiification objectives that
have been met. It is used as a metric for evaluating the pge@ifea project verification in order
to reduce the number of simulation cycles expected in viegha design.

A purpose in identifying the functional coverage remain®e¢odone. During the analysis,
the tool that report the functional coverage can comparatimeber of containers that store at
least one sample against the total number of containerscdhtainer has at least one sample,
it is known as the functional coverage gap. Using HardwargcBgtion Languages (HDL) like
SystemVerilog different characteristics of the implenagioin can be monitored, some of them
are:

1.- Coverage variables and expressions , as well as crossagm/
2.- Bins automatic and defined by the user.

3.- Bins associated with sets of values or cross producsitians.
4.- Conditions filtering on multiple levels.

5.- Events and sequences to trigger automatic coverage.

6.- Activation and procedural query coverage.

7.- Optional directives to control and regulate the coverag

A goal of the functional coverage consists in identifyingatvheeds to be done. During the
analysis, the tool which produces the coverage report carpace the number of containers
which save almost one sample regarding the total numberrgaowrs. One container which
has not one sample is named as a coverage hole.

Figure 3.4 presents the main trends in functional verification techegy In this case,
functional coverage is one of more used parameters forifumadtverification.
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Trends in Verification Techniques
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Figure 3.4. Trends in Functional Verification Techniques.

3.2.2 Coverage Points

A coverage point is the representation of the values of akbgiin a coverage model. The
formal definition is as follows:

Definition 8 “Given a device implementatiomn based ong; characteristics and a functional
specificationp, a coverage point is the set of possible valtg$,, ..., b by every characteristic
Bi € 7"

A coverage point can be defined as the sign of a scalar valugpoession. It can be a
variable or integral expression. Each point includes afskinsassociated with sampled values
or the values of the transitions. The main goal of a coverag# s to ensure that all interesting
and relevant values are observed in sampled expressiomiasof coverage points are: packet
length, instruction code, interrupt level, bus transagticompletion status, buffer occupancy,
demand patterns bus. The coverage points can be groupedeénage groups. A coverage
group contains the set of coverage points and other eleragrdag which are:

e Clock event. Defines the event when coverage points are sampled. If tiok elent is

omitted, users must proceed.
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e Coverage points.Can be a variable or an expression in the implementation.

e Crossover coveragels a relation between two or more coverage points or varsable

e Coverage options.Are used in order to control the group behavior.

e Optional formal arguments. It means the arguments which are mapped when an instance
of coverage group is generated.

When a coverage point is in use, the goal consists in obgediiferent values of the above
mentioned point. Due to this, Hardware Verification Langeslike SystemVerilog can create
automatically fields known dsins For example, when the mechanism of automatic creation of
binsis used, SystemVerilog createlihsto store the sampled values of a coverage point. The
N value is determined as follows:

e For a coverage point, N is the cardinality of the numeration

e For some other point of integral coverage, N is the minimur?’é6fvalues and the value
of the optionauto_bin_max, where M is the number of bits required to represent the
coverage point.

If the number of automatibinsis less than the number of possible valués< 2, then2M
values are uniformly distributed in the N bits. If the numbéwvalues,2", is not divisible by
N, then the lasbin might include the rest of the (N-1) additional items. Fortamee if M is
3 and N is 3, then the eight possible values are distributddlmsvs: < 0: 1 >, < 2:3 >
,< 4,5,6,7 >. These properties of Hardware Verification Languages cgmtbenake more
efficient verification environments.

The coverage holes can be seen as correct tasks which havee@otchecked in the
simulation. It is necessary to analyze that the generattss lame valid tasks, since in the case
they are not valid tasks, it is necessary to adjust the o#istnis introduced inside the model to
eliminate that holes. When incorrect tasks are generaktare not been covered (false holes),
it reflects problems in the coverage model which is used.

After the device simulation is made the analysis of gendratdes is required. The coverage
information shows which tasks have been covered and wheehatrcovered even.

Some points have common tasks, therefore, it is possibledigpgthem in order to reduce
the number of holes and thus to direct the vectors generatioover the holes [54].
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3.2.3 Functional Coverage Metrics

Coverage metrics ensure optimal use of resources simujatieasurement validation, and
the direct simulation to design areas. Due to the need of kinow much functionality is
exercised coverage metrics are required in order to meaghih region has been covered.
A general definition of coverage metric is described as fedto

Definition 9 A coverage metric can be defined as a heuristic to measuredgh®p of the
device behavior that has been verified. The main objectithi®imeasure is to reflect which
parts of the functionality have been met with a correct edenuduring the processing of the
information by the device.

According to [36] coverage metrics help to improve the fio@l verification of digital
systems:

e Acting as heuristic measures that quantify the full vertfama

¢ Identifying aspects adequately trained in-leading deaighgeneration of input stimulus.

An appropriate metric for evaluating the functional cogeraf a set of tests can be a fraction
of the specified behavior of a digital system that is exettis€hat is, the fraction of errors
detected by that set. Finding all possible tasks has an expiah complexity and trying to
prove each one may require huge computing resources. Anoigteic can achieve fraction of
states or transitions that have been exercised.

Usually the designers use a set of metrics to measure thegso@f simulation based
on validation, starting with simple metrics that requirtldi effort and gradually use more
sophisticated and expensive metrics. A formal way for maghssticated simulations also
creates a difficulty. For instance; if a metii¢;, involves the)M, metric, then the input stimulus
reaching the full coverag&/; does not necessarily improve the error detecttaung§ that the
input stimulus reaches to complete the coveragie (The metricM/; involves the metrid/, if
and only if, when in any design the set of input stimutusached 00% of coveragel/,, S also
reached 00% of coverage\ls).

One of the main uses of coverage analysis is to measure thesedff the adequate and
progressive validation. The direct correspondence betwke coverage metrics and error
classes should ensure that full coverage could detect raltseof a certain type with respect
to the metric.

The level of confidence is directly proportional to the gtyadif the coverage metric. In most
of cases, the coverage metrics inform how many tasks wereis&d by the test cases saving the
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number of changes of the characteristics which describexbecised proportion of the device
behavior. It means, when more information is reflected fromitnplementation through the
coverage metric, then, more confidence is obtained aboutehthe device functionality was
verified.

According to the specification and the implementation theecage metrics can be divided
in two different categories: implicit and explicit metri¢§]. The first case consists of
coverage metrics based on the features of the design imptatien (using hardware description
languages: VHDL, Verilog, SystemVerilog) for example tloele coverage metric. The second
case consists of metrics based on the functional specifitatnd the characteristics of the
behavior, for example the functional coverage metric.

There are differences between the implicit and explicitrrogt for example the next set of
code represents a set of instructions of a CPU. In the codg3$Manstruction is not enabled into
the options. In this case a code coverage report can telbti4 @19 % was reached. However, the
functional coverage metric should report different reshécause one variable was not exercised
during the verification.

Listing 3.1. Example of coding error undetectable by code coverage

enum{ADD, SUB, JMP, RTS, NOP} opcode;

case (opcode)
ADD:
SUB:
JMP: ...
default:

endcase

The last example shows that the functional characterigfiegend on the functional
specification and not of the device implementation. Thedgiices must be understood and used
together to improve the confidence of the verification precds the next section some main
concepts about how the obtained information from the degiceanaged will be described.

There are different coverage metrics among which are:

e Statement coverage: This metric is known as block coveragause it measures a set of

lines which is executed in a block of code in the implemeantatThe visual representation
can depend of the software tool which is used.
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e Expression coverage: Measures how many expressions areutedeinto the
implementation code.

e Paths coverage: Measures the different ways to execute werseg of statements.
Different from statement coverage the path coverage castdéta block of code was
exercised using only a subset of the all possible conditioexecute it.

e Coverage of mutations: This is a measure of the number ofgdsanf the different
conditions into the code which are executed in the impleatent.

e Functional coverage: is a metric based on the functionatiSpa&tion. This metric
measures the number of characteristics of behavior whietexgrcised. Different from
metrics based on implementation functional coverage slifcavspecific part of behavior
has been not exercised. In order to use the coverage metriccadnal coverage model
needs to be proposed.

e Code coverage: This type of coverage measures the numbémnesf ¢f code which
have been executed during the simulation of a digital systéms implicit from the
implementation and it is named as implementation coverd@e. main objective of this
coverage metric is to show which portion of code has not bgercese.

e Coverage Discounting: This type of metric combines mutatiad functional coverage
metrics in order to discover which points actually have resrbcovered

3.2.4 Calculation of Functional Coverage

The cumulative coverage considers the distribution ofredtances of a particular item or
coverage point. In contrast, the coverage of an instancensnie specified coverage of the
specific coverage instance in which is focused.

To make the calculation of coverage for a coverage point, wstiiirst determine the total
number of possible values, also known as the domain. Theyebma valuebin or multiple
valuesbins Coverage is the number of sampled values split by the nuailibénsin the domain.
For instance, a coverage point can be a variable of thregvhith has a domain of [0:7] and is
normally divided into &ins If during the simulation the involved values tdihs are sampled,
the report will show 7/8 or 87.5% coverage for this point. ese points are combined to
show the coverage of the whole group, and then all groupscandined to generate a coverage
percentage for all simulation databases.

This is the state of a single simulation, so we need to st&edlrerage over time. We must
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take care for changes, and we can see further simulatiomiloreaw restrictions or tests. E8.1
describes the calculation of functional coverage for a Epbmts. The coverage is the division
between the sum of the product of coverd@geor each point with the weighl’; of each one
divided by the sum of all weights.

ZiVVi*Ci

C9="5w

(3.1)
This is the state of a single simulation, so we need to stoverage over time. Watch for

changes, and we can see further simulations or add newctests or tests.

The calculation of coverage for a coverage point depends lwether thebins are explicitly

defined by user or automatically created by the tool. Fobihalefined by user, the coverage

of a point is calculated as follows:

o |binscovered‘

Ci = |bins| (32)

where:

|bins| Is the cardinality of the set of defined bins.

bins.overeq 1S the cardinality of the coverdains it means the subset of dins(defined) which
are covered.

For thebinsgenerated automatically, the coverage of a coverage oaaticulated as follows:

|binscovered‘

CZ' =
MIN (auto_bin_maz, 2M)

(3.3)

where:

bins.overeq 1S the cardinality of the coverebing the subset of albins (self-defined) that are
covered.

M : Is the minimum number of bits needed to represent a coegoagt (Coverpoint).
auto_bin_max IS the value of the optionuto_bin_max in SystemVerilog.

It is important to understand that the union considers cativd coverage of all significant
bits; this includes the contribution of dins(including thebinsoverlapped) of all instances).

To determine if a particulabin of a coverage group is covered, the calculation of the
cumulative coverage considers the valueibficast option for all instances that are covered.

48



s
= 3.2. Main elements of Functional Verification ﬁ

Due to this, a&in is not considered covered unless the amount “hit count” lsgureexceeds the
maximum valuesit_least of all instances. Using the maximum value that represemtsnbst
kept selection.

3.2.5 Functional Coverage Model description

A functional coverage model represents the initial step the functional verification. It
is defined as a coverage space representing the internshijs between the inputs, outputs
and components of a device [1]. Independently of the metiwbeén the functional verification
process is performed, a coverage model is used. The covaradel is based on a type of
coverage structure or coverage metric, i.e. finite statehmaqFSM), statement, branch path,
and expression coverage, etc. The model is a fundamenta piethe verification method
representing a golden model to describe the device behavior

A coverage model consists of tasks, events, conditionsydtich capture the Device Under
Verification behavior. In other words, it is an abstract esgntation of the device behavior
composed by attributes, features and their interrelatibmshis research we define a coverage
model as follows:

Definition 10 “Given a functional specificatiop, the coverage model is defined as the set of
features( which has a set of used constraintsepresenting the full device behavior".

where:

¢ ={B1, B2, B5...0n} (3.4)

B; = {bo, b1, ..., b} (3.5)

Eachb; is a relevant feature value of a coverage poirdnd the set of constraints:

T = {p07p17"'7pt} (36)

Wherep; is a possible valid set of values for eagh

Figure3.5 shows a coverage model example for a UART-IP core device.s€hef points
represents the abstract way to represent the behaviornergea coverage point can be a scalar
value, an expression, an event or a condition in a digitaesysAn example of a coverage point
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can be a command instruction code, since this is a variablehwdan take a set of values
(0,1,2, ..., k). Each value is known astan. Other examples of points are: an interruption level,
a register input, package longitude, etc. The main objeca coverage point is to ensure that
all relevant values are represented in the proposed varidlilese points are grouped in sets,
which are commonly known as coverage groups.

| Digital system specification I
Bin

Address: [0:255] = {0,1,2,3,4, ..., 255}

¢ Int_wr_data[0:255]={0,1,2,...,255} Int_write [0:1] = {0,1}
Int_req [0:1] = {0,1}

0 | [0 SEIERL
(-] (-]
0 || O o © .

°
—>»> o°:°..

LLLLL) | (LT oo © :m:/'
T Rx Coverage del

HDL Design
UART2bus Ser_in[0:255] = {0,1,2, ..., 25?/

DUV

Int_gnt [0:1] = {0,1)]

Reset [0:1] = {0,1}

Int_read [0:1] = {0,1}
Int_rd_data[0:255] = {0,1,2, ..., 255}
Ser out[0:255] = {0,1,2, ..., 255}

Figure 3.5. Model representation of a Device Under Verification (UARISpusing coverage points to
describe the behavior.

The coverage model contains explicit device behavior aterstics. However, this can
be used with implicit coverage metrics taking the coveragermation as feedback and then
analyzing and evaluating the current test.

During the verification of the device behavior, a functioo@lerage model is proposed based
on the functional specification and the device implementatiThis model is designed using
different levels of granularity, which means that the machei represent the original intention
using a different number of characteristics. The verif@agngineers make a decision on the
amount of fidelity by taking into account the relevant aspexftthe device function and the
set of values that represents the main functional regiottsirwihe functional behavior space.
Moreover, the fidelity of a coverage model depends on thgsecés especially when all main
characteristics are included. One problem with functiomaification is that it can identify if
there is a deviation between the implementation and theénadigntention, but it cannot ensure
that there are no errors in the final implementation becdesmitial specification is designed by
human criteria. Also, the characteristics of the devicealar, which constitute the proposed
coverage model, may not be sufficient to test all device hiehav
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A coverage model is a functional space coverage, which cepthe behavior of a device.
In other words it is a definition of a subset of the space of slirs/response that could show an
acceptable degree of confidence, that the functionalitii@tiesign is correct.

The fidelity of a coverage model is a measure of how similarrtioelel represents the
behavior of the device. If the coverage model has high-figdelitput, all device responses to
stimuli applied have corresponding points or regions withie model. The functional coverage
measures progress through the requirements of the device.

A coverage model contains requirements of functional \ation process. The total stimuli
and response space for a complex design is multi-dimensanmthalmost infinite. So it is
unrealistic to expect the comprehensive verification of sigiefor all possible combinations,
sequences of stimuli and responses.

For example, a solution for an adder of 32 bit is a three-dsiweTal space measuring a space
of 232 x 232 x 2 (Input A X Input B x carry- in). The exhaustive verificationtbfs simple design
assumes a set of input values which can be verified every secmnd and might require 1000
years . But an adequate level of confidence in the correctfeas implementation can be
obtained using only a small set of peers. And that set of st be the coverage model for
combinational adder.

3.2.6 Directed Functional Verification for Digital Systems

The functional verification process can be described siiyikes processes used in digital
communication, since in digital communication originaltalas delivered with additional
information which permits us to detect errors and correetrthin a similar way, in performing
verification based on simulation, the original intendedawédr (It can be seen as original
information) is implemented according to functional sfieation and the designer criteria (It
represents the additional information). Through difféq@mcess steps, the behavior is verified
by means of monitors, test-benches, assertions, etc. l\frimdien the process finishes, the
method determines whether or not the implementation mbetsriginal proposed behavior. In
a formal way the functional verification can be defined asfed:

Definition 11 “Given a device implementation based on3; characteristics and a functional
specificationp, the functional verification is the process which ensures gach characteristic
G; of the specificatiop is met byy".
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Where:
Bi € ¢
Y = {50;517 ---ﬁk}

Figure 3.6 shows the general scheme of verification process using titidumal coverage as

a coverage metric. In this case, at the beginning of the gedest sequences are generated
in a pseudo-random way. Then different events, variables tasks change their initial state.
However, during the process, some events are not covekesdlireg coverage holes which need
to be tested. Due to this, the coverage analysis is a relst@pto exercise new tasks and can
be used to cover hard cases. It means that the analysis aarergte number of repeated tasks
during the verification, which reduces the simulation time.

==

Coverage
model (M)
Checkerl Coverage Points (PT) Checker2
Coverage
Test vectors Device Under analysis
enerator Verification (S)
9 Test input Test output |P¢ = PT-Ph
sequences || sequences

Environment E

Cost Functions (F) |«

Figure 3.6. Coverage Directed Test Generation blocks diagram.

The Coverage Directed Test Generation can be describecegwdbess which generates
test sequences at the DUV input according to the feedbaokniation during simulation. It
includes different elements used to exercise the devicpattice the environment interaction.
In a formal way:

Definition 12 “Given a device implementatiomn and a functional specificatiop, Coverage
Directed Test Generation is the process which generatetetitsequences= {ig, i1, ..., i, } €
(2h)n*! exercising the features; of the coverage modél which represent the functionality of
the device".
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Where:

[ is the length of the input sequence.

n + 1 is the maximal number of sequences.

i 1S the k-th binary test sequence.

When a test sequencgis introduced inside the device, if a new valuefpfi,) function of the
specification is exercised, then that value and the sequeseged into a file. After that, the set

V' of states is reviewed and a new test sequence is generatest the device again. When all
v; specified states are verified, the coverage metric is red¢si.

When the functional verification is performed, one or moreetage models and the
implementation device are connected to test the devicen @ifeerent functional tests verify
which feature, also called “relevant event” (coverage pan“variable” assigned in the model
is covered and review if the functionality is working cortlgc When the process finishes, the
characteristics tested are reported into a file [56].

We describe the used coverage directed test generation mdbis research as a 11-tuple:
<Iv07SvapTvpcvpthvacach> (37)

where:

I is the set of the possible input sequen2gs 1)+,

O is the set of the possible output sequenges

S'is the Control Flow Graph describing the device behavior.

M is the proposed coverage model.

Pr is the number of coverage points.

P. = Pr — P, is the set of the covered points in the verification process.

P, = Pr — P, is the set of the holes (not covered points) during veriftcati

F'is the set of cost function§fi, fs, ..., f,} to determine how well the generated binary test
sequences work.

E is the test-bench interacting between the device and tlzeagtat control signals.

C'is the set of checkers used to verify the different inputs@utguts of the DUV.

Ip, is the set of test sequences which exercise the maximumage@oints percentage in the
M.

The actions between these elements produce the directedagjen of test sequences, which
can be described as follows: first, a test input sequénisegenerated in a pseudo-random way,
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and then the device implementation is evaluated. At the étliecevaluation a set of coverage
information is obtained. The test vector sequences arefraddiccording to the values of the
functionsf;. These cost functions are obtained using the valugs ahd P, at the end of each
simulation respectivelyPr includesP, and P., which means all coverage points. All input and
output data are reviewed by the set of checkérduring the simulation. Also, the exchanged
information between the coverage modéland the environment’ are checked. In addition, a
scoreboard module can be used in order to review whethenphe and output data are correct.
This is performed by capturing the data at the input of thea#eand the processed output. Then,
the scoreboard compares the data generated from the dethidbevdata generated based on the
specification. Finally, when the stop criteria is met a tegigencd p, is obtained. It is important
to mention that the coverage percentage in most of the catEssithan one hundred percent due
to differing factors such as: redundant test cases, ingffinumber of simulation iterations ,
bad checkers, low number of test sequences, lack of infoematbm the coverage metrics, etc.
Due to this, one of the challenges is to find good alternatwésst all the characteristics of the
device behavior.

3.2.7 Controllability and Observability in digital systems

During Functional Verification, the way to direct the sigh& a fundamental aspect. The
control of the stimulus at the input of the device can inceeth® coverage and help to detect
bugs. If a bad control of the signals is performed then leg®ns could be covered. Therefore,
techniques which make a good control of the signals allowatsieg and covering most of
regions of the behavior. The controllability can be defingdodiows:

Definition 13 The “Controllability” can be defined as the ability of a testich to generate
stimulus which can exercise every part of the device behavViberefore, it is the ability to
change the values in every node to obtain a determinate \altree device output.

This means that not all stimuli are suitable to reduce thes tand increase the advance of
exercised behavior because of the signal management iretheedunder verification.

On the other hand, the change of state of different signads o be detected in the probe
points. If an error in one or more signals is activated bubigamopagated at a probe point, then,
the error could be undetected. The observability is defisddliows:

Definition 14 The “Observability” is the ability to shift an error to a placwhere it can be
observed. This can reduce the cost of the error detectiohdyérification environment.
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Under this condition is important in order to detect the esafghe errors and improve the device

implementation.

Based on the last concepts we can mention of “Testabilityittvis the difficulty observing
and controlling the logical values of internal signals a¢ thput and output of the digital
system [57]. Figured.7 shows the observability and Controllability in the verifioa of a
digital system.

Stimulus @ Response
N EERRERREN
[ —>

Observability: Effect of internal bug is Controllability: Effect of internal bug in observed
observed directly at the source. at the output or other part of the logic.

Figure 3.7. Observability and Controllability in a Digital system.

3.2.8 Pseudo-random Constraint Stimulus

Constraints define what and when the device stimulus neeglittsbrted at the device input.
These are defined by the device behavior. A constraint caedresented as a Boolean formula
over a design signals. There are two types of constrainésemivironment constraints and the
constraints which are used as test directives.

The simulation of constraint random stimulus can be madenwhe stimuli meet certain
requirements of the environment and can be used to reaclcases of the device behavior.

The feedback of the functional coverage can be used for thetimned random generation
in order to direct the constrain solving and the randomirato exercise the not yet covered
behavior.
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Generating stimuli is required to fully exercise the deyite other words, to cause
completely display all possible behaviors. Some techradbat have been used are:

e Generating random test program (RTGP).

e Based test generators models (MBTG).

In performing verification of a device we should take appiater account ranges for
stimulus. The stimulus generation can be composed of caisséad generating sequences.
Restrictions generation has rules, which control the geiwer of the input data. Data streams
that are sent to the device to produce coordinated actidmesrdstrictions generation is divided
into groups based on the source:

e The functional specification of the device: are those fuamal restrictions that are

required to validate the device.

e The verification plan: are those that make a useful subseeftfication.

Both types of restrictions are necessary to reduce the adat valid stimuli to those who
exercise the necessary conditions limit the device. Theispa&tions concerning the generation
of stimuli must be referenced by the section of the verifaraplan.

Figure 3.8 shows the constraint random test generation process. Tuegs begins with
the pseudo-random generation of a set of tests. After thatgdévice simulation is performed,
then the coverage analysis is made. Using the coveragemafam obtained if a set of holes
is identified, then some minimal code modifications are immg@eted in order to generate a
directed test case or a new pseudo-random test in genersitegldifferent seeds. The process
is repeated again until a stop criteria is met.

[

i : : Physical layer
i Constrained : N, .

.................

i random tests : N
________________________________ DUV =54
Add i ! Directed p P Functional
i constrains ! | testcase i Pt o coverage
iMinimaI code ! Identify
: modifications : holes

................

Figure 3.8. Constraint random test generation.
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3.2.9 Modeling Functional Verification through Hardware Description

Language (HDL)

When the engineers develop a hardware device the digitedreyseeds to be modeled by
means of a Hardware Description Language (VHDL, Verilogst&m\Verilog, SystemC). The
original intention is a fundamental part to design a digsgdtem because the design engineer
translates the requirements from this intention to linesaafe using the hardware description
language and the structures from the programming language.

On the other hand, the verification engineers can model thetiftnality of the device and
the input stimulus using different software tools througdinaulation process. The simulation is
the process which allows modeling the full behavior of a deviVhen the device is modeled by
means of a software tool the real response speed of the sahicior device is represented at
a fraction. It means that the waveforms of signals are shaimgla determined time according
to that software tool.

Different environments can be modeled using a Hardware rijg&n language such as:
Verilog, SystemVerilog, VHDL, etc. The engineers modelwhshed environment according to
the conditions which are needed to exercised the devicevlwehdloreover, in order to check
the correct behavior and detect the changes of the behatferetit modules such as: Score
boards, Monitors, among others are created.

Figure 3.9 shows the modeling process of a hardware design by means éGwatar
Description Language. At the beginning, the design engireéews the original intention from
the specification. After that; the functionality of the dgsis modeled in a black box level, then,
this functionality is mapped to code lines based on a Hareviza@scription Language (HDL).
When a implementation is made, this is tested using a simual&bol and the results obtained
are analyzed.

3.2.10 Proving the Design through the Simulation

Emulation of digital systems is a process where the impleatiem is mapped to a physical
device that can be a FPGA, logic arrays, etc. and is drivenégns of a testbench or by a real
environment where it is supposed that the device will beqdad he objective of emulation is
to accelerate the simulation in hardware.

In the case where a testbench is used from the computer #reclabf the communication
with the device can be an order of magnitude slower than thelation using only the real
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Figure 3.9. Modeling a device through HDL simulation.

environment.

Given an initial specification of a design, designers moeséhspecifications to a hardware
description language such as SystemVerilog, VHDL, VeribogystemC. This description is
given to register transfer level (RTL), in which, the fumctality between combinatorial blocks
and different building blocks of a digital design is spedfi®TL implementation is synthesized
at a network of transistors or logic gates, called gate ldestription. From a design we can
go through the behavioral, RTL, and gate levels. Given tligserent levels, it is important to
verify the initial description and the equivalence of dgstaons at different levels of abstraction
involved in the design process.

Figure 3.10shows a flowchart of verification of a digital system basedhadimulation.
The success of the check depends on how to analyze the resatisclude whether the digital
system meets a proper operation.

Formal verification techniques have shown to be effectivetdsks such as verifying the
equivalence of two circuits at different levels of abstimtt However, at simulation level it
remains a critical part of the verification process. It isessary to order the test vectors to
simulate a design, and lookup tables should be appropaaeercise all aspects of the design.
Later, when the design is made, the test vectors of the ioptgut can be applied to the design
through to detect systematic failures caused in the maturfag process tests. Test vectors
must be available at each level of abstraction of the desigmsure that it is possible to verify
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Figure 3.10.Flowchart of verification based on simulation.

the design.

The methodology based on simulation consists in simulatiwegdesign for all vectors in
a set of teststés) within an environment which models the current system ward, and
the simulation outputs are reviewed to analyze the behandrreview if the system meets
specifications. Test vectors can be obtained through gemsrar pseudo-random vectors and
they can be entered by designers based on the functionalisaton of the design. With these
methods it is difficult to ensure a degree to which the desagdeen proven.

Figure3.11shows the main HVL techniques used to perform the verifiogbimcess. The
general method based on simulation involves the applicaifdechniques for generating test
according to the level. After each level of the design is cletgal the vector sequences are
generated and then the device is simulated at that level sifaadtion and lower levels. The
results are compared through different levels to checley thatch. However, the test generation
process is complicated and time consuming. There are twagms associated with validation
through simulation, which are: coverage and generatiomadlgtion inputs.

3.3 Resume

In this chapter the main concepts about the functional eatibn of digital systems were
described. Functional Verification includes a set of stBpsinvolves a general methodology to
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Figure 3.11. Trends in Functional Verification Techniques.

be followed today. In addition to measuring the progresdeffunctional coverage of digital
systems, it is necessary to use a coverage metric or meastiialows to know the progress of
the coverage advance during the test of a device. Among tls¢ coommonly coverage metrics
are: paths coverage, statement coverage, coverage offretatenes, fault coverage.

A definition of functional coverage was also described, Whian be understood as the
percentage of the device behavior that has been verified. &yeatso mention the importance
of using a good coverage model for proper verification of aa#e\as this represents the device
behavior and thus a space of inputs and outputs that are whapjethe model. Also, the
concepts about digital design, modeling and simulatingewscribed. These concepts are
important to understand the principles of functional veafion and the current challenges
generated from the technology advances.

In short, these concepts will be useful to understand thpge®ed method in chapter 5. In
the next chapter the concepts of binary meta-heuristiaélhgos are presented. Moreover, their
principles, differences and advantages with respect terayipes of algorithms are described.
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Meta-Heuristics on the Binary Space
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Chapter 4

Meta-Heuristics on the Binary Space

The word heuristic is derived from the verbpio ke which means to find, to invent or to
discover. The Greek wonthetameans beyond or upper level. According to Fred Glover in his
seminal paper [58] a meta-heuristic is a master strateggthdes and modifies other heuristics
to produce solutions beyond those that are normally geserata quest for local optimization.
Also, the heuristics can be seen as a criteria, methodsrariples which decide between several
possible options to be the most effective in order to achéewee goal.

Meta-heuristics can produce a reduction of possible smigtin the search space. This is
because they use different strategies to explore and éxpéosearch space. Initially different
points in the search space are explored using pseudo-rageioenated data. After new points
are chosen based on the interaction and the fithess valuég gbints previously evaluated.
These points represent possible solutions in the searae sjigy finding points near a global
solution, the areas near these points are largely exploéted what we see depends on the
convergence in which these algorithms can find the area dmains a solution with a higher
fitness value compared with others in that space withoutgoeapped in a relatively good but
not necessarily in areas where the best solutions are.

In the present chapter, the principles of the Genetic algari Particle Swarm Optimization
algorithm, Differential Evolution algorithm, Compact Gait algorithm are presented. Also,
the characteristics of the meta-heuristics on the binaagepare described.
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4.1 Binary search space

Different heuristic methods have been proposed to solvemagtion problems in
continuous spaces. However, there are problems which presented over discrete search
spaces; one of such spaces is the problem of Functionaldziifin of digital systems because
the binary representation is implicit into the discrete damof digital systems.

Unlike others, the binary representation can be used toesept a wide range of
characteristics, numbers, variables, etc. For exampdyitrary number: 101011 may represent
the number 43 in decimal but can also represent the preséhaeardeatures or the absent of 2
in a particular set of variables.

Adding a bit to a binary string the search space is doubledis Tan be exemplified
by initiating a single binary digit, which can represent anpdn the binary space that
can take the values zero or one. Adding a bit we can have fdtereit combinations:
{(0,0),(0,1),(1,0), (1, 1)} the set of points could be represented by a square in two diores)
where each vertex contains a possible tuple of binary vaduneseach edge represents the
distance between each tuple. For example, with the first pojn) neighboring corners will be
(0,1) and(1, 0) the opposite corner will bél, 1). Adding a bit more, three-digit binary strings
have 8 possible value@), 0,0),(0,0,1),(0,1,0), (0,1,1),(1,0,0),(1,0,1),(1,1,0), (1,1, 1).
This set of 3-tuples could represent a cube where each Vieaea possible value of 3-tuples.
Increasing the binary string with more digits, this givesaémost incomprehensible increase in
the search space, as each new binary digit adds anotherglondn all previous points (This
is known as a hyper-cube). For example, if we have a 20-bdriistring, the search spagte
is equivalent taS = 22° = 1,048, 576. This complicates the search for a point within the set
of all possible options. That means trying to find a point wahizeets the solution to a problem
in this space may be intractable. Even in real problems whadire finding good solutions
in a reasonable amount of time, it is impractical to perfomeghaustive search of all possible
points.

Because of the issues described, it is necessary to usélahgethat make a search in this
binary space and find the optimal points within a reasonable. tAt the same time, this process
is based on the information obtained to evaluate possilhlgigons through directed functional
verification. In the next section the main aspects aboutgaslary algorithms are presented.
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4.2 Evolutionary algorithms

Most times meta-heuristic provides a good solution in a rebtiee period. Meta-heuristics
involves the evolutionary algorithms. According to A. EbEn and J. E. Smith [59] these
algorithms are based on the evolution theory where givenpaulption of individuals within
some environment that has limited resources, competitiorifose resources causes natural
selection (survival of the fittest). This in turn causes a isthe fitness of the population. The
selection of better individuals produces a better solutifimere are two fundamental operators
that form the basis of evolutionary systems:

e Variation operators (recombination and mutation) creheediversity of the population

which permits performing a good search in the search space.

e Selection permits making a difference between the qualitii@solutions.

Recombination is an operator which is applied to two or ma@nedadate solutions (called
parents) producing one or more new candidates (the chjldr&futation is applied to one
candidate and results in one new candidate. Then, the afiphcof these operators creates
a new population (offspring). The process can be iteratéitiaitermination condition is met or
whether the best solution is reached by the algorithm.

The genetic algorithms have been used to make the seardheféurictional verification of
digital systems. In the works which were described in theesté-the-art the researches used the
basic genetic algorithm to search for vector sequencem@tig the values of coverage in the
test of digital systems. However, other meta-heuristicehseen proposed among which are:
Particle Swarm Optimization algorithm (PSO), Differeh&aolution algorithm (DE), Compact
Genetic algorithm, among others. In this chapter the bivargions of these meta-heuristics
will be described.

Different from other types of algorithms the meta-heucstrepresent mechanics which
reach good solutions in the search space using a reasomabletof time. These algorithms
take decisions based on the evaluation of the possiblei@otutThe change in the algorithms
performance can be seen more clearly when the problem isngplég search space and the use
of exhaustive search is not practically. In real problerns,ttme used in order to evaluate the
digital systems is very expensive. Even for devices withgalle size it is not practically to try
all possible options because the regions of interest to bered into the behavior space requires
to use good strategies in order to reach sequences in alsuditab. This is the reason why the
use of meta-heuristic algorithms is the main proposal af thsearch.
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Another important aspect is the concept of optimizationthiis research the term global
optimization is defined as the process of attempting to fiedstiutionz* out of a set of possible
solutions S that has the optimal value for some fitness fangti In other words, we are trying
to find the solutionc* such thatr # z* = f(z*) > f(z). In this case, a maximization problem
is assumed. These meta-heuristic algorithms have theyatoilmaintain a diverse set of points
which provides not only a means of escaping from local optitnéalso a means of coping with
large and discontinuous spaces. In the next subsection dive characteristics of the genetic
algorithm will be described.

4.2.1 Binary Genetic Algorithm

The genetic algorithm was proposed by John H. Holland in &y 4960’s was motivated to
solve machine learning problems. This algorithm was desidrased on the Darwinian theory
where the interactions between the individuals of the pafjarh can produce better solutions.
After different epochs better solutions are found.

The genetic algorithm uses binary strings (genotypes) pjoeeent each possible solution
(phenotypes). Every binary string is composed of a set oipas (genes), a value into each
position (allele) and a set of operators (crossover, maratnd selection). The genetic algorithm
uses the principle based on population of individuals whkey share the characteristics in
order to produce better individuals and reach a good solufahe problem. There are five
basic components in order to apply the genetic algorithm:

e A representation of potential solutions of the problem.

e A way to create the initial population (commonly a pseudeatdry process).

A cost function which plays the role of environment, clagsifj solutions by mean their
aptitude value.

Genetic operators to modify the composition of the indialdito be produced in the next
epoch.

Values of the parameters (population size, crossover pililya mutation probability,
number of epochs, etc.).

Algorithm 1 shows the pseudo-code of the binary genetic algorithm. erasz four main
steps which are executed in every epoch until a stop comdgioot meet. The binary genetic
algorithm uses operators of crossover, mutation and seteiatorder to create a new population.

66



@
= 4.2. Evolutionary algorithms ﬁ

Different parameters need to be configured: crossover pege, mutation, selection in order
to perform the search.

Algorithm 1: Binary Genetic algorithm
while Stop condition is not meto
Generate a initial population.
Calculate the fitness values for every individual.
Select (probabilistic) based on aptitude.
Apply genetic operators (crossover and mutation) in ordgenerate the offspring.
end

The crossover operator is the recombination of two or modéviduals (parents), which
are selected using different criteria based on their vapiguale. Generally, the operation of
crossing is done by taking a reference point within the lyirséiing and combining each of the
sub-strings of the two parents to produce two children. ©peration can be repeated with other
individuals to form a new population for the next generation

The mutation operator or alteration consists of small ckarig some positions of binary
strings. Generally, these changes are made in a pseudonnamaly and produce a new solution.
This new solution must be evaluated and will constitute patihe new population.

Other step of the genetic algorithms is the selection oliddils. This consists of selecting
two or more individuals in order to apply the crossover andation operators. There are
different criteria to select the individuals. After new pbgtion is created then a new iteration
is performed and the stop criteria is checked. In the nexsexttibn, the Particle Swarm
Optimization (PSO) algorithm will be described in its bipaersion.
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4.2.2 Binary Particle Swarm Optimization algorithm (BinPSO)

In 1995, Eberhart and Russel James Kennedy [60] proposedvalgerithm based on
particle swarm intelligence. The algorithm was based orpgyehological and social theory,
which suggests that individuals moving through a socignttive space should be influenced
by their previous behavior and the better performance witieir neighborhood. This influence
can be the better of all population or only near to the paaticl

In this algorithm, each individual of the population is nahaes a particle and these particles
are grouped into neighborhoods, which constitute the @tjoun. Each particle has a social
and a cognitive behavior. There are two types of configunatigbestandIbest The first
configuration can be interpreted gbestwhich connects a particle with all others in the
population. This causes the behavior of each individuaétmfiluenced by the best performance
of any particle in the population. The second configuralioest creates a set of swarms
consisting of a number of particles. The behavior of eachigbaris influenced by the best
performance of a particle within the swarm.

Algorithm 2 presents the pseudo-code of the Particle Swarm Optimizatgorithm with
binary representation proposed by James Kennedy. ThetBsisto initialize every value of
particles. The fitness value of each is then calculated, tienvalue obtained with the value
of their previous best position is compared. If best presipasition is replaced by the current,
then, the values of velocity are calculated and then condpdfehe best position is less than
the value calculated of the sigmoidal speed function, thegrs set to 1 but takes the value of 0.
The process is repeated again until a top condition is sadisfi

The probability that each individual decides whether amelet is 1 or O, is defined as a
function of personal and social factors. This function iSreel in Eq.4.1

V() = vig (t = 1) + 71 X 1 (Pia — ia (t — 1)) + 12 X 0o (pia — Tia (t — 1)) 4.1)

Where:

e v;y (t — 1) is a measure of the individuals predisposition or curreabgbility of deciding
1.

e ( is a positive random number drawn from a uniform distriboitioth a predefined upper
limit.

r1 andr2 are positive random numbers between 0 and 1.
x;4 (t) is the current state of the bitstring site d of individual i.
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Algorithm 2: The Binary Particle Swarm Optimization algorithm (BinPSO)

end

swarm« initSwarm()

bestParticlePositior— getBestParticlePosition()
globalBest— getGlobalBest()

while / terminationCondition M eet do

while / terminationCondition Meet do

end

Loop
for : = 1 — number of individuals do
Compute:
if G(:BZ) > G(pl) then
for d = 1 — dimensions do

| Pid = Tid

next d

end
end
g=1
for j = indexes of mneighborsdo
if G(p;) > G(p2) then

|l 9=7J
end
Next j
for d =1 — number of dimensionsdo
ve(t) = vig (t = 1) + 71 X 01 (Pia — Tia (t — 1)) + 72 X 92 (Pia — Tia (t — 1))
Viq € (—Vmaz + Vmaz)
if pig < s(viq(t)) then

| zia(t) = 15
else

| @a(t) = 0;
end
Next d
Next i
Until criterion

end

end
end

swarm«— restartSwarm(swarm, global Best)

e t means the current time step, and 1 is the previous step.

e p;4 IS the best state found so far, for example, it is 1 if the ifdiials best success occurred

whenz,;; was 1 and O if it was O.
e p,q IS the best neighborhood, again 1 if the best success attayy@any number of the
neighborhood was when it was in the 1 state and 0 otherwise.

Since the original version of the Particle Swarm Optim@atalgorithm was designed to
work in the domain of real values, so a function was proposechinge the values of each

element of the particles using a probability value. The Qighfunction in equatiod.2is used

to change the value 1 or O of each bit that is part of the partaépending on the probability

threshold. If the value;, is higher, the particle is more likely to select 1 and if théueais
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lower, it is more likely to select a 0. The, value is restricted in the range [0.0,1.0].

1

5 (Via) = 1+ exp(—vig)

4.2)

How to control the influence of the traveled path by each glartand the influence of the
other particles in the population may cause the particlegenqickly to regions with better
fithess values. To do this, pseudo-random values are uséch wtoduce similar effects to the
mutation operator in genetic algorithms. In the next sutbsethe main characteristics of the
binary differential evolution algorithm are described.

4.2.3 Binary Differential Evolution Algorithm (DE Algorit hm)

Differential Evolution algorithm was proposed by Raineor@tand Kenneth Price [19].
This is an evolutive algorithm based on the difference betwvo individuals and a crossover
mechanism to generate new possible solutions. One adwanfate algorithm is that only
best solutions are used to create a new population. Theithigohas obtained good results
in many optimization problems [20]. Differential Evolutialgorithm have been successfully
in different optimization problems [18]. The Differenti&volution algorithm has shown good
results in problems with discrete and real spaces.

Although, the initial version of the Differential Evolutioalgorithm was proposed for
problems with real representation of variables, obtaibieiger results in most cases [61]. Later,
different works were carried out for binary representaf@?, 63]. Application of the original
version of the Different Evolution algorithm in discreteasps is complicated because of the
origin of the operators which are used in the original varsid the Differential Evolution
algorithm. Due to this, it is necessary to use operatorsttthéealgorithm apply over discrete
spaces. Different works were carried out using new crossowe mutation functions in discrete
spaces [64—68].

In 2007, A. P. Engelbrecht and G. Pampara published a pappwjtich describes different
strategies by the Differential Evolution algorithm. Theahed results show good solutions in
different optimization problems. On the other hand, in tleekn65] in 2011, Changshou Deng,
Bingyan Zhao, et al. proposed a version of the algorithm dasea mutation function which
can be used in the discrete domain. The mutation functioafiaed in the equatiod.3.

hw(t + 1) = MODQ(.Tng + (.Z’le XOR x7-2,j> (43)
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Where:

e MODs,: is the function of addition module 2.

e h;;(t+1): isthe is the offspring generated.

e 1,4, is the individual selected by a pseudo-random number

e 1,9;: is the individual selected by a pseudo-random number

e 1,3, is the individual selected by a pseudo-random numper

e Based on these experimental results we selected this wfatiction.

Algorithm 3 represents the pseudo-code of the algorithm of Binary Eiffeal Evolution
which was proposed by Rainer Storn and Kenneth Price witbssover and mutation function
proposed by Changshou Deng, Bingyan Zhao, et al. [65]. At fas initial population is
generated pseudo-randomly. Each of the vectors is evdluat®@rder to obtain a fitness
value. After, three different vectors are selected frompbpulation. Once three vectors are
selected, based on a predefined percentage value CR theooparacrossover and mutation
are performed. These are based on the difference of two of,thich is added to the third
selected. If a random value is higher than CR value then,dhesponding element of the best
current vector is taken. If the new vector is better than tireent, then the new vector replaces
the original vector in the population.

Algorithm 3: Binary Differential Evolution Algorithm
G=0
To generate the initial populatio®; oV i i =1,..NP

To evaluate every vectolf(Z; )V i i =1,..NP
Calculate:for G =1 — MAX_GEN do
fori=1— NPdo
Select randomly 11 # 12 # 13 : jrand = randint(1, D) for j =1 — D do
if rand;[0,1) < CR or j = jranathen
| Uijg+1 =MOD2(zr35,6+ (zr1,5,c XOR ,2;5a))
else
| Wi ,G+1 = Tij,G
end
end
if f(@i,j,c+1 < Ui j5c)then
| %i,5,G+1 = Ui,G+1
else
| Zij,G+1 = Ti,G
end

end
G=G+1

end

Figure 4.1 shows the generation of new vectors based on the additioheotiifference
between two vectors and a third vector which were choseroratyd In the case of the problems
with binary domain that difference between vectors can beped in a binary difference.
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Therefore, the operations between bits generate new gebtqr which are evaluated and
compared with the originals in order to choose the vectokeép and will be replaced in the new
population. In the next section the main characteristic€a@ipact meta-heuristic algorithms
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Figure 4.1. Generation of new vectors in the Binary Differential Evadatalgorithm.

will be presented.

4.3 Compact meta-heuristic algorithms

The compact meta-heuristic algorithms are reduced vessibtine meta-heuristics. Because
these techniques use a reduced number of individuals indpealation, there is a reduction
in memory requirements in hardware devices. One of theegfied used to reduce memory
requirements consists of representing the population astapility distribution over the set of
possible solutions. Unlike the meta-heuristics based pujadion, the Compact meta-heuristics
are based on the increase of the probability distributiore&gh bit position of the possible
solutions.

Different works have been carried out, i.e., a compact geragorithm (cGA) which
was proposed by Fernando G. Lobo, Georges R. Harik and Davi@olilberg in [69]. In
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this work, the authors proposed a genetic algorithm whiclueced the memory requirements
using a probability distribution for the population. Theaségy consisted in obtaining different
probability values for each individual bit based on the fmdunction. Only one vector
represented the probability distribution of the populatio generate new individuals and find a
better solution.

Another work is [70] where Chang Wook Ahn and R. S. Ramakaspresented two new
versions of the original compact genetic algorithm using e¢htism concept (pe-cGA and ne-
cGA). The elitism consisted in saving the best current smhuto keep it in the new iteration.
In this case, they presented persistent elitism and nornispams elitism concepts. In the first
case, the best solution is saved in order to be compared wiwapossible solution in the
next generation. In the second case, the best solutionélsay if a value criteria maintains
a determinate length of inherent. According the resultagisi set of optimization problems,
these versions improved the original version of the comganetic algorithm proposed in [69].

Recently, a compact version of the Differential Evolutidigagithm was proposed by
Francesco Cupertino Ernesto Mininno, Ferrante Neri andidOBaso in [71] for problems
with real representation of variables. In this work, thegdishe principle of the Compact
genetic algorithm because the algorithm stored a reducexdbeuof individuals as a population
by means of statistic values. The algorithm was applied beesdifferent numeric problems,
obtaining very competitive results. Also, to improve thefpenance of the algorithm, some
work carried out with a local search has been proposed. Inwtrk [72], Ferrante Neri and
Ernesto Mininno carried out a Compact Differential Evadatialgorithm with a simple Local
Search mechanism for real representation. The algorithsrapplied to solve a control system
design problem for a Cartesian robot for variable mass mewtsnand it obtained good results.

Unlike other works, in this research the proposed CompadBB algorithm is used to
maximize the functional coverage percentage in the vetibioaf digital systems in the binary
domain. The algorithm follows the principle of these contpaeta-heuristic algorithms based
on the probability values over the set of possible solutiand the binary mutation and crossover
of the Differential Evolution algorithm with a simple locaéarch. In the next subsection we
explain the principle of the compact genetic algorithm.
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4.3.1 Compact Binary Genetic algorithm

The Compact Binary Genetic algorithm was proposed by Felm#&. Lobo, Georges R.
Harik and David E. Goldberg in [69]. The original version vixesed on the principle of random
walk model proposed by George Harik [73]. The algorithm wsesobability distribution over
the population. These probability values are saved in avedtich represents the information
for every bit position of the individuals from the populatio

Different from the original Binary Genetic Algorithm themmpact version can save memory
resources because it saves only the proportion of ones anslgenerated by mean evaluations
and, the original Genetic Algorithm needs to store n bitseach bit position. Therefore, the
Compact Binary Genetic Algorithm does not replace the nabBinary Genetic algorithm but
it saves the memory requirements. This characteristicafulispecially in problems where a
huge population size is required.

Selection of the individuals is based on samples from the &or in order to produce a new
individual and save the information after to evaluate howdis that solution. The crossover is
performed based on the added information in the PV vectotttamdelection of every element
from this vector.

Algorithm 4 represents the pseudo-code of the Compact Genetic algaughng non elitism.
The algorithm can be described as follows: at the beginniregp vector is initialized with 0.5
in all bit positions. The population size n and the chromosdemgth are configured according
the values required. After that, every iteration a and beslare sampled from p vector. Then,
a competition is made between these values and the winndosedare assigned with these
values respectively. After that, every bit position is ca@rgd using the values of winner and
loser the values of p vector are increased or decreasedrby

A compact version of Genetic algorithm with Elitism was pospd by Chang Wook Ahn and
R. S. Ramakrishnain [70]. This version uses the Elitisturttlial which is a survivor in the next
generation. Different from the original version of the CamnpGenetic algorithm, the Elitism
version takes the best individual in a persistent way. Theams that in every iteration the best
solution is kept. Two different versions were proposed:siggent Elitism and non persistent
Elitism. The non persistent Elitism is based on a paramgtkat is a specified length which is
used to determine when the Elitism individual is kept for mlegt iteration or if it is replaced by
a new individual. According the obtained results the alfpons outperform the original version
of the Compact Genetic algorithm.
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Algorithm 4: Pseudo-code of the Compact Genetic algorithm
n: population size, I: chromosome length;
Initialize probability vector;
fori=1—1do
| pli] =05
end
Generate two chromosomes from the probability vector;
a = generate(p);
b= generate(p);
Let them compete;
winner, loser = compete(a,b);
Update the probability vector;
fori=1—1do

if winner[i] # loser|i] then
if winner|[i] == 1then
| pli] = pli] +1/n
else
| pli] = pli) =1/n
end
end
end

Check if the probability vector has converged.
Go to step 2, if it is not satisfied.
The probability vector represents the final solution.

Algorithm 5 shows the pseudo-code of the steps for persistent elitishreafompact binary
genetic algorithm. In the algorithm, the best solution igeshin the next generation and
is compared with the solution of the next iteration. If thevnsolution is better than the
best solution then this replaces the best solution. Acogrtth Chang Wook Ahn and R. S.
Ramakrishna this version produces better results tharritpeal version of the compact genetic
algorithm.

Different from the versions of meta-heuristics based onupatpn the compact version of
genetic algorithm reduces the memory resources becausestthe statistics values of the
population by means of a vector of probabilities. This aidive application of these algorithms
in hardware devices with low memory resources.
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Algorithm 5: Modification of the cGA with pe-cGA.
E.brom: €lite chromosomey, i,om: NEW chromosome.
Step 2: Generate one chromosome from the probability vector
if the first generatiorthen
| Echrom = generate(p) I* initialize the elite chromosome */.
Nenrom = generate(p) I* generate a new chromosome */.
Step 3: Let them compete and let the winner inherit perdisten
winner, loser = competéls,,om, Nehrom);
Ehrom = winner [* update the elite chromosome */

4.4 Resume

In this chapter some concepts about binary meta-heuristocithms were presented. The
Binary Genetic, the Particle Swarm Optimization and thédd@ntial Evolution algorithms were
described. Different from the problems with variables ddlreepresentation, the problems
involving a discrete domain require the use of meta-haasisising operators which permit
making an operation between variables of binary repretienta There are different meta-
heuristic algorithms which perform the binary search ustfifferent philosophies. Such
algorithms have been successfully used in different ogtation problems and almost have been
adapted and implemented as part of the test vector genefatitunctional verification devices.

Also, a version of a Compact genetic algorithm was describ&idfferent from meta-
heuristics based on population this type of Compact metmistees use a probability vector
to represent the population over the set of statistic valu€his strategy reduces memory
requirements to implement the algorithm over a hardwarecdevThis principle is used in
the proposed binary differential evolution algorithm. hog, these concepts will be useful to
understand and propose the methodology presented in thehagpter.

Finally, meta-heuristics are methods that have been ugeprédlem solving where it is
difficult to obtain a good solution in a reasonable time, aadehan efficient performing of
search based on findings obtained in the evaluation of dessatutions. These characteristics
and given the previous work of the state-of-the-art allog/toypropose the use of meta-heuristics
to optimize coverage values making a proper search in tleeadésspace.

In the next chapter the proposed test generation methodevtesented. Besides, the meta-
heuristics used, coverage models, devices as well as tistraotion of the platform used for
the functional verification process is given.
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Chapter 5

Proposed Method

Search for test vector sequences in all binary space ofatligyistems is very expensive
because the extensive search is inefficient and it requive time to evaluate the device under
verification. Moreover, long binary sequences represeiq aroblem when different blocks of
bits are required in order to test the functionality. Theref to try to search appropriated test
sequences which exercise specific points is not a trividblpro; different CoverPoints can be
covered excessively representing a waste of time for thelaion and the points which were
not covered represent holes. These points could requieadmalysis because can represent
regions of the behavior which were not implemented durirmgdisign step.

In this research we propose the use of meta-heuristic #gaesiin order to maximize the
percentage of coverage points during the functional vatibo, reducing the number of holes
at the same time. Also, the functional coverage models majutinctionality of the device to
the CoverPoints, therefore, they represent the full bemafithe device under verification.

The method includes a binary Particle Swarm Optimizatid@@Palgorithm and a compact
binary differential evolution (Compact-BinDE) algorith[ii4]. The test generation method
directs the search using the coverage information obtaanéide end of the simulation. Also,
the proposed software platform is used in order to evall@eevice and control the interaction
between the DUV and the verification environment. Differénoim other methods based
on meta-heuristics, the proposed method uses functionarage models, proposed fitness
functions and these meta-heuristics in their binary versid he use of these versions is because
of the translation between the phenotype (test sequentekg colutions in the verification
problem and genotype (bit-strings) is implicit. This geyps is used by these algorithms in
order to generate test vector sequences which cover thé GeverPoints.

79



5.1. Proposed Compact Binary Differential Evolution Aligiom ﬁ

Other important aspect of this thesis proposal is the deweémt of a proposed soft platform
in order to communicate the device simulation tool with thgodthms. To do this, an
interface between the hardware description languagesagesystemverilog) and C language
was developed. Different modules to analyze, save and le#dcthe fithess functions were
implemented. An objective to do that was the automation eftimctional verification process.

In the present chapter the proposed method is describededVer, the use of the meta-
heuristic algorithms and the characteristics of the saftvpdatform are presented.

5.1 Proposed Compact Binary Differential Evolution
Algorithm (Compact-BinDE)

In this research we propose a version of a Compact binargi@ifitial Evolution algorithm
(Compact-BinDE) to maximize the functional coverage petage in the functional verification
process. Before describing the characteristics of the @otrapinDE algorithm, we need to
understand the relationship between the meta-heuristidsttze functional verification. To
begin, the directed functional coverage generation cannbterpreted as a heuristic which
searches a set of binary sequences to test the device behaing the coverage information
obtained at the end of the device simulation. Also, the sseqgtiences needs to reach a high
functional coverage percentage. In other words, in evergtion we expect to obtain a set of
test sequences which covers an increasing number of furattainaracteristics of the Device
Under Verification (DUV).

However, at the beginning, we do not yet know which set of saqas is the best, and the
number of possible options is increased proportionalijheodomplexity of the functionality of
the device. Due to this, it is necessary to use a techniquelwdan search the best options by
doing an efficient binary search.

Also, the principle of the Differential Evolution algoritihis based on the selection of three
test sequences done in a pseudo-random way. One of themssrche a base vector and the
difference between the other two binary sequences is addédst This difference between the
two binary sequences represents the new direction anddpewtich will be taken by the first
vector to produce a new possible solution. The new diredfioects the new vector towards
a better solution. At the beginning, the difference betwsemsequences is long because one
sequence is distant from the other. When more informatimbtained from the simulations,
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the difference is reduced and better solutions are founeveny iteration the new test sequence
is evaluated and compared with the best current solutioréadd which is the best. The best
solution will be replaced by a new sequence only if the newisege has an equal or better
fitness function value.

Based on these ideas, we propose a Compact Binary Diffatetiolution algorithm
(Compact-binDE) using the Differential Evolution algbmt and the compact meta-heuristics
principle. Moreover, in the proposed algorithm, a simplealobinary search is added. The
proposed version is based on the compact version of theigealgorithm and the compact
Differential Evolution algorithm described in the last pler, using a mutation mechanism
similar to the work [65] for binary representation. Also, a4l search based on a pseudo-
random changes of the best solution is added to improve #retsduring the evaluations of the
circuit. The local binary search modifies the best binarytsoh in order to try to improve the
solution, this is made through different probability vadyé2, 75]. Other techniques could also
be applied to make the local search.

It is important to mention the concept of mutation. In geheaamutation is defined as
an alteration or change. However, in Evolutive algorithmsnutation is seen as a change
with a random element or random value. This means that a eharijbe produced using
a probability distribution function (PDF). In this case tbBdfferential Evolution algorithm
uses a uniform distribution. The algorithehshows the pseudo-code of the Compact Binary
Differential Evolution algorithm (Compact-BinDE) withitéary Local Search.

In the algorithm6 PV represents the probability vector for each one bit N pasitbthe
sequencepl;, value is used to apply the mutation and crossover of BinDE@tdcal search for
each individualelite Is the best current sequenceRr is the value of the crossover probability
for each bit of the sequences/AX GEN is the maximum number of generations for the
algorithm.

The algorithm is described as follows: First, each elemérthe probability vector PV
is initialized to 0.5 and thelite test sequence is generated by means of these values. This
sequence represents the best current solution. Afterithafpseudo-random value rand[0,1]
is greater than thé’, value, then, the Mutation and crossover operations of thkeiential
Evolution algorithm are performed. In this case, three sageas: r0, rl, r2 are generated from
the PV vector. Then, for each bit of length, the CR value deitees if the mutation operation
is applied or if the element of the new solution will be reglddy the element oflite. The
mutation mechanism consists of an XOR operation betweendalz This binary difference
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Algorithm 6: BinDE/rand/1/bin version of Compact Binary Differentialvdution
algorithm (Compact-BinDE) with Local search.
G=0
PV initialization PV; ¢ =0.5Vii=1,..N
Generateslite by meanPV vector.
Evaluate the fitness functiof(elit_éi’g)
Calculate:for G =1 — MAX_GEN do
if rand;[0,1) > P, then
Generate three vector$ by mean ofPV vector
Generate a number pseudo-randomjly,,q = randint(1, D)
forj=1— Ddo
if rand;[0,1) < CROr j == jrqnq then
| X'jgi1=MODa(zr0,56+ (tr156 XOR m2jc))
else
| X’i,G{»l = elz?teiTG
end
end

else
| Local search is applied
end
if f(X"j.G41) > flelitej ) then
| ElitEj’C,LFl = X},G{»l
end
Update of VP vector:
forj=1— Ddo
if winner[j] # looser[j] then
if winner[j] == 1then
| PVl =PVl + x5
else
| PVIi]=PV]]
end
end

_ L
Np

end

G=G+1

forj=1— Ddo

if PV[j] > 0A PV[j] <1then
| exit = return

end

end
end

is added to the r0 vector and tiéO D, ensure that the result remains in the binary domain.
Then, the new sequence is compared withdhe to determine which is better. The winner
solution represents the sequence with the best fitness salli¢the looser solution represents
the sequence with the least fithess value. After that, the &¥Yov is updated according to
the comparison between the elements of the winner and |@adetions. The comparison is
performed as follows: For every element, if the element eftlinner solution is different from
the looser solution and this element is 1, then the valu®df is increased byl /N. If the
element is zeroPV; is decreased by/N. When any element of the PV vector is over 0 and
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less than 1, then a new iteration is performed. The stoprieritan be a specified number of
evaluations or a given coverage percentage.

There are different ways to perform the crossover and theatiout for the Differential
Evolution algorithm. The equatiorb(l) shows the basic way of the algorithm known as:
DE/rand/1/bin, the term “rand” (as in “random”) is used hesza the base vector is chosen
in a pseudo-random way. The value “1” is because only onereifice between two vectors
is added and the name “bin” is used because it is a binomialiton. TheXOR operator
calculates the binary difference between two sequencethard O D, operator maps the sum
of that difference with the chosen vector in the binary dom&iccording to the same criteria,
the configurations: DE/Best/1/bin, DE/Rand/2/bin, DEABbIn can be used as mutation
operations of the Binary Differential Evolution algorithm

DE/Rand/1/bin:

X041 = MODy(2,0 56+ (T ;6 XOR T9,0)) (5.1)

DE/Best/1/bin:
X’j,G-‘,—l = MODy(xpestjc + (156 XOR x9,5c)) (5.2)

DE/Rand/2/bin:
X'j 1 =MODs (20 6+ (216 XOR (5.3)

Trojc) + (T30 XOR %))

DE/Best/2/bin:

X'; 41 = MODy(2pest ;6 + (21,6 XOR (5.4)

$r2,j,G) + ($r3,j,G XOR $r4,j,G))

Each configuration can be implemented in the algorithm, ¢isalts of which are described
in section6.3. In the next subsection we describe the proposed test vgetaration method.
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5.2 Proposed test vector generation method

The test vector generation method used in this researchvasdhe necessary steps to
perform the simulation of the device using the input segasento do this, the method generates
sets of sequences through the use of the Compact Binaryréntial Evolution algorithm
(Compact-BinDE) and Particle Swarm Optimization (PSO)oathm. The algorithms use
fitness functions which are based on the number of holes aveted points obtained during
the run time simulation. This method focuses on the covepajets that are not completely
covered. The meta-heuristic algorithms use the fitnesgifumgalues to evaluate how good
the binary test sequences are. It is important to mentiorthiegbinary search is performed as
follows: During the first iteration, the initial binary tesequences are generated in a pseudo-
random way. Then, the Device Under Verification is verifiethgshese input sequences.
After that, the coverage information is processed and tha2et-BinDE or PSO algorithms
calculate the fitness value to evaluate the sequence, and passible solution is generated.
One advantage of the algorithm is that only saves the besdrdisolution for the next iteration,
thus reducing the memory requirements. The algorithpresents the steps of the test vector
generation method used in this research (using Compa&Baigorithm).

Algorithm 7: General method used to perform the generation of test veetprences
Configuration of the Device Under Verification (DUV).
Initialization of variables in the testbenches
Configuration of the verification modules.
Meta-Heuristic algorithm initialization.
while Stop condition is not meto

while Convergence criteria is not meb
Generate new test sequences based on the PV vector values.

If the criteria is met, then the BinDE mutation and cross@arerapplied. If the
criteria is not met, then a binary Local search is performed.

Evaluate the device.

Analyze the functional coverage information.

Evaluate the fitness function based on the set of coveragéspoi

Save the current best solution.
end

end

To configure the size of the test vector sequences, it is sape$o review the functional
device specification, the size of the connections betweerdévice and the vector generator
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module, as well as the testbenches information. In thisarekethe configuration of the length
and command fields for every test sequence was reconfigueethanual way.

The Verification process of our proposal involves severatluhes, the blocks diagram of
this process is shown in FiguBel A set of vector sequences is generated at the beginning of
the process. The coverage points are sampled during theedamulation. Each evaluation of
a set of sequences is performed by the ModelSim simulatarlionex OS. Once the functional
verification is finished, the coverage information is anatyZT his analysis determines how good
the sequence is. Afterwards, a new sequence is generatedobtained results are reviewed
based on the functional specification. This method usesdhierage information obtained at
the end of the simulation. This information is carried to tiected automatic test generation
module which decides if the sequence will be saved or not,gemerates a new sequence for
the device. The process is stopped when a determined cevpesigentage is reached or when
a specific number of iterations is met.

The representation of the test sequences (possible swiitgobased on a configurable fixed-
length binary string, which represents a set of test vedtorshe Device Under Verification.
Therefore, the best solution is a set of vectors which predibe best functional coverage
percentage. For example, in the case of a FIFO memory, eacteisee can be composed of
a sequence of 256 vectors of 8 bits to test the data registdrs sequence is based on the
number of used data in the instructions verified. MoreoWercommand fields were configured
in manual way based on the functional specification. The temu8.5shows the representation
of the sequences.

Pi = {171717271737"'71771} (55)
where:
7 C X, X ={0,1}° (5.6)

In the case of the UART bus device, the command fields of theesexps were configured in
manual way in order to disable invalid sequences duringutthetfonal verification. For example,
a reset command is composed by 8 bytes where every field skl specific value to restart
the device. An example of a binary sequence in order to wiitarp data at the device is a
sequence which is composed by 270 bits where 11 bits are ysedte command fields and
259 by binary data field. In order to check the data writtes itécessary to use a read sequence
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where 11 bits are used by read command field and 259 by datae ekt subsection the fithess
functions are defined. The fitness values are required teghilsearch during the generation
process.

5.2.1 Fitness functions

Different holes are produced when the functional verifaratis applied. Giving the same
weight to all test cases can be a bad strategy because if tiesdifunction is based only on
the total percentage obtained, then, the weight of the eladyhard cases will be equal. Due
to this, sequences which cover common points and sequentueb wover hard cases will
not show significant differences. This means that the cgarere of the algorithms will be
slow, producing a long simulation time. Even, in the case dééce with small complexity of
functionality the simulation time can represent tens ofutes. Due to this, it is necessary to
focus on the points with more holes to build the fitness fumgtiusing the information obtained
from the all points. The first step is to cover most of the poimsing the total percentage.
The second step is to cover the sets of CoverPoints with nidsiecholes, maximizing their
coverage.

The first fithess function is described by the Equaiofwhich is defined as the reciprocal of
the percentage of holes to the set of coverage points. lcdisis, the fithess values are focusing
to cover the maximum number of current holes in that set ofiggoi This is an example of a
fitness function using the not covered points (holes) peacgnfor a specific points set.

1

f1 - MAX(Peh

) (5.7)

Where:

P,;, is the coverage percentage of holes in a specific set of points

The second fitness function is defined in the equdii@n It includes the percentage of current
covered bins for all points and the not covered points in ifipesets. The fitness function is
defined as the reciprocal of the sum of the percentage of binsaveredP,;, in a specific set of
CoverPoints and the percentage of covered bins for therataber of coverage poin3; . in
theDUV.

1

= MAX(———
f2 (Peh+PTc

) (5.8)
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Where:

P,., = percentage of not covered bins in specific points.
Pr. = percentage of current covered bins in all points.
Where:

" bins mon covered in specific points

P, = 5.9

4 ; total number of bins (®-9)
" number of bins covered

Pr, = 5.10

T ; total number of bins ( )

In the next subsection the proposed verification platforeeiscribed. The designs and the
algorithms were verified using the connection designed dactional verification between C
language and SystemVerilog with the implemented designs.

5.2.2 \Verification platform

The verification platform was constructed by an interfacevben C and SystemVerilog
which connects the DUV with the verification environment @diles used for the different
algorithms interacting for the test generation method. fdpéint steps are performed during
the evaluations in the platform. When the simulation finssheeset of statistic information is
generated. This information includes the obtained cowepaycentages from the simulation,
the number of evaluations, the best, the worst, and the g@etaverage percentages, the
configuration of the parameters, the number of errors, ambtéist solutions in each experiment.
All this data is saved in text files.

Figure5.2shows a block diagram of each module of the verification systeed to perform
the experiments. The first block shows the Design Under atibn (DUV). It is implemented
using Verilog language. To perform the functional verificatprocess a test environment in
SystemVerilog was implemented and connected with the DWAénT a functional coverage
model was proposed using the functional specification apddgvice implementation. This
model was implemented in SystemVerilog language. The nlexklrepresents the simulator
tool. In this case the Modelsim v6.5 simulator was used téoperthe device simulations.

When a simulation is made, the coverage information iseedd, analyzed and sent to the
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Compact-BinDE algorithm (particle swarm optimization andry genetic algorithms). Then
the fitness function value is obtained based on the coverdgamation and assigned to test
sequence. Finally, the best sequence is saved.

Evaluation of coverage points is performed according tdithes in the specification of the
device. These values are taken from the test generationlmattar simulation of the device.
A monitor module is used in order to review that data obtaiaethe output is according the
expected behavior.

The simulation platform has the necessary times in order@ibfar the evaluation of every
device test. Also, it is necessary that functions are coathby the platform to test the device
each time by the test sequences algorithm generation.

Statistic files are saved into text files by the software ptatf Figure5.3 shows a schema
of the designed software platform in order to perform thecfiomal verification process.
The connection between the device and the C language modademade using a "Direct
Programming Interface (DPI) interface”. The verificatiomvieonment uses the interface to
communicate with the external modules, control the sigaatsdeliver the information to the
device.

Verification platform is composed by the following modules:

e Test vector generation module. This module contains thé&utive algorithms (genetic
algorithm, compact differential evolution algorithm andrficle swarm optimization
algorithm). The functions of this module are: calculate fitrgess values, analyze the
possible values and produce a new test sequence.

e Monitor Module. This module is composed by monitors whicleahthe inputs and
outputs of the device under verification. When the functiomaification is made, the
data obtained is reviewed in order to check the correct fonatity.

e Statistic module. It saves the statistic information whbbtained from the simulation
of the device. The data includes: coverage informatiort, besst and average solution,
configuration parameters among others.

e Connection interface. Connects the coverage model aneémmgaitation with verification
environment and the algorithms.

e Coverage models and implementation module. In the first, ddsecoverage model
represents the functionality by mean coverage points. Tudel is used in order to
review if the implementation meets the functional spediitca

In the next subsection the way to apply the evolutive alparg over the proposed platformis
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Figure 5.3. Schema of the designed platform in order to perform funetioerification.

described. In this research the experiments were made wsigjfferent devices (A type FIFO
memory and a UART bus ip core). An objective of this reseasdio propose a new method to
generate test sequences maximizing the functional cosersigg the PSO and Compact-BinDE
algorithms.

5.2.3 Applying meta-heuristic algorithms over the proposd platform

The meta-heuristic algorithms were implemented over tlopgsed platform using the C
language. Every binary sequence was introduced at the theedaput according to the correct
times controlled by the C-SystemVerilog interface. Difier from other applications using
evolutive algorithms, the total time required to evaluaterg test sequence depends directly
of the time used to make the device simulation and the comguésources. For instance, an
evaluation of a medium size device can require hundreds lifedonds. Therefore, the meta-
heuristic algorithms need to optimize the resources makimggod search over a big binary
search space.

In this work we implemented the binary Genetic algorithmpdoy Particle Swarm
Optimization algorithm and a binary version of Differehttavolution algorithm. These meta-
heuristic algorithms were included in the Directed Autoimdest generation module of the
proposed platform. In order to use each meta-heuristicrifttgo a set of configuration
parameters should be set.

Figure5.4shows the steps of the genetic algorithm used on the verdicptatform. In this
case, every individual represents a set of test vector seggeAt the beginning, the individuals
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(test sequences) which constitute the population araliziéid, then, each of them are evaluated
and chosen based on the fitness values. After that, the @esand mutation operators are
applied in order to produce the offspring. Finally, the kssdtition is compared with the other
individuals of the population and the best is saved. The fsgtieps is performed again while a

stop condition is not met.

To generate the initial population

Y

y |To evaluate the fitness function for each individual
~ (Modelsim Simulator)

Y

To select the indivuals based on aptitude .

v

To apply genetic operators (crossover and mutation)
in order to generate the offspring.

Y

To select the best current solution and compare
with the others.

Stop condition

Figure 5.4. Flow Diagram binary Genetic algorithm algorithm used fongmating sequences of vectors
on the proposed verification platform.

On the other hand, the binary Particle Swarm Optimizatigo@hm was applied using the
same proposed platform. Figubeb contains the main steps of the PSO algorithm applied on
the simulation platform for the device evaluation. For thligorithm each particle represents a
test sequence for the device which maximizes the functiooatrage. At the beginning, the
population constituted by a set of particles is initializédter that, every particle is evaluated
and the fitness values are saved. These fitness values arareowith their last fitness values
and the best position for each patrticle is saved. The bestieoland the new velocity for each
dimension (bit position) of every patrticle are calculatBohally, if a stop condition is not met a
new iteration is repeated.

Each time the design is evaluated, and the algorithms reth@wnumber of holes that
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START

To generate the initial population

Y

> To evaluate the fitness function for each particle
(Modelsim Simulator)

Y

To compare the current fitness value with
the previous value.

y

To get the best solution of the population

v

To calculate the speed of each particle dimension
and assign the value to each bit.

Stop condition

Figure 5.5. Flow Diagram PSO algorithm used for generating sequencesabbrs.

exist and the points that have already been trained by thes&itfunction. These find the best
sequences for such values and likewise generates bettaioiual coverage values.

Moreover, the proposed compact binary differential evolualgorithm was implemented in
the directed automatic test generation module. Fi§uBeontains the main steps of the Compact
Differential Evolution (Compact-BinDE) algorithm whick used in the simulation platform in
order to evaluate the devices. Each vector represents & test gequences at the device input
which maximizes the functional coverage. When simulat®omade, the coverage percentage
is feed-backed. This information is analyzed and delivéoetie test generation module. After
that, the Compact Differential Evolution algorithm obtthe fithess function values based on
the coverage information; then it generates new test veetquences. In the next subsection the
modeling of the digital systems will be shown. To do this we tlse coverage points and the
functional specification of the devices.

5.2.4 Modeling the Device Under Verification

The design of digital systems can represent an art becagib@than intention is implicitly in
the device implementation. It means that different impletatons can meet the same expected
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To generate the initial population (Only
four individuals).
y

> Generate and Select rl, r2 and r3 and generate
a new solution.

v

To evaluate the fitness function for one individual
(Modelsim Simulator).

v

To evaluate new solution.

v

To compare the current fitness value with
the previous value.

Stop condition

Figure 5.6. Flow Diagram Compact-BinDE algorithm used for generatiaguences of vectors.

behavior which was proposed in the original specificatidmese implementations are according
to the human criteria and the hardware resources.

In this research, we use functional coverage models bas#teanain events (CoverPoints)
of the device implementation. It means that the models asedan the original proposed
intention (functional specification). Figure7 shows a UART bus and a coverage model
obtained from the specification. In this case, every sigaptasents a CoverPoint which is
included in the Coverage Model. Therefore, the set of Cavi@tB represents the coverage
model. Each of these points contains the relevant eventsiiioav monitoring the behavior of
the digital circuit during the injection of test sequencader different scenarios. The coverage
model is connected with the implementation and the monitodufe which checks if every
condition is correctly exercised through the clock cycl8ath are simulated in the software
platform. The results generated by the device are compaitbdive expected results based on
the functional specification.

The implementation of coverage models was made in Systaloyéanguage, which allows
combining the hardware implementation with other langsageh as Verilog, SystemC, etc. In
the case of the coverage model of the UART bus device it cas#85 bins, which are monitored
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| Digital System Specificationl

ﬂ Adress[0:255] = {0,1,2,...,255}  Int_write[0:1]={0,1}

Int_wr_data[0:255] = {0,1,2,...,255} Int_rd_data[0:255]={0,1,2,...,255}

uart2_bus.top .
- t addres
uart_top.v  Int_addres o X Y Y2 Int ant{0:11=40 1
int_ wr data (] @ Qo Q=< nt_gnt[0:1]={0,1}
. Wr_data
ser_out uart_tx.v int_write .
s A nt write 5, -
int_read ® i ) T reseti011={01}
int read o
uart_parsery| [intrddata o @ @ .‘-\
uart_rx.v - int_req > ® I~ Int_read[0:1]={0,1}
&) int_gnt . . .
jint.ont o,
cock 5 .\ Int_req[0:11={0,1}
baud_gen.\ Functional Coverage Model
DUV Ser_in[0:255]={0,1,2,...,255} Ser out={0,1,2,....255}

Figure 5.7. Model representation of a Device Under Verification (UARISpusing coverage points to
describe the behavior.

and stored in coverage reports. Moreover, the values of saghence are stored at the end of
each device evaluation.

5.2.5 Calculating and analyzing Functional Coverage

It is important to mention how the Directed Coverage was anmnted is this research.
In general, the test cases and the analysis of the covertmgenation are developed by hand
because after the device evaluation the coverage repertsaaed and analyzed in order to focus
on the current holes and write new test vectors.

Figure 5.8 shows the Directed Coverage Functional Verification whilperformed in a
manual way. In this case, the verification engineer mapsuhetional specification and the
implementation in order to build a functional coverage mod¥ter that, a set of test cases
are written by the engineers. Then, the device under veiditas simulated by means of a
software tool and the coverage information is saved ints.filden, the information is analyzed
in order to check which CoverPoints have been covered andwivints need to be covered
representing holes in the verification.

Different from the last verification method, in this reséuatice proposed platform performs
the Directed Coverage Functional Verification process im@omatic mode. In this case, the
model is proposed in a manual way; however, the test vectergenerate by means of the
evolutive algorithms. Moreover, the analysis of the cogeraformation is reviewed and used
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Functional Specification

Start E>

u m f stop condition
m/ g 2 -LA atd:

coverage percentages

Start Testcases Simulations execute Functional Coverage Analyze results -Test sequences
results

Figure 5.8. Manual process to perform the Directed Coverage Functidgeddication.

in order to calculate the fitness function. After that, theéareeuristic algorithms take the fitness
value of every possible solution and generates a new teseseq to deliver it at the device
input. Figure5.9 shows the Automated Directed Functional Verification psscesed in this
research.

Start

D

Functional Specification
U ; l if stop condition
Generate new test vectors

is met?
- A
) 0 = End
v =] .
-Functional
Analyze results
Start Testcases Simulations execute Functional Coverage y coverage percentages

results -Test sequences

Figure 5.9. Automated process to perform the Directed Coverage Furalthéerification.
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Important features of the proposed system are the autordatice evaluation and the
calculating and evaluating of coverage information acicgydo the proposed fitness functions
at the beginning of the process. These values are used tmévdhe binary test sequences and
determine the search for new sequences to increase theagevelues.

In order to discard the case where the all points have the seaght, the points were
divided in different sets. The CoverPoints were divided etsswith different weights; For
example, the sets of points = pq, ps, ps3, ..., p, Can be adjusted with a vector of weights
H = wy,w2,w3, ..., w, in order to focus in the main Coverpoints. Therefore, wherdévice is
evaluated the functional coverage percentages will besemted by most of the points included
in the specific set. Equatidhllwas used in order to calculate the functional coverage #r th
CoverPoints. The coverage is used to calculate the fithessidms after simulations.

i Wikp;

C9="5,

(5.11)
In the next subsection the HDL simulation will be describaldp, main characteristics about
the configuration for the devices will be commented.

5.2.6 HDL Simulation of the Device Under Verification

The control of times and data transfers between the devidéhenverification environment
is performed by a software tool (modelsim v6.5 simulator)digital system can contain very
complex modules working at the same time. The modules psodéferent signals. Due to
this, the evaluation of the operations needs to be monitaneldsaved in a correct way using
appropriate software tools.

The first step was to combine the coverage model, device imggigation and each of the
verification environment modules. After that, the impleteeitest-benches inject the sequences
at the digital system input from the binary vector generatiodule.

The Modelsim v6.5 software from Mentor Graphics company wsed to simulate the
digital systems. Another simulator tool could be used witle trestriction of interface
compatibility (Direct Program Interface ) DPI. This intack allows programs to combine
high level languages like C, C ++, Matlab, among others wéldtvare description languages
(SystemC, SystemVerilog, Verilog) that allow interactimgh the implementation of the digital
system. The set of modules that comprise the meta-heugréstit other algorithms as well as text
files were implemented in C language unlike the verificatiovilenment which is implemented
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in SystemVerilog and Verilog languages.

Figure5.10shows the implemented process of Directed Coverage Funattigerification.
The schema is composed of coverage models based on theohalcsipecification. These
models are connected with the device implementation by roétre verification environment.
Therefore, when the test sequences are injected at theedtweccoverage information is
delivered to the coverage analysis module which selectgdhms values and finally, the fithess
values are calculated. The values are used to direct thehs&athe interesting points, and at
the same time, covering the characteristics in order to miaei the total functional coverage.
The interaction between the device simulation and the rhetaistic algorithms represents the
hybrid method to generate the test sequences.

Synchronization of the signals time intervals for drivilg DUV were controlled using the
values according to the specification of each device. Suotraoallows injecting the binary
sequences while verification environment monitors the @ye points. The main task here is
to simulate the device behavior under the required scehatieach clock edge.

Figure5.11shows the graphical interface of the Modelsim simulatoduee the evaluation
of the device test vectors. Each sequence of vectors isduntex into the device in each
simulation. Different from manual simulations the deviseautomatically verified. The
simulator tool exercises the DUV by means of different signlarough the clock signals and
the changes of the input data.

5.3 Resume

This chapter describes in detail the proposal for the testovegeneration method. The
method is based on the application of meta-heuristics t@rmgea test vector sequences that
maximize coverage values obtained by performing the foneli verification process. This
process is known as directed coverage functional verifinati

In this research a new binary differential evolution alom based on binary domain
operators as well as on the principle of compact genetiailtgo was described. The algorithm
contains few configuration parameters, which allows apgiyt in different scenarios making
small changes in the configuration and needs few memoryresetequired for implementation
in a hardware device. In addition, other meta-heuristiesumed, such as: the binary genetic
algorithm and particle warm optimization algorithm. Thesgorithms were implemented in the
test generation module.
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Figure 5.10. Implemented process to perform the Directed Coverage FunattVerification.
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Figure 5.11. Modelsim simulator used in the experiments.

In addition, different aspects of the proposed method wesciibed among which are:
The steps in the sequence generation during the deviceadwadufitness functions used, the
modeling of hardware devices as well as the simulation aatlyais of results at the end of the
simulation.

A software platform was implemented for functional verifioa. This software platform
uses an interface for connecting the device under verificatverification environment and
external modules containing algorithms and analysis fanst coverage obtained. These
modules are responsible for conducting the process of ggoerof tests aimed at coverage.

In the following chapter, experiments and results obtaumgdg the proposed scenarios with
different configurations of parameters are presented. Téie gontribution is the application
of compact-BinDE and PSO algorithms and proposed fithesgiturs in order to maximize the
coverage values.
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Experiments and Results
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Chapter 6

Experiments and Results

In order to show the performance of the proposed test geoeratethod we take two
different devices (FIFO memory and UART-IP bus core). D#f& from problems where
the evaluation consumes short times the functional vetidicacan require more than tens of
milliseconds to evaluate the hardware devices. Even dewdtemall size can require bigger
times than problems of software. The delay generated bystrais of evaluations represents a
considerable difference with respect to other problems.

The device behavior can be expressed by set of variablestsgvexpressions. It means,
these variables can take a set of values in order to perfamgtiitns described in the functional
specification. The test sequences at the input of the deeicergte changes of the signals and
then exercise the device under verification. In this contiad relationship between the input
sequences and the events (CoverPoints) is not trivial. ,Alge to the device implementation
can affect the holes produced after the verification. To $douset of points can improve the
performance of the verification and reduce the number ddfitems of the algorithms.

In this chapter, the case study as well as the experimentdwitlescribed in detail. In
the first section the devices for functional verification dhe characteristics of the proposed
coverage models are given. After that, the configuratiotinget and the characteristics of
the computer equipment which was used to perform the expetsnare presented. In the
next section, the results obtained using the compact difteal evolution algorithm (Compact-
BinDE). After, experiments using the Genetic algorithmytieee Swarm Optimization are
described. Then the results of the comparison with a geafgarithm, a pseudo-random test
generation, Compact-BinDE and a Particle Swarm Optinozagigorithm are shown. Finally,
there is a discussion of the results.
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6.1 Case Study

This case study was developed to show the main charaatsristithe Compact-BinDE
algorithm and Particle Swarm Optimization algorithmsslimportant to mention that different
from the conventional genetic algorithms, the CompactEEnncludes the compact genetic
algorithm principle based on the statistical values of eafcthe elements of the population.
Also, the elitism strategy is used, which outperforms thselts obtained when using the basic
genetic algorithms [70]. The added differential evolutfmmciple allows us to produce new
solutions which approach a global solution by means of tfferénce of two sequences added
to a third sequence chosen from the population. One adwanfabge compact-BinDE algorithm
is that it allows us to save only three or five individuals,@pdndent of the dimentionality of the
problem, thus reducing the memory requirements even ifithielem has a high dimentionality.

In this research two different devices were used to anaha@é¢rformance of the algorithm.
To perform the functional verification a UART bus IP core anslyachronous FIFO memory
were used. These devices were obtained from the Opencages paey were implemented
in Verilog language and the testbenches were designed iter8Yysrilog. According to
the platform described i5.2.2the configuration and the experiments were made using the
functional specification. The experiments were performsohgithe proposed verification
platform on the Fedora Core Linux operating system.

The first device is a Synchronous FIFO which has a bidireatibns and chip select, write
enable, read enable, output enable, empty flag, and full ftaaks. In this case, for the FIFO
memory, 784 bins were used from the coverage points whidhdec address, input data, output
data, rd_en, wr_en, full flag, empty flag, wr_cs, rd_cs. Alido the complexity of this device
is low, it is a common device which can be part of more complexiaks such as UARTS,
processors, etc.

The second device consists of a UART bus IP device, which isnaerter of a UART to
bus IP core. This core can be used during initial board debggy as a permanent solution
when high speed interfaces are not required. The interrsaistdesigned with an address bus of
16 bits and a data bus of 8 bits. The core contains a UART tratdatck and a receive block
which share a common baud rate generator and a command. patseparser supports two
modes of operation: text mode commands and binary mode cadsndext mode commands
are designed to be used with a hyper terminal software arlleeaasy access to the internal bus.
Binary mode commands are more efficient and also supporttaaffread and write operations
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with or without an automatic address increment. Using thectional specification and the
implementation of the UART bus IP device, 785 bins were usechfl2 coverage points. The
stimulus time and clock signals were configured accordinth¢ospecification and successful
initialization of this device. In the next section the experntal setup is described.

6.1.1 Experimental Setup

To analyze the performance of the algorithms, we proposeet afsexperiments using
different scenarios. In this research, “scenario” meanstafconfigured parameters for the
Meta-heuristic algorithms. According to each experimeséation, every scenario was run a
number of times. Independent from the scenario, the cordigur and initialization of every
device were performed using the functional specificatiorebeh one.

For each scenario, different parameters were changed, ia. the Compact-BinDE
algorithm: crossover CR probability value, probabilityuapP,, for local search, the population
size, number of.S evaluations for local search, total number of evaluatiord; &he crossover
and mutation DE functions. In this research “mutation” nearchange in each new generated
solution using a pseudo-random value, accomplished bygdbe difference of two sequences
to another sequence, chosen according to the structureeoCtmpact-algorithm as was
explained in5.1 Also, two fitness functions which were introduced in th2.1were used to
evaluate the test sequences during the experiments. Thegwod algorithm uses these functions
to evaluate how good a possible solution is based on the ageatata obtained in the set of
chosen points.

To present the obtained results, different values wereyaed| including the best coverage
percentage, the worst coverage percentage, the averaggagey and total time of the
simulation. Also, in each section of the experiments, d#ifé constraints were changed. For
example, we only used one test sequence as a constraint iseastien and we used two
sequences in another, which provides an increase in théhlefgossible test sequences.

Experiments using the same devices in the proposed veficptatform were performed
in order to make the comparison between the Compac-BinDé&righgn and other algorithms,
such as pseudo random test generation and the generalrvefdite genetic algorithm. The
objective was to show the performance of the algorithmscéérag test sequences which cover
all coverage points. The same fitness functions were used thedexperiments. Modifying
the different parameters of each algorithm, different itssare obtained, however, the PSO and
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Compact-BinDE algorithms reached the best coverage value®st of cases. In the case of
the genetic algorithm, the following parameters were medifipopulation size, crossover and
mutation percentages, and number of evaluations. Due tfathé¢hat the genetic algorithm is
a meta-heuristic based on population, it requires the atialu of all individuals or all possible
solutions in each iteration, which produces a slow converge

To perform the experiments the following characteristicdie computer used were: Fedora
Core 18 Linux operating system, Processor : AMD Athlon(th¥3 440, cache size: 512 KB,
cpu: 3 GHz. RAM memory: 4Gb. The simulator used was: Modelgarsion 6.5. In the
next subsection the set of experiments is described. Biitescenarios were used and the best
scenarios are presented.

6.1.2 Experiments and Results with Compact-BinDE Algoritim

In this section, we proposed a set of experiments usingrdiftescenarios and devices. In
this research a “scenario” means a set of configured parasrfetethe algorithms. According
to each experimental section, every experiment was run aeunf times. Different values
are shown including the best coverage percentage, the smretage percentage, the average
coverage, and total time of the simulation. Also there affedint constrains used in each
section, for example, we used only one test sequence as @ainhs on section and we used
two sequences in another, which provides an increase iretiggh of possible test sequences,
etc.

In the first section, a FIFO memory was used as a Device Unddiic#tion (DUV). The
experiments were realized taking one test sequence of 2&18dbthe length of each possible
solution. This constraint reduces the possible optionsicanably. Because of the reduction
of possible options, a higher number of evaluations is megui The experiments were made
changing the following parameters of the Compact-BinDEoatgm: The number of total
individuals (population size), the type and thd? probability value of BinDE crossover, the
total number of evaluations and tlii, percentage value for the applied local search.

The Table5.1shows the parameters for 4 best scenarios using differéietr&atial Evolution
structures. Each column represents a set of parametergféaedt DE structures (/rand/1/bin,
/best/1/bin, /best/2/bin, /rand/2/bin). The first row skoWR probability value of BinDE
crossover. The population size is shown in the second rodtlae P, values are shown in
the third row. The stop criteria was 15000 evaluations dythe verification process. Each
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experiment was run 30 times for each scenario.

Table 6.1.Parameters of four different scenarios using Compact-Bialgorithm

Compact-BInDE |\ 4/1/bin /best/L/bin /best2/bin /rand/2/bin
Parameters
CR value 0.00065  0.00065  0.00010 __ 0.00010
Population size 500 500 500 500
P 0.002 0.002  0.0025 0.0025
Iterations 15000 15000 15000 15000

Table 6.2 shows the obtained results for each scenario which weraidedan Table6.1
The first column shows the number of scenarios used in ordpetform the generation of
test sequences. The second column shows the total numbealofgons used. The best and
the worst coverage values are shown in the third and fourtimuus respectively. The fifth
column shows the average coverage percentage calculatedte 30 runs for each scenario.
Finally, the total time used to perform the verification gss is shown in the sixth column.
The algorithm reached values over 99 percent coverage ihahtse experiments with 15,000
evaluations as stop criteria. Reviewing the obtained teswke can see that the second scenario
produced the best coverage percentage running the samguatitn 30 times.

Table 6.2.Coverage values obtained with four different configuragiohthe Compact-BinDE algorithm

Scenario| Evaluations Best value Worst value Average Time (min)
1 15000 99.023 96.875 98.059 1,688
2 15000 99.414 97.265 98.164 1,675
3 15000 99.218 95.70 98.092 1,697
4 15000 98.828 97.460 98.196 1,717

The second part consisted of running experiments usingrdift population size. In this
case for the experiments, thieF /rand/1/bin version of the Compact-BinDE algorithm was
used. Tablé.3shows the set of parameters for four of the best scenarias Uibe stop criteria
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was 15000 evaluations. Different population sizes werel fiseeach scenario: 450, 500, 600,
800. Different CR crossover values were used and each scevas run 30 times.

R

Table 6.3. Parameters of four best scenarios using /rand/1/bin veddithe Compact-BinDE algorithm
with different population size

Compact-BINDE |, -\ 4/1/bin /rand/L/bin frand/L/bin /rand/1/bin
Parameters
CR value 0.00065  0.00060 0.0006 0.0005
Population size 450 500 600 800
P 0.0005 0.0005 0.0005 0.005
LS evaluations 1 1 1 1
Iterations 15000 15000 15000 15000

Table 6.4 shows the obtained results for each scenario of Tél8e The total number of
evaluations, the best, the worst, and average coveragenage values, and the average of the
simulation time are presented in the second, third, fodifth,and sixth columns respectively.
In this case, the first and the fourth scenarios produceddabedverage values of percentage of
coverage. In the first scenario, this reached 99.218% u&agntlividuals.

Table 6.4.Values of Coverage percentage obtained with different |adjon size

Scenarios Evaluations Bestvalue Worst value Average Time (min)
1 15000 99.218 96.875 98.092 1.67
2 15000 99.609 96.484 98.170 1.68
3 15000 98.828 96.484 98.053 1.66
4 15000 99.218 96.093 98.19 1.67

If the length of each possible solution is increased to twirtest sequences (4096 bits),
then the performance increases considerably, and theithigoreduces the total time needed
to obtain test sequences to cover all coverage points. Tthef garameters for the four best
scenarios is shown in Tab&5. In this case the stop criteria was 5000 evaluations.

Table6.6 shows the obtained results with the scenarios present@.itn the first column
the average of the number of evaluations for each experih@mbg the 15 runs is shown,
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Table 6.5. Parameters of four best scenarios using a solution lengtham$equences

Compact-BINDE | | - \d/1/bin /best/1/bin /best/2/bin frand/2/bin
Parameters
CR value 0.0015 0.0015 0.0015 0.0015
Population size 500 500 500 500
P 0.005 0.005 0.005 0.005
LS evaluations 5 5 5 5
Iterations 5000 5000 5000 5000

and the total best coverage value is shown in the second col&mally, the average time (in
minutes) is included in the third column. In these experita¢ime algorithm reached 100% with
the functional coverage as coverage metric. Due to theaseref the length of sequences, the
algorithm produced better percentages, thus reducingrtteerteeded for the verification.

Table 6.6. Coverage values and total time for each scenario usingreliffenutation functions for the
Compact-BinDE algorithm

Average evaluations | Bestvalue Average Time (min)
1553.00 100.00 0.5248
1429.13 100.00 0.3645
1491.13 100.00 0.3820
1706.20 100.00 0.4373

Also, different scenarios were used to analyze the perfocemaf the algorithm in more
complex devices. In these experiments a UART-IP core dewva® used as a Device Under
Verification using the Compact-BinDE algorithm. Talél& shows the parameters for the four
best scenarios using different configurations (rand/1/bast/1/bin, best/2/bin, rand/2/bin) of
the algorithm. The CR crossover values are shown in the &gt the population size values
are presented in the second row. Thepercentages for the local search are shown in the third,
and the number of evaluations for local seafch is presented in the fourth row. Finally, the
number of evaluations is shown in the fifth row. In this cake, length of each test sequence
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was reduced to one sequence of 2072 bits as a constraintsEacario was run 15 times. The

stop criteria was 6000 evaluations.

Table 6.7.Parameters of four best scenarios using the UART-IP device

Compact-BINDE |\ - 4/1/bin /best/L/bin /best/2/bin /rand/2/bin
Parameters
CRvalue 0.00080  0.00050  0.00050  0.00060
Population size 600 600 600 600
P 0.005 0.005 0.005 0.005
LS evaluations 5 5 5 5
lterations 6000 6000 6000 6000

Table 6.8 shows the obtained results with the scenarios presentedhbte 8.7 using the
UART-IP core. The first column shows the number of scenamaisthe second column presents
the total number of evaluations for each scenario. The thestyorst, and the average coverage
percentage are shown in the third, fourth and fifth columspeetively. Finally, the average

time of simulation for each scenario

is presented in thensiaiumn. In this case, the fourth

scenario reached an average coverage value of 97.5%, uan@3lminutes as a average time

from 15 runs.

Table 6.8.Obtained results for four scenarios using Compact-BinRferdthm

Scenario| Number of evaluations Best value Worst value Average Time (in)
1 6000 97.916 97.005 97.421 133.860
2 6000 98.177 96.223 97.291 136.002
3 6000 98.567 95.833 97.005 135.868
4 6000 97.786 97.135 97.578 122.634

Different scenarios were used to analyze the performantteed€ompact-BinDE algorithm
with an increase in the length of each possible solution.|@ihgth of each possible solution was
increased to two sequences (4144 bits), fihditness function for a set of points, and the stop
criteria was decreased to 1500 evaluations with differddtc@ssover percentage values. The

110



@
= 6.1. Case Study ﬁ

scenarios were run 15 times. Tald® shows different parameters for 4 best scenarios. Every
column represents a different structure of the compacbBBimlgorithm. The crossover CR
values are shown in the first row, while the second row showgtipulation size. The third row
presents the probability value for the local seaf¢gh The number of evaluations of the local
search and the total number of iterations are shown in therfpand fifth rows respectively.

Table 6.9.Parameters of the Compact-BinDE using a length of two sexpsgewith the UART-IP device

Compact-BINDE |, - 4/1/bin /best/Lbin /best/2/bin /rand/2/bin
Parameters
CRvalue 00015 00015 00015  0.0015
Population size 600 600 600 600
P, 0005 0005  0.005 0.005
LS evaluations 5 5 5 5
lterations 1500 1500 1500 1500

The obtained results are shown in Tabl&Q The number of scenarios is shown in the first
column. The number of evaluations used as stop criteriadg/slin the second column,while
the best, the worst and the average coverage percentages \ak shown in the third, fourth,
and fifth column respectively. The average time is shownesstkth column. According to the
results, when the fithess values were focused in a set ofminhost of cases the algorithm
reached 100% using different scenarios, with average ageevalues over 99%. When the
length of the possible solutions was increased, the timeradisced considerably. In this case
the fourth row shows the best average of coverage percentagg 29.216 minutes. The first
and the fourth scenarios produced the best averages ofagm/ealues.

The Compact-BinDE algorithm produced good solutions eliengh only one test sequence
is used to cover the set of coverage points. When the lengihingeeased to two or more test
sequences, the total time was reduced considerably. Thiksehow that averages of coverage
percentages over 99% were reached with less time than wiedernbth of one sequence was
used for every possible solution. One improvement will bedenby modifying the original
coverage model and reviewing the verification environmétetr ahe verification. Figureé.1
shows the coverage values obtained according to the nurhbealoations using th¢; fithess
function and the DE/rand/1/bin configuration for the Comi@iaDE algorithm verifying the
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Table 6.10. Results obtained using different configurations of the CactyBinDE algorithm to test the
UART-IP device

Scenario

Number of evaluations Best value Worst value Average Time (i)

1

2
3
4

1500
1500
1500
1500

100.00 99.479
100.00 99.348
100.00 96.223
100.00 99.869

99.895
99.661
99.895
99.921

21.634
16.588
17.877
29.216

UART-IP core. Six hundred individuals, and 6000 evaluatiaere selected as stop criteria. In
this case, it is important to say that the constraint usedanlasgth equal to one sequence for
every possible solution. According to the obtained resalii®r 3000 evaluations the coverage
percentage was over 95%, and the percentage was around 98Pt stop criteria was

reached.

Coverage Percentage

100

‘ ‘ ‘
Best coverage value for evaluations
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0 1000 2000

3000 4000 5000 6000

Number of Evaluations

Figure 6.1. Coverage values obtained according to the number of ev@hsaising thef; fithess function

and the DE/rand/1/bin configuration for the Compact-BinDgoathm and the UART-IP core.

Figure6.2 shows a comparison of different configurations of the ComtigatDE using the
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UART-IP core as Device Under Verification. According to thragh, the coverage percentage
values are increased in different ways when the crossouse ¢a is changed. In the first 2000
evaluations there are different coverage values, but; tftd, the coverage percentages reach
values over 98% of coverage.
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Figure 6.2. Comparison of the Coverage Directed Test Generation usffegeht configurations.

Figure6.3 shows the coverage percentage using a length equal to 2resgu@l,144 bits)
for every possible solution with the Compact-BinDE aldumit The horizontal axis shows the
number of evaluations used to obtain the coverage percemages which are shown in the
vertical axis. In this case, the configuration for the alton was DE/rand/1/bin.

The comparison between different crossover CR values usheg DE/rand/1/bin
configuration is shown in Figuré.4. According to the obtained results, the scenario with
CR = 0.0016 converged quickly. Even in this case, the scenario usiRg= 0.0014 converged
more slowly but this reached 100% before the others. The QR etermines the degree of the
mutation and crossover applied to produce a new solutiors faktor can help to increase the
speed of the convergence of the algorithm, but it can alsstgek on a local solution. The same
parameters of the local search were used for the three sagnarwhich 100% was reached in
the first and second cases.
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Figure 6.3. Coverage Directed Test Generation percentages for diffaéterations number using 2
sequences and a CompactBinDE/rand/1/bin configuration.

Also, the comparison betweeiil and /2 fithess functions was performed using the UART-
IP bus core. Figur®.5shows the comparison betwegh and /2 fithess functions using the
DE/rand/1/bin configuration for the Compact-BinDE algomit. The horizontal axis shows
the number of evaluations and the vertical axis represdr@scoverage percentage values.
According to the obtained results, using fitness functfdn the algorithm obtains better
coverage percentages than fitness functf@nand the convergence is reached more quickly
in most of cases. The reason is that the values obtained ftoas$ functionf1 are inversely
proportional to the set of generated holes during the foneliverification. It means function
f1 focuses on the set of generated holes on run time. Otherdifoastions can be proposed
to improve the performance of the algorithm. In the nextisach Comparison between the
Compact-BinDE algorithm, a general version of the binargedie algorithm, and a pseudo-
random generation will be presented.
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Figure 6.4. Comparison of Coverage Directed Test Generation with miffe CR values using 2
sequences and a CompactBinDE/rand/1/bin configuration.

6.2 Experiments and Results with other Meta-heuristic
Algorithms

In addition, to compare the performance of the compact miffeéal evolution (Compact-
BinDE) algorithm, other algorithms were used. The genelgorhm, the Particle Swarm
Optimization algorithm and the pseudo-random generatierewsed in the proposed platform.
These algorithms were implemented on the proposed pladiohdifferent parameters were set
to configure the different scenarios.

Beside, the proposed test generation method uses thel@®8stiarm Optimization algorithm
in order to verify the devices. The binary version of PSO atgm was proposed by Keneddy
[60]. This version was implemented on the proposed veriGiogilatform. Moreover, the simple
version with elitism of Genetic algorithm was implementedrtake a comparison with the other
algorithms.

For the experiments with meta-heuristis fithess function was used. Sequences of 4144
bits were used to verify the UART device. Also, test sequsrafdength 4096 bits were used
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Figure 6.5. Comparison of Coverage Directed Test Generation usingf@rdift fithess functiong1 and
/2 and sequences of 4144 bits as the length of each possiblgospland CompactBinDE/rand/1/bin
configuration.

to verify the FIFO memory. Different scenarios were set talgre the results and get the
best scenarios based on the above conditions. In the cake gknetic algorithm population
sizes, crossover and mutation percentages were changie ¢ase of the PSO algorithm, the
globalbest and localbest topologies were implemented giffarent scenarios and the results
were compared. The same coverage models and devices wdrtouaé algorithms. The next
subsection presents the experiments and results obtasirgglthe genetic algorithm.

6.2.1 Experiments using a binary Genetic algorithm

Also, the genetic algorithm was implemented in the propop&tform. Different
experiments were performed using different scenarios.abh escenario, the population size,
crossover and mutation percentages were changed. The UaRdedand FIFO memory were
used as devices under verification. Also, 30 runs were madg §i$ fitness function and the
number of evaluations as stop criteria. According to this,éxperiments were made and some
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of the best scenarios are presented in this section.

Table6.11shows the parameters of the genetic algorithm to verify tR©Fmemory. Each
column represents a set of parameters for 3 best scenatiedir$t row contains the crossover
percentages which were set to 0.5 in the three cases. Theionub@rcentages are shown in
second row. The third row shows the population sizes. A stsibh universal sampling was
used as type of selection in all cases, this is shown in theifagow. Finally, the number of
evaluations is shown in the fifth row. For these experimefsuhs were made with 5000
evaluations as stop criteria.

Table 6.11.Parameters for experiment using binary Genetic algorithinf-fFO memory

Values 1 5 3
Parameters
Crossover Percentage 0.50 0.5 0.5
Mutation Percentage 0.0012 | 0.0018 | 0.0015
Population size 100 200 125
Type of selection stochastic universal sampling yes yes
Number of Evaluations 5000 5000 5000

Table 6.12 shows the results obtained using the given scenarios frdmle Ball Each
column shows the coverage values obtained using each szeriEne best, the worst, and
the average of coverage percentages are given in the ficstindend third rows respectively.
Average of the number of evaluations and average time in t@snare given in the fourth and
fifth rows.

Table 6.12.Results obtained using the binary Genetic algorithm foid-lkremory

Final values Scenariol | Scenario2 | Scenario 3
Best value 99.60 96.67 98.43
Worst value 94.92 92.77 94.33
Average value 97.29 94.86 96.41
Average evaluations 5000 5000 5000
Average Time (min) 1.079 1.071 1.065
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According the obtained results, when 100 individuals weseduas population size, the
algorithm reached higher coverage percentages than lpggetations. Using the same number
of evaluations the average value of coverage percentagesiftg this scenario was 97.29%.
Even the algorithm not reached the convergence with 500i@wans, in this scenario the
algorithm reached coverage percentages higher than 97%6. itAlvas observed that mutation
percentages produced different results even without ahahgther parameters. For example,
using values of: 0.0012, 0.0015, 0.0010 the coverage pexges were close using all other
parameters equal. On the other hand, when 125 were used ¢it@nario) the average of
percentages around 96.41% were reached. Different fronasheases, in the second scenario
using 200 individuals the algorithm covered the Covermoghdbwer than the other scenarios. Is
important to do mention that the number of iterations depedthe number of test sequences
from the chromosome (short lengths). It means, if less egtisnces are chosen to test the
device, then the algorithms can need more iterations te@lsegod solutions.

On the other hand, the genetic algorithm was used with @iffeconfigurations in order
to verify the UART device, thereby, experiments with eachtleé different scenarios were
performed. Tablé.13 shows the values of the parameters for three best scenailng the
genetic algorithm wittf 1 fitness function. Each column shows the parameters for eactaso.
The crossover percentages are shown in the first row, thendemw shows the mutation
percentages, the population sizes are shown in the thirdiradly, the type of selection and the
number of evaluations are given in fourth and fifth rows resipely. In these experiments, test
vector sequences of 4,144 bits were used. 30 runs for evafigooation were performed and
the stop criteria was 6000 evaluations.

Table 6.13.Parameters for experiment using binary Genetic algorithm

Values 1 5 3
Parameters
Crossover Percentage 0.5 0.5 0.5
Mutation Percentage 0.001 | 0.0015 | 0.0003
Population size 150 200 100
Type of selection stochastic universal sampling yes yes
Number of Evaluations 6000 6000 6000

Table6.14shows the results obtained in each of the scenarios. Thedwsshows the best
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coverage value obtained in all experiments for each sagntéae second row shows the worst
coverage value and the third row shows the average of thebestage percentages obtained in
all runs; in the fourth row the average of the number of evadna is shown, the fifth and sixth
rows show the average time value in minutes and hours regglgctor this set of experiments
the third scenario presented the best results. The bestag®/ealue obtained was 99.73% with
an average of coverage of 98.78% and an average time arogr@42#inutes (4.1 hours). The
results showed that one hundred individuals were needeshtthrpercentages over 98%. One
disadvantage is the increase in simulation time due to agreamber of individuals. In the
case of the first and second scenarios the coverage peresma&ge less than third scenario.
Using the first scenario, coverage percentages around Qwés&reached. When the second
scenario was used lower coverage percentages were obtaiisa] the total time required to
make each experiment was over 4 hours. The total time retjigr@irectly proportional to the
number of iterations, the simulation tool and computingueses used. In the next subsection
experiments using the Particle Swarm Optimization alparitvill be described.

6.2. Experiments and Results with other Meta-heuristioAlgms

Table 6.14.Results obtained using the binary Genetic algorithm

Final values Scenario 1| Scenario 2| Scenario 3
Best value 99.479 98.43 99.739
Worst value 95.833 95.05 96.875
Average value 97.513 96.727 98.78
Average evaluations 6000 6000 6000
Average Time (min)  245.127 254.807 246.94
Average Time (hrs) 4.085 4.246 4,115

6.2.2 Experiments using a Binary Particle Swarm Optimizaton (PSO)
algorithm

The Particle Swarm Optimization algorithm was used to perfthe experiments using the
UART bus and the FIFO memory. Different scenarios to testntfeghod were used in the
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experiments, velocity, number of particles and number ajhi®rhoods were changed. The
topology of PSO algorithm wabestandgbestusing thef1 fitness function for each scenario,
30 runs were performed.

In the fist part a FIFO memory was tested using the proposeatbpta Table6.15shows
the configuration parameters of the PSO algorithm for thifeth@ best scenarios using test
sequences of 4096 bits in order to verify a FIFO memory. Eastbnen shows the set of
parameters for each scenario. The first row shows the nunfbearticles, the number of
neighborhoods is shown in the second row, the maximum andmm velocity for each
particle are shown in the third and fourth rows, the fifth rdvows the maximum value of
(positive random number), the type of topology, the numlbexperiments and the stop criteria
are given in the sixth, seventh and eighth rows respectively

Table 6.15.Algorithm parameter values used for PSO scenarios with Ftietory

Parameters Scenariol | Scenario2 | Scenario 3
number of particles 9 9 3
number of neighborhoods 3 3 1
Velocity max 8.0 8.6 8.5
Velocity min -8.0 -8.6 -8.5
¢ max 2.0 2.0 2.0
Topology Ibest gbest gbest
Number of experiments 30 30 30
Stop criteria 5000 5000 5000

Table 6.16 shows the average of coverage percentages, the average oiuthber of
evaluations and the average time obtained using the thexeasos from Tablé&.15 In this
case, test sequences of 4096 bits were used to test the FIFOmndReviewing the results, these
showed that in most of cases, the best coverage percentags vhtained with these parameters
were around 100%. Using 5000 generations as a top criteni@ Particle Swarm Optimization
(PSO) algorithm had better performance when the velocipeaoficles were between 6.0 to 9.0
because the algorithm converged quicker when the partateity is kept in those ranges.

Experiments were also conducted using the global versidS@ algorithm and a UART
bus core with a stop criteria of 6000 evaluations. TahlE7 shows the parameter values for
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Table 6.16.Results obtained for experiment 1 using a FIFO memory

Final values Scenariol | Scenario2 | Scenario 3
Average value 100 100 100
Average evaluations 4960 3811 2092
Average Time (min) 1.121 1.30 0.5339

three of best scenarios. For these sets of parameters 3venexarried out for each scenario.
Each column represents a different scenario. The numbeartities is shown in the first row.
The second row shows the number of neighborhoods, the maxemd minimum velocities are
shown in third and fourth rows respectively. The maxim#émalue is shown in the fifth row.

Finally, the number of evaluations is shown in the sixth row.

Table 6.17.Parameters for Particle Swarm Optimization algorithm gisitJART device

Parameters Values Scenario 1 Scenario 2 Scenario 3
Number of Particles 16 16 9
Number of neighborhoods 4 4 3
Max velocity 9.0 8.5 8.5
Min velocity -9.0 -8.5 -8.5
¢ max 2.0 2.0 2.0
Number of evaluations 6000 6000 6000

Table6.18 shows the results obtained using the three scenarios ofSed®yorithm from
Table6.17. The best, the worst and the average of coverage percerdagehown in first,
second, and third rows respectively. The average of the purmbevaluations is shown in
the fourth row. Finally, the total times in minutes and hoars shown in fifth and sixth rows
respectively.

Using test sequences of 4,144 bits, the algorithm reachexhge of coverage values over
98%. It was seen as increasing the velocity parameter antbthergence was quicker. One of
best scenarios has a velocity over 8.5 and 9 particles wittighborhoods.
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Table 6.18.Results obtained using the Particle Swarm Optimizatioorétym with a UART bus ip core

Final values Scenariol | Scenario2 | Scenario 3
Best value 100.0 100.0 100.0
Worst value 98.95 98.95 100.0
Average value 99.80 99.71 100.0
Average evaluations 5757.86 5764 3697.83
Average Time (min) 236.38 233.25 155.81
Average Time (hours) 3.93 3.88 2.59

It is important to mention that the Particle Swarm Optimizatalgorithm generated levels
over ninety nine percent of functional coverage when thisdua set of 9 particles with 3
neighborhoods and a length of 4,144 bits. In the case ofeiqparticles, percentages reaching
more than ninety eight percent from six thousand algoritlemegations as stop criteria were
obtained. The results showed that at the beginning of theritthgn execution, percentages
of over eighty percent were quickly reached. This is due iisalizing the particles pseudo-
randomly which generated different test vectors coverirapynbins of the coverage model.
After that, the particles move very quickly over functionadrification space. In the next
subsection a comparison between the algorithms will besptes.

6.2.3 Comparison between algorithms

Experiments were performed using the pseudo-random gemeragenetic algorithm,
particle swarm optimization and Compact-BinDE algorithim. the first part, 30 runs were
made in order to test the FIFO memory. In the case of the psertom generation, test
sequences were generated based on the coverage informlbtaoned in every iteration. After
every iteration if a new generated sequence covers newspthiah it replaces the current best
sequence. For the Genetic algorithm the parameters weas $eflow: Population size = 100,
Mutation percentage = 0.0012, Crossover percentage = ariiDa length of 4096 bits. In
the case of PSO algorithm the parameters were: Number dtleart 3, Neighborhoods =
1, Viar = 8.5, V,in = -8.5, ¢ = 2.0, Topology = gbest. For the Compact-BinDE algorithm
the parameters were set : CR= 0.995= 0.0025, Population size = 400 and a local search =
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pseudo-random. After run the experiments, the coverageeptrges obtained were reviewed
and the best scenarios were analyzed.

Table 6.19 shows the obtained results using the last parameters oflgloeitams. Each
column represents different parameters of the algorithnhe Mest, worst and average of
coverage values are shown in the first, second and third respectively. The average number
of evaluations and the average time in minutes are givereifairth and fifth rows. According
the results, the genetic algorithm reached better reshdts the pseudo-random generation. In
the case of the Compact-BinDE algorithm, in most of the sdesdt reached higher coverage
percentages than the pseudo-random generation and gaigetithm. On the other hand, using
the Particle Swarm Optimization algorithm percentagesiaol00% were obtained. In the
best scenario, the algorithm reaches high coverage pagesteducing the total time used to
perform the number of evaluations.

Table 6.19. Results obtained using the pseudo-random generationyybf@anetic algorithm, the
Compact-BinDE algorithm and PSO algorithm to test FIFO mgmo

Final values pseudo-random Binary GA Compact-BinDE BinPSO

Best value 94.14 99.60 100.0 100.0
Worst value 91.79 94.92 98.04 100.0
Average value 92.74 97.29 99.63 100.0
Average evaluations 5000 5000 4717.66 2092
Average Time (min 1.05 1.079 1.065 0.5339

In the second part, experiments using different scenariese wun 10 times for each
generation method. The Device Under Verification used wallART-IP core. Tables.20
shows the parameters for the best binary Genetic algorit@nasio using 5000 evaluations as
stop criteria. The fitness function wgsd, and a length of 2 input test vectors (4,144 bits) was
used. The first row shows the crossover percentage for eadib®solution. The second row
shows the mutation percentage, which, in this case meangetitentage of change for each
element of a sequence by means of a pseudo-random numbér adgtermines that probability
value. The population size, type selection and maximum rasrabevaluations are presented in
the third, fourth and fifth rows respectively.

In each case, 5000 evaluations were performed to reachdpesteria. Tables.21shows

123



6.2. Experiments and Results with other Meta-heuristioAlgms ﬁ

Table 6.20.Parameters for experiment using binary Genetic algorithm

Values -
Parameters Binary GA
Crossover Percentage 0.5
Mutation Percentage 0.0003
Population size 100
Type of selection stochastic universal sampling
Number of Evaluations 5000

the comparison of the results obtained using the Binary Geakyorithm, the pseudo-random
generation, and the Compact-BinDE algorithm algorithnise best, the worst, and the average
of coverage values obtained during the experiments aremptes in first, second and third rows
respectively. Finally, the average of the number of evadnat the average time (minutes) and
average time in hours are shown in the fourth, fifth and sigths; respectively. The results
showed that in the best scenario the Compact-BinDE algoribbtained 100% using fewer
evaluations than the other two algorithms. The values ofpdrameters were changed in the
experiments, which showed that the results obtained wighbihary Genetic algorithm were
very competitive, and in the best scenarios, using the Cotripi@aDE algorithm better coverage
percentages were obtained using less the number of ealsati

Table 6.21. Results obtained using the binary Genetic algorithm, pseaddom generation and the
Compact-BinDE algorithm with the UART

Final values Binary GA pseudo-random Compact-BinDE

Best value 98.95 95.83 100.0
Worst value 96.09 94.66 97.91
Average value 98.12 95.10 99.30
Average evaluations 5000 5000 4910
Average Time (min) 218.31 207.36 203.73
Average Time (hrs) 3.63 3.45 3.39

In the case of the pseudo-random generation, differentrageepoints were covered very
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quickly because the generation of the test sequences isdegsdex, and so the total generation
time is good. However, it was observed that when certain rea@ee percentages are reached,
the algorithm improves the coverage percentages very glowich means that the algorithm
repeatedly covers the same sets of coverage points, thdsiggng a waste of time in the
simulation. Different from the pseudo-random generatithre proposed Compact-BinDE
algorithm searches new test sequences based on the besitaegguence, and it saves the
values of each bit position of test sequences using the cctrgpaetic algorithm and differential
evolution principles. Due to this, the algorithm can proglbetter results with fewer evaluations
than needed using pseudo-random generation.

The binary Genetic algorithm reached better results thapsleudo-random generation. The
Genetic algorithm is based on the population because it iatteantage of a variety of different
solutions to produce the new population. In the experimetitserent scenarios were used
for the binary genetic algorithm. According the resultg tinary Genetic algorithm reached
solutions over 96%. in most cases. One advantage of the iGegorithm with respect to
other generation methods, is that it uses fewer computeuress to perform the generation
of test sequences. However, when the Compact-BinDE afgornwas used, higher coverage
percentages were reached in the best scenarios. The CeBipBd algorithm only replaces
one test sequence of the population if, and only if the netsiguence is better. Also, the best
directions direct the search to better sequences, andgbetaim covers more holes every time.
Therefore, high coverage percentages can be reached viekjygqu

In order to compare the four algorithms using UART-IP buseodifferent scenarios were
used. 30 runs were made for every scenario of each algoritiiire pseudo-random test
generation was implemented into the proposed verificatiatfggm. The genetic algorithm
was used with 100 individuals, 0.5 as uniform crossovergrgsege, a mutation percentage of
0.0003 and a selection using stochastic universal samplimg PSO algorithm was used with 9
particles, 3 neighborhood§;,., = +8.5,V,,;, = -8.5, ¢4 = 2.0, W,,,0.=1.0,W,,.;,=-1.0. The
parameters of the Compact-BinDE algorithm were: CR = 0.99557 0.0025, Population size
= 450, Number of evaluations = 6000, version = Rand/1/binallaearch = pseudo-random.
Table6.22shows the obtained results. Each column shows the resuléséi algorithm. The
best, worst and average of coverage percentages are shdha finst, second and third rows
respectively. Average of the number of evaluations is shimwthe fourth row. The fifth row
shows the average time in minutes and the average time iis l®given in the sixth row.

The Compact-BinDE algorithm can generate sequences faer adkvices using few
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Table 6.22. Results obtained using the pseudo-random generationyybf@anetic algorithm, the
Compact-BinDE algorithm and PSO algorithm with a UART devic

Final values pseudo-random Binary GA Compact-BinDE BinPSO
Best value 95.833 99.73 100.0 100.0
Worst value 94.791 96.87 99.21 100.0
Average value 95.182 98.78 99.84 100.0
Average evaluations 6000 6000 5502.74 3697.83
Average Time (min 255.15 246.94 223.41 155.81
Average Time (hrs) 4.252 411 3.72 2.59

parameters, which can be changed for other constraints, dile to the ability of the algorithm
to represent the population as a probability distributibe,algorithm samples some values from
the probability vector to obtain new test sequences. Thegethe algorithm can be implemented
with less hardware requirements than a basic version ofittayGenetic algorithm.

The results show that in the best scenarios the CompactBilQorithm reached better
results than the Genetic algorithm and the pseudo-randomrgion using a lower average of
the number of evaluations. Therefore, the algorithm can eaal choice for generating test
sequences to perform the functional verification of devices

On the other hand, the Particle Swarm Optimization algorifiroduced higher coverage
percentages than pseudo-random and Genetic algorithnss. id\the best scenarios the PSO
algorithm reached higher coverage values than the ConpaBtE algorithm. Using different
scenarios, the algorithm can produce coverage percentage®8%. During the experiments
different scenarios were used. Changing the populatianhaiz the number of neighborhoods
the algorithm changed the performance. Depending of tigthest sequences different number
of iterations were needed in order to reach high coverageeptages.

6.3 Discussion

We can discuss the results obtained in the experiments ds. pkirst, according to the
results, the Compact-BinDE algorithm reached high coveradues with appropriated fithess
functions focusing on special CoverPoints on run time satioih. The strategy used increased
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the number of covered points evaluating every possibldisolwith the fitness function. When
the evaluation focused on the set of holes generated dwimgime, more functionality was
exercised because the weight of the evaluation was highénégoints not full covered on run
time.

Coverage percentages over 98% with different scenarios ve@ched using the Compact-
BinDE algorithm. Also, the algorithm uses a local searchripriove the binary search using the
current best sequence. It is important to mention that whendngth of test input sequences
was increased, the average of coverage percentage obteasenler 99% for the best scenario,
and the required time was reduced because the number obpitiesi was increased. However,
it could be interesting to search minimal lengths for théitgsut sequences which can test most
of the coverage bins. Different from previous works, oneotiye of this research proposes one
strategy to generate test sequences using the proposeaCeBiIpDE algorithm.

Different population sizes were used in this research aad#st scenarios were presented
to show the performance of the test sequence generationothetifhe results show that
the algorithm can generate good test sequences with anybsearch selecting appropriate
sequences during the functional verification during thetmme. Moreover, a suitable number
of individuals should be used to obtain better results wiifieicent scenarios. Independent of the
dimentionality of the problem, the algorithm saves onlywa feimber of individuals to obtain
good results, thus saving computer memory resources. Icetbe of the number of individuals
who are saved, the amount of individuals is different fromttbtal number of individuals of the
population. It means that different from the meta-heuwsshased on population, the Compact-
BinDE algorithm saves the statistical information of theatmumber of individuals into the PV
vector. This information represents the best elements @brimdividuals who constitute the
total population. To produce the offspring, the individkiate sampled from this PV vector and
only some of them are saved in memory to produce the new thais every time. For example,
in the case of the basic configuration DE/Rand/1/bin, fodividuals are saved in memory to
produce a new individual every time using the crossover anthtion from the differential
evolution principle. Therefore, the test generation mdtt@n be implemented in a device with
reduced memory resources.

One advantage of the proposed algorithm is that few parasess be modified according
to the DUV and the constraints. The strategy is based on therdubest sequence, and it
saves memory for each bit position of the test sequenceshwanoduces good results. On the
other hand, setting different values of crossover proiighfil’ ) and Local Search probability
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P, with different scenarios, the algorithm can produce betteerage values than the pseudo-
random generation and a basic genetic algorithm.

In the second part experiments using the genetic algoritlene ywerformed. In this case,
different parameters were changed: population size, ovessvalue, mutation percentage,
number of evaluations. After that; three of the best scesarere shown in the results section.
In the case of UART device Average of coverage percentages @% was reached using
population sizes between 100 and 200 individuals. AlsoF&@Rhemory was verified using the
Genetic algorithm. In this case, percentages over 97% wataned in one of best scenarios.
Also, the evaluation time for each experiment was shortan the evaluation time used by the
UART device, around 1 minute using the computer resourcssrited in sectiorb.1.1 This
depends of the number of evaluations as stop criteria.

On the other hand, in the third part when the Particle Swarrin@gation algorithm was
used to verify a FIFO memory using test sequences of 409&bds5000 evaluations as stop
criteria. Percentages around 100% were obtained in thesbestrios using the verification
platform. Different scenarios were tested and it was olexkthat the global topology showed
better results than the local topology. The algorithm shibg@od results using the global-best
topology why the algorithm converged quicker covering 100%

Also, the PSO algorithm was used with a UART-IP device. s tase the algorithm reached
coverage percentages over 98% for best scenarios. In tbesar®s the average of coverage
percentages was around 99% using sequences of 4,144 bitesnthan 6000 evaluations.
The results were very competitive with respect to the Compéterential evolution algorithm
and genetic algorithm. Even in the best scenarios the RaBiwarm Optimization algorithm
converged quicker. In order to control the convergenceiaitialization mechanism was used.
Based on the current coverage percentage and velocitysvafube particles. This produces
the re-initialization of the velocity when the total covgeapercentage is kept in a determined
number of iterations. Using the FIFO memory percentagearard 00% were reached for
the best scenarios. Moreover, different scenarios were, iis@ scenario with 9 particles and
3 neighborhoods the algorithm produced coverages of 100%enVdifferent velocities were
used the convergence was modified. In the next section theusians of this research will be
presented.
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Chapter 7

Conclusions and future work

With the development of this research, good results weradd using the Compact-BinDE
and Particle Swarm Optimization algorithms. Using the desi(UART bus and FIFO memory)
it was observed that the proposed method is an alternativgenerating sequences of test
vectors. Also, the use of fitness functions and coverage lma@d@ improve the performance
and reduce the number of iterations required to achievefuigttional coverage percentages.

The automated functional verification is performed by thernaction between the hardware
implementations and the verification environment over angok tool. Due to this, a verification
interface was designed in order to connect the devices uretdication with other modules
performing the directed coverage functional verification.

A Compact binary differential evolution algorithm was poged. This algorithm is based on
the Compact Genetic algorithm and differential evolutitgoathm principles. Different from
other versions, the algorithm uses binary operators fasoeer and mutation. It means that the
genotype representation is mapped directly to genotypedierdo perform a binary search. So,
statistical information of the population is used in orderéduce the memory requirements to
implement the algorithm.

In this research, a binary Particle Swarm Optimization atgm was implemented to
generate test sequences for the devices. Different sosnagre used and the results were
analyzed. The use of this algorithm produced competitigalts with respect to pseudo-random
generation, genetic algorithm and Compact-BinDE algarithDue to this, this algorithm
represents a good alternative for test generation withexgp other algorithms.

In this chapter the conclusions obtained after conduchigresearch will be given. Further
work for the improvement and application of the proposetigeseration method for functional
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coverages in digital systems is mentioned. Finally, thetrdaution of this research and
publications in journals and international conferencdkhy presented.

7.0.1 Conclusions

In this thesis a test sequences generation method was gedelo order to maximize the
functional coverage on the functional verification of digisystems. The development and
conclusions of this research can be summarized in diffetages.

1.-

w
.I

The first was the design of a software platform, whichvedld carrying out the interaction
between the algorithms in a verification environment andiaevmplementations.
Different from the manual methods where human intervenimmeeded after the
simulation is finished, in this case, the interaction is madan automated way. This
means, after the device simulation, the information isveée#id, analyzed and the fitness
values are calculated. Therefore, a new test sequencesedjinto the device and the
process is repeated until a stop condition is met. Moredlerplatform includes a set
of options to configure the meta-heuristics, coverage nspdelvice implementations, as
well as various options for storing the statistics for thewdations and tests. This platform
was used to perform the experiments and test the proposéadiet

The second stage involves the design of a module in oodewrifigure the test-benches,
coverage models, meta-heuristic algorithms and veriioathvironment for the devices.
For this, state-of-the-art current dynamic functionalfieation techniques were reviewed.
Such techniques are based on device simulation and analfys@verage information
to produce new device evidence. This scheme was used tormetfe simulation,
monitoring, and reviewing of the information during the @evstimulation. During
the experiments, different problems were presented, ssicogk synchronization and
module configuration of the hardware devices. The chaiatitey of the devices were
configured manually. The module was designed using C larggaagd SystemVerilog.
It allows configuration of the Genetic algorithm, Particle&m Optimization algorithm
and Compact-BinDE algorithm. Also, other functions can deal in order to improve
the proposed method.

In the third stage, a new version of a compact differéetralution algorithm (Compact-
BinDE) for binary representation was proposed. This is thasethe compact genetic
algorithm and the differential evolution principles. Thakyorithm uses the statistical

132



Gl

information for each position of binary strings and mutat@nd crossover operators
between such sequences. Different from the binary gengtcitnm the Compact-BinDE
algorithm uses the statistical information as populatmprioduce individuals reducing
memory requirements independently of the dimensionafitg@problem. This algorithm
was implemented in the proposed verification platform astetk with the two devices
(FIFO memory and UART) using similar verification conditfoto the other algorithms.
The Compact-BinDE algorithm reached coverage percentagexs99% using a FIFO
memory. Moreover, in the best scenarios it reached coveralges around 100%. In
the case of the UART bus device the algorithm reached pexgestover 98%, and for
the best scenarios average percentages around 99% wenededkhe results obtained
were competitive with respect to pseudo-random generatengenetic algorithm and a
Particle Swarm Optimization algorithm.

The fourth stage consisted of the implementation, tesi aomparison of the
algorithms: genetic algorithm, Particle Swarm Optimiaati(PSO) algorithm and
Compact differential evolution algorithm (Compact-BinDHO do this, state-of-the-
art binary versions were reviewed, since unlike the vessitor real representation,
binary versions allow us to directly map the phenotype toghrotype in the binary
representation, which is implicit in the functional ver#ton problem. These algorithms
were tested using different scenarios in two different devi( UART bus and a FIFO
memory). In the case of the UART when the genetic algorithns wsed, functional
coverage percentages over 96% were obtained. In the bewrsex®eaverage coverages
over 98% were reached. According to the results, when thalptipn size was increased,
the convergence of the algorithm was slower in producinge@ye percentages under
the scenarios around 96%. Due to this, the number of evahsivas larger in order
to increase the coverage than the Particle Swarm Optiraizaigorithm and Compact-
BinDE algorithm.

In the case of PSO algorithm, there are some important aspechention. First, the
global version obtained better results than the local warsi most of cases. In the case of
the global version, the influence of the best global partictee population produced than
the others moved quicker to the solution generating coeepagcentages around 100%
in a FIFO memory. In the best scenarios this algorithm shostebperformance than
pseudo-random generation and genetic algorithm, requiess iterations to reach high
coverage percentages. In the case of the UART device, apvgrercentages over 98%
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were reached. In the best scenarios coverage values of 1@d&wbtained. It was shown
that when velocity values for every particle were increasieel PSO reached percentages
over 94% very quickly. However, after that, more evaluaiovere required to reach
higher percentages. Therefore, the results using Pa8iglm Optimization algorithm
were very competitive with respect to the genetic algoritdmmd the Compact differential
evolution algorithm.

5.- Finally, in this research two fitness functions were psgd in order to maximize the
coverage percentages using meta-heuristic algorithmsording the results th£l fitness
function produced better results tha2 when it was used in the GA, PSO and Compact-
BinDE algorithms. The fitness functions focus on sets of @@wits which are selected
using the coverage obtained after device simulations. ,Alse device behavior was
modeled using coverage models. These models are compo§abyPoints which were
splitin sets. It was observed from the experiments thatdmpin all points the algorithms
required more iterations to reach high coverage percestdyee to this; different weights
were assigned to the sets of points because when all povesiasame weights the same
cases can be covered a lot of times representing a waste simtlaéation time.

There are different highlights of this research, betweemthve proposed:

A new test sequences generation methottased on Directed Coverage functional
verification of digital designs. For this, a hybrid verificat method philosophy was used, that
is, the combination of verification based on simulation & Hardware devices and the use of
meta-heuristic algorithms (Compact-BinDE, PSO algorghmas made. Based on the results,
it was observed that the meta-heuristics represent a feadtbrnative in order to generate test
sequences, these can be implemented to interact with tlieagon environment, and therefore
to perform the functional verification of digital devices.

A new version of Compact binary differential evolution algaithm was proposed. This
algorithm is based on the principle of compact algorithmisictv unlike the algorithms based
on the population, uses vectors with statistical valuegpoasent the population, and it is not
necessary to store in memory all individuals. The algorighoduced competitive results when
applied to generate sequences of binary vectors. Accotditing results when the algorithm was
used with different configuration scenarios, it was obsgétxat the algorithm reached higher
functional coverage percentages than 98% using an UARTrmlia & FO memory.

Compact meta-heuristics were used for first time Such is the case of the compact
differential evolution algorithm. The performance was gatitive in comparison with other
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meta-heuristic algorithms such as genetic algorithm amticaswarm optimization. Different
from previous works, the main advantage of the compact fnetsaistic algorithms is that they
require less memory resources for implementation. The eatbfferential evolution algorithm
requires few configuration parameters and reduces memasuagption.

A verification platform was implemented to perform the functional verification e
This platform consists of modules for the use of the algarghand the connection with the
ModelSim Simulator v6.5. The coverage information andstiat results are stored for analysis
and used in the verification process. This platform allowsrtplement coverage models as
well as the algorithms for generating test sequences. Qtheirlation tools can be used with
certain restrictions of support for the Direct Programminggrface (DPI) in order to connect
the hardware description languages and C language.

A module for generating test sequencessing meta-heuristic algorithms was implemented.
This module allows setting the parameters for each algaréhd used in conjunction with the
device under verification to be tested. The module intenattsthe verification environment,
analyzes the coverage values obtained, and evaluates elaetated test sequence.

Coverage modelsvere implemented for devices under verification and a giyalas used
based on the division into sets of points focusing on the meleyant points and increase the
values of total coverage quicker. In addition, fitness fioms were proposed to evaluate how
good is each solution.

7.0.2 Future Work

As future work of this research the following lines of resdeare proposed:

e The use of an extensive set of bench-marks in order to conipa&eneta-heuristic
algorithms in functional verification of digital circuits.

e The combination of formal with meta-heuristic methods for functional verification.

e Implementing parallel meta-heuristic algorithms and makperiments with different
digital systems.

e The automatic generation of coverage models based on thefusiferent coverage
metrics.
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7.1. Contributions ﬁ

7.1 Contributions

An improved methodology in order to generate optimal functional coverage in digital
systems.

A new schemain order to verify the functionality of digital systems bdsen a hybrid
method (combination of meta-heuristic and dynamic methatigch allow outperforming
the original designs based on the verification.

A hybrid method which performs the Directed Test Vector Generation basezbarpact
meta-heuristic algorithms, coverage models and costifumt

The application for the first time of compact meta-heuristics algorithmshe Directed
Functional Verification.

7.1.1 Published papers in Journals

e Alfonso Martinez Cruz, Ricardo Barrén Fernandez, Herdn iNolLozano, Marco
Antonio Ramirez Salinas and Luis Alfonso Villa Varga&utomated Functional Test
Generation for Digital Systems Through a Compact Binary Diferential Evolution
Algorithm. Journal of Electronic Testing. Vol. 31, Num 4. pp 361 - 380pt8mber
2015. DOI: 10.1007/s10836-015-5540-6

7.1.2 Published papers in conferences

e Alfonso Martinez Cruz, Ricardo Barron Ferndndez and Heroaolild Lozano.
Automated Functional Coverage for a Digital System Based oa Binary Differential
Evolution Algorithm. 1st. BRICS Countries Congress (BRICS-CCI), Recife, Poeto d
Galinhas beach, Brazil, September 2013.

e Alfonso Martinez Cruz, Ricardo Barron Fernandez and Heroaolild Lozano.
Automated Functional Coverage for a Digital System Based orParticle Swarm
Optimization algorithm.. Design Automation Conference (DAC), San Francisco, CA
, June 1-5, 2014.

e Alfonso Martinez Cruz, Ricardo Barron Fernandez and Heroaolild Lozano.
Automated functional coverage directed for complex digith systems. Very Large
Scale Integration (VLSI-SoC), 2014 22nd International feoence on. Playa del Carmen,
6-8 Oct. 2014. pp 155 - 156
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e Alfonso Martinez Cruz, Ricardo Barron Fernandez and Herénlidd Lozano.
Automated Functional Coverage Model for Digital Systems. CORE 2014, 140

Congreso Internacional en Ciencias de la Computacion. ddeRdistrito Federal, 12-14
November, 2014.
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Glossary

Application Specific Integrated Circuit. It is an customized integrated circuit for a particular
application. In other words that is intended to be used faiiqadar use.

Circuito integrado de aplicacion especifica (ASIC). Es wouifo integrado personalizado para
una aplicacion particular, en otras palabras que se preteil@ar para uso particular.

Aptitude. Is a assigned value to each individual and indicates how gosdcompared to
others.

Aptitud. Valor que se asigna a cada individuo y que indica tauebueno es respecto a los
demas.

Artificial intelligence. A name for a paradigm in which people attempt to elicit ingglhce
from machines.

Inteligencia Artificial. Nombre de un paradigma en el cuajéate pretende generar inteligencia
desde las maquinas.

Assertion. A given property that is expected to hold within a specificigies

Afirmacion. Es una propiedad dada que se espera que se cumypieEserfio especiico.
Attribute . In the context of a device, it is a parameter or charactemgtan input or output of
an interface. In the context of coverage model it is a paramet dimension of the model.
Atributo. En el contexto de un dispositivo, es un parametoam@cteristica de una entrada o
salida de una interface. En el contexto de modelo de colbenarparametro o dimension del
modelo.

Automatic Test Pattern Generation (ATPG) It is an automatic method of electronic design
used to search an input sequence, that it is applied to aadartuit to distinguish between
correct operation of the circuit and a bad operation.

Generacion automatica de patrones de prueba. Es un méttmpaico de disefio electronico
utilizado para buscar una secuencia de entrada, que cuanaplique a un circuito digital
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permita distinguir entre un correcto funcionamiento detwito y un funcionamiento con
errores.

Bite. Is the minimum unit of information. They may be taking theued 1 or 0.

Bit. Es la unidad minima de informacion. Que puede ser toogvalores de 1 o 0.

Complex digital system. It is one circuit composed of a large number of semiconductor
components that could control numerous devices , from céenpuo mobile phones and
microwave ovens.

Circuito digital complejo. Es aquel circuito compuesto aegran numero de componentes
semiconductores que podria controlar numerosos apadatede computadoras hasta teléfonos
moviles y hornos microondas.

Coverage Es la medida que especifica en que proporcidn se ha realaagoificacion de un
sistema digital.

Cobertura. It is the measure specified in that proportiondaased out the verification of a
digital system.

Coverage metriclt is an attribute that is used as a unit of measure and is rdreesd, which
defines a dimension of space coverage.

Métrica de cobertura. Es un atributo que es utilizado conaaumidad de medida y es recordado,
el cual define una dimension del espacio de cobertura.

Coverage property. A property that, when true, indicates that a condition okfast has
occurred. The occurrence is remembered in a database foefanalysis.

Propiedad de cobertura. Una propiedad que, cuando es, dieiffea que una condicion de
interés ha ocurrido. La ocurrencia es recordada en una kat&tas para analisis posteriores.
Coverage model An abstract representation of the device behavior cangisf attributes and
their inter-relationships.

Modelo de cobertura. Una representacion abstracta del mwampiento de un dispositivo
compuesto de atributos y sus inter-relaciones.

Coverage report It summarizes the progress of verification statements, agasure of
coverage, capturing all facets of coverage at multiplelteskabstraction.

Reporte de cobertura. Es un resumen del progreso de veoficae estados, como una medida
de cobertura, capturando todas las facetas de cobertural@ples niveles de abstraccion.
Coverage space.lt is a multi-dimensional region of the coverage attribudesl their values.
Espacio de cobertura. Es una region multi-dimensional deatabutos de cobertura y sus
valores.
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Figure 7.1. Coverage space example.

Controllability. Is the level at which the state changes in the internal notig®aircuit can be
controlled when changes occur at the inputs of the device.

Controlabilidad. Es el nivel en el cual se pueden contralarcembios de estado en los nodos
internos del circuito cuando se generan cambios en lasdastra

Coverage based on verification It is a methodology where coverage planning precedes the
rest of the verification process. Planning coverage is defdedining a strategy to measure
verification progress. For example using code coveragetaatggies that could help to increase
the coverage.

Cobertura basada en la verificacion. Es una metodologia enak la planificacion de la
cobertura precede el resto del proceso de verificacion. draffacion de la cobertura se plantea
definiendo una estrategia para medir el progreso de la \amidic, por ejemplo utilizando
cobertura de cddigo y tacticas que podrian ayudar a incramiarcobertura.

Corner cases.Design verification scenario which is difficult or not comrhonovered in the
test.

Casos corner. Escenario de verificacion de un disefio qudieis @ino comunmente cubierto
en la prueba.

Constraint. A condition (usually on the input signals) which limits thet ®f behavior to be
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considered during verification. A constraint may represeat requirements (e.g., clocking
requirements) on the environment in which the design is ueedt may represent artificial
limitations (e.g., mode settings) imposed in order to gartithe verification.

Restriccion. Una condicion (usualmente en las sefiales toeden la cual, limita el conjunto
de comportamiento a ser considerado durante la verificatioa restriccion puede representar
requerimientos reales (por ejemplo, requerimientos defialgle reloj) en en entorno en el cual
el disefio es utilizado, o puede representar limitacion@glnale configuracion) impuesto para
llevar a cabo la particion de la verificacion.

Chromosome.lt is a data structure containing a string of design parareetegenes. This data
structure can be stored e.g. as a bit string or an array ajense

Cromosoma. Es una estructura de datos que contiene unaacdelgrarametros de disefio o
genes. Esta estructura de datos puede almacenarse, ppfejeamo una cadena de bits o un
arreglo de enteros.

Crossover. Operator that builds a new chromosome combining parts df eiche parent
chromosomes.

Cruza. Operador que forma un nuevo cromosoma combinandespae cada uno de los
cromosomas padres.

Digital system It is a set of devices for the generation , transmissionggssing or storage
of digital signals. Also a digital system is a combinationdevices designed to manipulate
physical quantities or information that are representatigital form; that is, they can only take
discrete values.

Sistema digital Es un conjunto de dispositivos destinados a la generacransmision,
procesamiento o almacenamiento de sefiales digitales. i@amb sistema digital es una
combinacion de dispositivos disefiados para manipulaidzaigs fisicas o informacion que
estén representadas en forma digital; es decir, que soltapuemar valores discretos.

Device Under Test (DUT) Device to be checked. This device is distinguished fromagev
under verification (DUV) in that this is verified as a DUT istedevice.

Dispositivo bajo prueba Dispositivo a ser verificado. Este dispositivo es distingudel
dispositvo bajo verificacion (DUV) en que este ultimo es fieatlo mientras un dispositivo
DUT es probado.

Device Under Verification (DUV). It refers to the device to be checked. it means where the
functional verification process applies.

Dispositivo bajo verificacionSe refiere al dispositivo a ser verificado. Sobre el cual sezel
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proceso de verificacion funcional.

Elitism. Mechanism that ensures that the chromosomes of the bettebers of a population
will pass to the next generation without being altered byegjeroperators.

Elitismo. Mecanismo utilizado para asegurar que los cramas de los miembros mas aptos de
una poblacion se pasen a la siguiente generacion sin sexdagepor los operadores geneticos.
Elitism strategy. In a genetic algorithm, ensuring that the individual chreome with the
highest fitness is always copied into the next generation.

Estrategia de elitismo. En un algoritmo genetico, asegueaeq cromosoma del individuo con
mayor valor de aptitud es copiado siempre en la siguientergeion.

Evolutionary computation. Encompasses methods of simulating evolution on a compther.
field includes research in genetic algorithms, evolutigatsgies, evolutionary programming,
genetic programming, particle swarm optimization, aitfitife, etc.

Computo evolutivo. Abarca los metodos de simulacion deuawbn en una computadora. El
campo incluye investigacion en algoritmos genéticos,ritlgo de optimizacion por cumulo de
particulas, vida artificial y otras.

Fault. Falla. A deviation of a specified behavior system.

Falla. Es una desviacion del comportamiento especificodctar) del sistema.

Functional coverage.lIs a coverage whose metric is derived from a functional $gation or
design. A collection of user-defined metrics if all requissdtings have been tested.
Cobertura funcional. Es aquella cobertura cuya métricaegwatia de una especificacion
funcional o de disefio. Una coleccion de métricas definidaglpesuario si todos los escenarios
requeridos han sido probados.

Formal verification. A mathematical comparison against an implementation §paton or
requirement to determine whether implementation can tedlas specification.

Verificacion Formal. Una comparacion matematica de una émphtacion againts una
especificacion o requerimiento para determinar si la imphlacion puede violar esta
especificacion.

Finit State Machine (FSM) It is a machine, which can be completely described by a fimte s
of states, being in a state at some point over a set of ruleswa@termine, when moving from
one state to another.

Maquina de estados finitos. Es una maquina, la cual, pued®taémente descrita por un
conjunto finito de estados, estando en un estado en algun m@meas un conjunto de reglas,
las cuales, determinan, cuando se mueve de un estado a otro.
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Formal verification. It means to the use of mathematical modeling and analysithef
functional verification of the design behavior.

Verificacion formal. Se refiere al uso de modelos matematioglsanalisis de la verificacion
funcional del comportamiento del disefio.

Gene. It is a subsection of the chromosome (usually) encodes traer value of a single
chromosome.

Gen.Es una subseccion del cromosoma que (usualmenteraagifialor de un solo parametro
del cromosoma.

Genotype. Coding (e.g binary) of the parameters that represent aisoltd the problem to be
solved.

Genotipo. Codificacion (por ejemplo binaria) de los paraasefue representan una solucion
del problema a resolver.

Generation. Each of the aptitude measures and the creation of a new pmputhrough
reproduction operators.

Generacion. Cada una de las medidas de aptitude y la credeiana nueva poblacion por
medio de operadores de produccion.

Hardware verification. It the proof that a circuit or system ( implementation ) befsa
according to a given set of requirements. Is a process wihebks the correct operation of
a design.

Verificacion de Hardware. Es la prueba de que un circuito astaraa (la implementacion) se
comportan acorde a un conjunto dado de requerimientos. ¢tisefeun proceso mediante el
cual se demuestra el funcionamiento correcto de un disefio.

Hybrid verification . It means to the integration of verification technologie®ia unified
platform to create a higher level of automation.

Verificacion hibrida. Se refiere a la integracion de tecnial®ge verificacion en una plataforma
unificada para crear un nivel mas alto de automatizacion.

Hardware Description Language (VHSIC, VHDL, VHSIC). Is a hardware description
language which is used in an automatic electronic desigesortbe digital and mixed systems
such as gate arrays and programmable logic integratedtsirclhis can be done at different
abstraction levels. Examples include VHDL, Verilog, Systerilog, SystemC.

Lenguaje de descripcion de hardware. Son lenguajes degmagion utilizados para para
describir sistemas digitales y mixtos como son arreglosaepciertas I6gicos programables
y circuitos integrados.Esto puede hacerse en distintesasvle abstraccion. Algunos ejemplos
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son VHDL, Verilog, SystemVerilog, SystemC.

Model. It is an abstraction or approach the behavior of a logic de@lgyital system).

Modelo. Es una abstraccion o aproximacion del comportamiée un disefio I6gico (sistema
digital).

Mutation. Operator which builds a new chromosome through changealfysmall of the
values of genes of one father chromosome.

Mutacion. Operador que forma un nuevo cromosoma a travestefaaones (usualmente
pequenfias) de los valores de los genes de un solo cromosonea) pad

Observabillity. Is the analysis of output values obtained according to ittoelic performance
exercise.

Observabilidad. Es el analisis de los valores de salidanalie acorde al desemperio que
ejercitamos del circuito.

Optimization. The adjustment of a system in order to minimize or maximieerésult of some
function.

Optimizacion. Es el ajuste de un sistema para minimizar o maximizar el taadnlde alguna
funcion.

Productivity on the verification. It is defined as the ability to control large designs in a short
time. Is other words is the measure of the amount of manuatfteffhich is involved in the
project verification.

Productividad en la verificacion. Es definida como la habdiggara manejar grandes disefios
en un corto tiempo. Es otras palabras es la medida de la adrdel esfuerzo manual que es
involucrado en el proyecto de verificacion.

Phenotype.lIt is the codification of the chromosome. That is, the obtdivedues by passing the
representation (binary) to that is used for the objectivefion.

Fenotipo. Es la codificacion del cromosoma. Es decir, losreal obtenidos al pasar de la
representacion (binaria) a la usada por la funcion objetivo

Representation. It amounts to specifying a mapping from the set of phenotypée set of
genotypes that said to represent them.

Representacion. Equivale a especificar un mapeo del corgierfenotipos en los genotipos que
representan.

System On a Chip SOC ltis an integrated circuit that integrates all the elera@fia computer.

It may contain digital, analog circuits, and generally naixégnals or radio frequency functions
. All contained in a single integrated circuit.
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Sistema en un circuito integraddEs un circuito integrado que integra todos los elementos
de una computadora. Este puede contener circuitos digitaf@ldgicos, o sefiales mixtas y
generalmente funciones de radiofrecuencia. Todas calagen un solo circuito integrado.

Sintesis.lt is the process of taking a written design in hardware dpson language compiling
a list of interconnection gates, which are selected frorbraty provided by the user.

Sintesis Es el proceso de tomar un disefio escrito en un lenguaje damgéo de hardware
compilandolo en una lista de interconexion de compuergas;uales, son seleccionadas desde
una biblioteca provista por el usuario de varias compuertas

Testbench It refers to a simulation code used to create a default esgguence for a design,
then optionally to observe the response. It is a simulatfoengironment which can contains
design. It checks whether the RTL implementation meets &s&gd specification or not. This
environment creates conditions and unexplored invalidvatid conditions to test the design.
Testbench. Se refiere a un codigo de simulacion utilizada pegar una predeterminada
secuencia de entrada para un disefio, entonces opcionalpemat observar la respuesta. Es
un simulador del entorno en el cual, el disefio podria reskste revisa si la implementacion
RTL cumple con la especificacion del disefio o no. Este enttmescondiciones invalidas y no
exploradas asi como condiciones validas para probar éiaise

Test vector. It is an n-tuple of binary values where each bit is appliegiaoh input of the device
under verification (DUV) with the goal of performing functial verification of a digital system
Vector de prueba. Es una n-tupla de valores binarios en lacgde bit es aplicado en cada
entrada del dispositivo bajo verificacion (DUV), con el diye de realizar la verificacion del
funcionamiento de un sistema digital.

Verification.  The process showing the functionality of a design is preskrin its
implementation.

Verificacion El proceso de demostrar que la funcionalidad de un disefioesemada en su
implementacion.

Verification interface. A level of abstraction at which a verification process is parfed if a
simulation is used. This is a common interface, in which tiradi are applied, the behavioral
response is reviewed and coverage is measured.

Interfaz de verificacion. Un nivel de abstraccion en el cualpuoceso de verificacion es
realizado. Si una simulacion es utilizada. Esto es unafageomun, en la cual, los estimulos
son aplicados, la respuesta comportamental es revisadaigleda cobertura.

Verification plan. It is the mechanism which ensures that the essential cleaigtats of a
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design will be properly verified. It describes the scope efitarification problem for the device
and serves as a functional specification for the verificatimnronment. In the verification plan
design parts to be checked are identified and the way how thyawerified.

Plan de verificacion. Es el mecanismo mediante el cual seussegie las caracteristicas
esenciales de un disefio sean verificadas apropiadametdeleSsribe el alcance del problema
de verificacion para el dispositivo y sirve como especifimaduncional para el entorno de
verificacion. En el plan de verificacion se identifican laggmdel disefio que se deben verificar
y la forma en que deben verificarse.
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