
INSTITUTO POLITÉCNICO NACIONAL
CENTRO DE INVESTIGACIÓN EN COMPUTACIÓN

Artificial Intelligence and Embedded Systems Laboratories

Generating Optimal Functional Coverages in
Digital Systems

THESIS

A doctoral dissertation submitted by

M. Sc. Alfonso Martínez Cruz

For the degree of

Doctor of Computer Science

Advisors

Ricardo Barrón Fernández, Ph.D.

Herón Molina Lozano, Ph.D.

Mexico city, January 2016

3

5

Resumen
El constante avance de la tecnología y los nuevos requerimientos en el desempeño y

producción de los sistemas digitales han requerido que nuevos esquemas de verificación y

prueba sean propuestos. Como hace unas décadas Gordon E. Moore predijo que el número

de componentes transistores en un circuito integrado se duplicaría cada dos años así como la

tendencia del desarrollo de nuevos dispositivos cada ves mas pequeños y con mayor complejidad

en su funcionamiento han producido que hoy en día, tengamos anuestro alcance dispositivos

como: smart-phones, smart-watches, tabletas, drones, computadoras, etc. que contienen chips

con millones de dispositivos semiconductores procesando gran cantidad de información y

realizando diferentes funciones en pequeños intervalos detiempo.

La verificación funcional representa una parte importante en el proceso de diseño de los

sistemas digitales debido a que los errores en hardware resultan más costosos y es necesario

remplazar los dispositivos físicamente. En el presente trabajo de investigación se propone un

nuevo método de generación de altos porcentajes de coberturas funcionales para la verificación

de sistemas digitales. El método propuesto esta basado en laaplicación de meta-heurísticas

(Particle Swarm Optimización, Differential evolution algorithm), el uso de modelos de cobertura

funcional y la simulación de los dispositivos bajo verificación. Dicho método representa un

método hibrido y a la ves una alternativa para complementar las técnicas actuales utilizadas para

realizar la verificación funcional.

A diferencia de los trabajos previos donde se han utilizado algoritmos genéticos, en esta

investigación otras meta-heurísticas como: Particle Swarm Optimización algorithm, Differential

Evolution algorithm son utilizadas para la generación de vectores de prueba que maximicen

los valores de cobertura funcional. Estas meta-heurísticas han sido utilizadas en diferentes

problemas de optimización obteniendo resultados competitivos. También, en esta investigación

se propone una nueva versión del algoritmo de evolución diferencial compacto para la

representación binaria. Dicho algoritmo esta basado en el principio del algoritmo genético

compacto ya que utiliza los valores estadísticos para representar a la población, por lo tanto,

requiere menos recursos de memoria para su implementación que los algoritmos basados en la

población.

Para realizar la prueba de la implementación a nivel RTL han sido diseñadas diferentes

herramientas de software. Debido a esto, una plataforma de software ha sido diseñada para

I

conectar las herramientas de simulación con los módulos en lenguaje de alto nivel. Esta

plataforma esta basada en los esquemas actuales para llevara cabo la verificación por medio

de de la simulación de los dispositivos. La plataforma contiene un conjunto de módulos

que permiten utilizar diferentes algoritmos, escenarios de prueba, asi como conectar las

implementaciones de los dispositivos con el entorno de pruebas.

II

Abstract
The constant advance of technology and new requirements in the performance and

production of new digital systems have required new testing, and verification schemes. A few

decades ago Gordon E. Moore predicted that the number of transistors on the components of

an integrated circuit would double every two years. Moreover, the new development trends

in devices allow for even smaller circuits, that perform more complex operations, permitting

the existence of devices such as smart-phones, smart-watches, tablets, drones, computers, etc.

containing chips with millions of semiconductors, with a wealth of information processing and

performing many different functions in short time periods.

Functional verification represents an important design process partly because the errors in

hardware are very expensive and necessitate the replacement of the device. In this research a

new test generation method is proposed in order to obtain high rates of coverage for functional

verification of digital systems. The proposed method is based on the application of meta-

heuristic algorithms (Particle Swarm Optimization, Differential evolution algorithm), using

functional coverage models and simulation devices under verification. This is a hybrid method

and represents an alternative complementing existing techniques used for functional verification.

Unlike previous studies where genetic algorithms have beenused, this research provides

other meta-heuristics such as a Particle Swarm Optimization algorithm, and a differential

evolution algorithm which are used to generate test vectorsthat maximize the functional

coverage values. These meta-heuristics have been used in different optimization problems

obtaining competitive results. Moreover, this research proposes a new version of the compact

differential evolution algorithm for binary representation. This algorithm is based on the

principle of a compact genetic algorithm that uses statistical information in order to represent

the population; therefore, it requires less memory resources for implementation than algorithms

based on population.

In order to perform the device implementation test in a Register Transfer Level (RTL)

different software tools have been designed. Due to this, a software platform is proposed to

connect the simulation tools with the modules in high level language. This platform is based

on current schemes to conduct verification through simulation devices. The platform contains a

set of modules that may use different algorithms, and test scenarios, as well as implementations

connecting devices to the test environment.

III

Agradecimientos
GRACIAS A mis padres Josefina y Gabriel y a mi familia por darme la oportunidad de crecer,

desarrollarme y cumplir mis metas.

GRACIAS A mis directores de tesis: Dr. Ricardo y Dr. Heron por guiarmey compartir sus

experiencias durante mis estudios de doctorado.

GRACIAS Al profesor Kwang-Ting (Tim) Cheng por todo su apoyo y sus enseñanzas durante

mi estancia en la Universidad de California en Santa Barbara(UCSB).

GRACIAS Al Instituto Politécnico Nacional por permitirme realizarmi formación durante mis

estudios de doctorado.

GRACIAS A mis profesores durante mi estancia en el Centro de Investigación en

Computación por compartir su conocimiento y formar parte demi preparación en mis estudios

de doctorado.

GRACIAS Al Consejo Nacional de Ciencia y Tecnología, CONACyT, por elapoyo

económico proporcionado durante la realización de mis estudios de doctorado. Agradezco a la

Secretaria de Investigación y Posgrado del Instituto Politécnico Nacional a través de los

proyectos SIP-20151625 y SIP-20151454.

GRACIAS A mis compañeros y amigos por compartir sus consejos, experiencias y por su

apoyo durante mis estudios. A Lawrence y Bonnie Blakley por su apoyo y atencion durante

este trabajo.

"Humility, preparation and your actions make you a better person."

Alfonso Martínez Cruz

V

"Sometimes when we want to be better, we need to keep

in a box the goals we have already achieved. That box

is always carried with us, because we will have

difficulties on the road and at that time, the goals in that

box will be links to achieve a new proposed goal."

alfonso martínez

Content

Resumen I

Abstract III

Agradecimientos V

Figures XII

Tables XIII

I Introduction 1

1 Introduction 3

1.1 Functional Verification of Digital Systems. 5

1.1.1 Elements of Functional Verification. 8

1.2 Problem to Solve. 9

1.3 Justification. 11

1.4 General Objective. 11

1.4.1 Specific Objectives. 11

1.5 Research and developed method. 11

1.6 Scope of work. 12

1.7 Contributions . 12

1.8 Organization. 13

1.9 Resume. 13

VII

Content

II State of the Art 15

2 State of the Art 17

2.1 Introduction. 17

2.2 Coverage Directed Test Generation for Functional Verification 18

2.3 Meta-heuristics algorithms. 20

2.4 Bayesian Networks and Markov Model approaches. 22

2.5 Methods based on mutations. 24

2.6 Methods based on data mining. 25

2.7 Functional Test Generation based on extraction of StateMachines 27

2.8 Methods based on Theorem Proving. 28

2.9 Methods based on Model Checking. 29

2.10 Resume. 31

III Digital Design and Functional Verification of Digital Sy stems 33

3 Digital Design and Functional Verification of Digital Systems 35

3.1 Digital systems design. 36

3.2 Main elements of Functional Verification. 39

3.2.1 Functional Coverage. 41

3.2.2 Coverage Points. 43

3.2.3 Functional Coverage Metrics. 45

3.2.4 Calculation of Functional Coverage. 47

3.2.5 Functional Coverage Model description. 49

3.2.6 Directed Functional Verification for Digital Systems. 51

3.2.7 Controllability and Observability in digital systems 54

3.2.8 Pseudo-random Constraint Stimulus. 55

3.2.9 Modeling Functional Verification through HDL. 57

3.2.10 Proving the Design through the Simulation. 57

3.3 Resume. 59

VIII

Content

IV Meta-Heuristics on the Binary Space 61

4 Meta-Heuristics on the Binary Space 63

4.1 Binary search space. 64

4.2 Evolutionary algorithms . 65

4.2.1 Binary Genetic Algorithm. 66

4.2.2 Binary Particle Swarm Optimization algorithm (BinPSO) 68

4.2.3 Binary Differential Evolution Algorithm (DE Algorithm) 70

4.3 Compact meta-heuristic algorithms. 72

4.3.1 Compact Binary Genetic algorithm. 74

4.4 Resume. 76

V Proposed Method 77

5 Proposed Method 79

5.1 Proposed Compact Binary Differential Evolution Algorithm 80

5.2 Proposed test vector generation method. 84

5.2.1 Fitness functions. 87

5.2.2 Verification platform. 88

5.2.3 Applying meta-heuristic algorithms over the proposed platform 91

5.2.4 Modeling the Device Under Verification. 93

5.2.5 Calculating and analyzing Functional Coverage. 95

5.2.6 HDL Simulation of the Device Under Verification. 97

5.3 Resume. 98

VI Experiments and Results 101

6 Experiments and Results 103

6.1 Case Study . 104

6.1.1 Experimental Setup. 105

6.1.2 Experiments and Results with Compact-BinDE Algorithm 106

6.2 Experiments and Results with other Meta-heuristic Algorithms 115

6.2.1 Experiments using a binary Genetic algorithm. 116

IX

Content

6.2.2 Experiments using Binary Particle Swarm Optimization algorithm . . . 119

6.2.3 Comparison between algorithms. 122

6.3 Discussion. 126

Conclusions and future work 129

7 Conclusions and future work 131

7.0.1 Conclusions. 132

7.0.2 Future Work . 135

7.1 Contributions . 136

7.1.1 Published papers in Journals. 136

7.1.2 Published papers in conferences. 136

Glossary 139

Bibliography 148

X

Figures

1.1 Testing vs Verification.. 6

1.2 Functional Verification based on simulation vs Formal Verification. 7

1.3 General methodology for the functional verification process. 9

2.1 Coverage Directed Test Generation schema.. 19

3.1 Design Intention diagram.. 36

3.2 Main steps of digital system design.. 40

3.3 General methodology for the functional verification process. 41

3.4 Trends in Functional Verification Techniques.. 43

3.5 Model representation of a DUV (UART-bus) using the coverage points. 50

3.6 Coverage Directed Test Generation blocks diagram.. 52

3.7 Observability and Controllability in a Digital system.. 55

3.8 Constraint random test generation.. 56

3.9 Modeling a device through HDL simulation.. 58

3.10 Flowchart of verification based on simulation.. 59

3.11 Trends in Functional Verification Techniques.. 60

4.1 Generation of new vectors in the Binary Differential Evolution algorithm. . . . 72

5.1 Blocks diagram of the test sequences generation method using CoverPoints.. . 86

5.2 Verification interface using the proposed Compact-BinDE algorithm.. 90

5.3 Schema of the designed platform in order to perform functional verification. . . 91

5.4 Flow Diagram binary GA algorithm using the verification platform. 92

5.5 Flow Diagram PSO algorithm used for generating sequences of vectors. 93

5.6 Flow Diagram Compact-BinDE for generating sequences ofvectors. 94

5.7 Model representation of a DUV (UART-bus) using coveragepoints 95

5.8 Manual process to perform the Directed Coverage Functional Verification. . . . 96

5.9 Automated process to perform the Functional Verification. 96

5.10 Implemented process to perform the Functional Verification. 99

5.11 Modelsim simulator used in the experiments.. 100

XI

Figures

6.1 Coverage values obtained usingf1 and the DE/rand/1/bin. 112

6.2 Comparison of Coverage Directed Test Generation for different scenarios.. . . 113

6.3 Coverage Directed Test Generation percentages for different iterations.. 114

6.4 Comparison of Coverage Directed Test Generation with different CR values.. . 115

6.5 Comparison of Coverage Directed Test Generation usingf1 andf2. 116

7.1 Coverage space example.. 141

XII

Tables

2.1 Works using meta-heuristic algorithms to perform functional verification. . . . 22

6.1 Parameters of four different scenarios using Compact-BinDE algorithm 107

6.2 Coverage values obtained with four different configurations 107

6.3 Parameters of four best scenarios using the Compact-BinDE algorithm. 108

6.4 Values of Coverage percentage obtained with different population size. 108

6.5 Parameters of four best scenarios using a solution length of two sequences. . . 109

6.6 Coverage and total time for using different mutation functions 109

6.7 Parameters of four best scenarios using the UART-IP device 110

6.8 Obtained results for four scenarios using Compact-BinDE algorithm 110

6.9 Compact-BinDE parameters using a length of two sequences for UART-IP . . . 111

6.10 Results using different configurations of the Compact-BinDE algorithm 112

6.11 Parameters for experiment using binary Genetic algorithm for FIFO memory . 117

6.12 Results obtained using the binary Genetic algorithm for FIFO memory. 117

6.13 Parameters for experiment using binary Genetic algorithm 118

6.14 Results obtained using the binary Genetic algorithm. 119

6.15 Algorithm parameter values used for PSO scenarios withFIFO memory 120

6.16 Results obtained for experiment 1 using a FIFO memory. 121

6.17 Parameters for Particle Swarm Optimization algorithmusing a UART device. . 121

6.18 Results obtained using the PSO algorithm with a UART buscore 122

6.19 Results obtained using SR, GA, Compact-BinDE and PSO algorithm 123

6.20 Parameters for experiment using binary Genetic algorithm 124

6.21 Results obtained using GA, SR and the Compact-BinDE algorithm 124

6.22 Results obtained using SR, GA, Compact-BinDE and PSO algorithm 126

XIII

CHAPTER I

Introduction

1

Chapter 1

Introduction

Current digital systems have a large amount of resources, performing millions of operations

per second. Circuits included in smart-phones, laptops, tablets, etc. permit complex devices

to have greater functionality complexity. Due to this, the digital design has a compromise

with the market times and technological advances. During the digital systems design process,

several steps are involved; one of the most important is design verification. The verification

represents the biggest part of the total devices manufacturing cost. The approximate cost of this

phase is estimated at about 60% of the total digital system design cost. Unlike software, the

errors in hardware designs are very expensive, because these require redesigning and physically

replacing the failed device. Also, because of the increase in the functionality complexity and

number of transistors of digital systems lately, the importance of creating efficient designs and

reducing their verification time has generated the need to create more efficient design verification

techniques. It means, techniques that reduce the time and increase the test coverage percentage

and because of this, different methods have been developed to perform the verification processes

and new software tools have been produced. Furthermore, these software platforms have been

used with different digital systems, and the results obtained have shown that it is necessary to

develop more efficient methods that can cover all design cases.

The task of checking all input vectors in the device is unfeasible because the coverage

space increases as the device complexity also grows. Generally, the main objective of the

informal verification techniques is to increase design space coverage and changes for finding

errors in the digital systems design. When the verification of an implemented device is

performed in a hardware description language (Verilog, SystemC, SystemVerilog, etc), the

3

verification engineers need to use specialized software tools (Computer Aided Tools-CAD,

Questa, Modelsim, Cadence, etc).

Lately, the complexity of digital systems has resulted in the need for new techniques and

tools. Different Electronic Design Automation (EDA) Companies provide different software

tools in order to perform the steps involved in the functional verification. Different conferences

like Digital Automation Conference (DAC), Design Automation and Test in Europe (DATE)

have been created in order to publish and share the recent advances concerning digital design,

automation techniques among other topics. Researches fromindustry and academics have

published different works related to the verification topic.

Directed Functional Verification has an important role to meet with the conditions during

functional verification. It has been detected that the pseudo-random test generation methods are

not effective to cover hard cases, therefore, it is necessary to propose new test vector generation

methods which can make an efficient search and exercise all functionality.

Three different philosophies have been proposed in order toperform the Functional

Verification: Static methods (formal methods), Dynamic methods (Which are based on

simulation) and Hybrid methods (which do not fall in formal and informal methods).

Every philosophy contains different strategies in order totest the functionality of a digital

system. However, at present, none of these methodologies have been enough to over pass the

different problems because the complexity of the functionality of digital systems is increasing.

New challenges have appeared, some of them are: compatibility of modules, synchronization of

clocks, among others.

When functional verification is performed, one or more coverage models are used. These

coverage models are based on a type of coverage structure or coverage metrics, i.e., finite state

machine (FSM), statement, branch path, expression coverage, etc. The coverage model is a

fundamental piece for the verification methods representing a golden model to describe the

device behavior. Different ways to close the loop between the end of simulation and the new test

generation have been proposed. Coverage Directed Test Generation (CDG) has been proposed

as a possible solution to this problem. Different experiments have shown that directed probes

are promising because a small number of them can reach the same coverage goal with respect to

the constrained random probes.

In this research we propose a new method which uses reduced binary meta-heuristics in

order to generate sets of test vector sequences. We focus on the hybrid methods (based on the

simulation and meta-heuristics) since these methods have obtained good results even though

4

1.1. Functional Verification of Digital Systems

there is an increase in digital systems complexity. The strategy employed is based on the use

of coverage models for the devices verification process, which are built with relevant conditions

or coverage points representing the Device Under Verification (DUV) full behavior. The main

problem consists in covering all hard cases since the relationships between the CoverPoints and

the input data at the design are not trivial. Different to previous works that used meta-heuristics,

the proposed method can reduce the number of evaluations used to obtain test sequences that

exercise the coverage points.

This chapter presents an introduction to the Functional Verification topic, the problem to

solve, the objectives, the justification and the contributions of the present work.

1.1 Functional Verification of Digital Systems

Functional Verification can be described as the applicationof information theory where

a redundancy and error correction code are required in orderto keep the integrity of the

information through the design cycle.

Different from the traditional applications of information theory where the message is

preserved as it is sent through the communication channel, it is intentionally refined and becomes

less abstract during every transformation through the design process. The design process can be

described as: incremental clarification put into the communication channel in every stage of the

design [1].

In most cases the definition of the Testing and Functional Verification is confused. The

testing can be defined as a set of tests applied to the Device Under Verification (DUV) in order

to determine if the behavior in each test meets the specification. It is a sample process where

not all aspects of the device are exercised, which means thata total subset of all possible device

characteristics is used.

In other words, testing consists of a set of stimulus appliedto the device in order to test a

particular test case or analyze the response of the performance based on the expected behavior.

Figure1.1shows the testing and the verification into the design process of Digital Systems.

Functional Verification is a comparative process. It includes a wide set of techniques in

order to find faults in the behavior of a device. Functional Verification shows if the hardware

or software meets the original specification requirements.Also, the functional verification does

not show the fault itself. It merely shows the presence of an error.

With the implementation of pseudo-random verification around 1980, it was possible to

5

1.1. Functional Verification of Digital Systems

HW design manufacture

silicon

netlist

specification

verification testing

Figure 1.1. Testing vs Verification.

explore the design limits using an automated test in order toexercise a range of inherent

variability in the functionality of a Digital System. The standard verification consists of:

• A standard context to the analysis which is used for the principles of the pseudo-random

functional verification.

• Standard inherent variables in the design.

• Standard interpretation of the specification which is used to define the variables and

ranges, rules and guidelines.

Simulation is most frequently used in Functional Verification of Digital Systems because it

is not necessary to build a complex model, or use sophisticated techniques. Figure1.2 shows

the verification which is performed by means of simulation and formal verification of a digital

system. The dynamic verification (based on simulation) usesa coverage model which represents

a golden model because this contains all device functionality. This model is compared with the

results obtained at the end of the simulation which are savedin the regression suit (where suit

is a database). In every iteration a set of directed tests is produced by a test generator module

using the information from the regression suit.

An important aspect of the Functional Verification is the functional coverage which can be

defined as the percentage of verification objectives that have to be met. This is used as a metric

for evaluating the progress of a verification project in order to reduce the number of simulation

cycles expected in verifying a design. The coverage should be restricted to only those values

that could indicate the design is fully verified. Also, the functional coverage is used to verify the

correct operation of a device by means of the representationof a coverage model that contains

one or more coverage points.

The coverage points are grouped in sets which are best known as coverage groups. A

coverage group is a set of attributes, grouped together for purposes of deployment in a common

6

1.1. Functional Verification of Digital Systems

Figure 1.2. Functional Verification based on simulation vs Formal Verification.

correlation time. Also, a coverage group may contain different elements for different functions

to verify the specification of a coverage model. These elements may include a clock event, a set

of points, and weights for points, among others.

A functional coverage point can be a scalar value, a condition or an expression in a digital

system. For example, the “output data” variable, since it isa variable that can take a set of values

(0, 1, 2, ..2n−1). These values are better known asbins(There is a glossary at the end the thesis).

Examples of coverage points include: the level of occupancyof a buffer, an instruction code,

address write/read in a memory, an input to a register, package longitude, etc. The objective of

a coverage point is to ensure that all interesting and relevant values are observed in the sampled

value or expression. Moreover, a coverage hole is a point which has not been exercised or tested

during the functional process. After a device simulation itis important to analyze the produced

information in order to review the exercised points and the holes that remain.

The coverage means the measure of the integrity of a test set.The coverage definition

7

1.1. Functional Verification of Digital Systems

represents the number of met goals by the test set which is used. Also, the functional coverage

is defined as the number of defined goals which are met during the verification process.

During the verification process the verification engineers use a set of metrics in order to

measure the validation process based on the simulation. At the beginning, they use basic

metrics which require little effort, after that, they use more sophisticated metrics. A coverage

metric can be defined as a parameter or attribute which is usedas a unit in order to measure

the verification process in one dimension. There are different kinds of metrics: code coverage,

jump coverage, trajectory coverage, sentences coverage, etc. In the next subsection some aspects

about functional verification are described.

1.1.1 Elements of Functional Verification

When Functional Verification for digital systems is performed, different elements are

involved. These elements include: A functional specification, a verification plan, the

implementation of the device, among others. A functional specification is the common source

for the implementation and the verification of a device. Generally, it is implemented in two

different documents with different abstraction levels:

1) The first one describes the requirements of the architecture to be implemented. It details

the functions to be met by the device.

2) The second one is the specification of the device implementation. It describes the

implementation of the device architect in a blocks level.

A verification plan is what will be verified and how to collect the verification information. It

defines what should be verified and how it should be verified. Moreover, it describes the scope

of the verification problem and is used as a functional specification for the test environment.

The device implementation is the design in a register transference levelRTL, which is

modeled in some hardware description languageHDL. It is based on the specification according

to the constraints and the prevision produced by the design engineer.

Different from software, where only the code sentences needto be verified, the hardware

designs need to meet the specific times in order to perform therequired functionally. Due to

this, it is necessary to implement the design in a temporal modeling language.

Figure1.3shows the flowchart of a general methodology in order to perform the functional

device verification. The methodology of the functional coverage starts by the revision of the

specifications of the digital system; after that, the implementation is performed. In order

8

1.2. Problem to Solve

to perform the Functional Verification, a coverage model is proposed. Given the model, a

verification plan is necessary. After the simulation is performed, the results are checked and

if a coverage percentage is reached, the process finishes or the test sequence is modified and is

used once more.

Review the digital system speci cation

Analize the implementation of the design

at the level RTL (VHDL, Verilog, Systemverilog)

Propose a functional coverage model

De ne a veri cation plan based

on the design

Perform the functional veri cation of the

digital system based on a software system

Analize the results and measure

the advance in the coverage reached

Process end

Modifying tests

yes

not

Start

Figure 1.3. General methodology for the functional verification process.

1.2 Problem to Solve

An important area for faults coverage is the Directed Functional Verification. Typically in

industry, the digital systems have a set of conditions whichshould be met. In many environments

of industrial designs, the verification engineers are not required to write the formal proprieties

in order to prove that the behavior of the system is true. However, test sequences are required to

search for errors and exercise the design functionality during the performed process in order to

meet all required conditions.

The Directed functional verification performs an importantrole in order to meet the

conditions of the functional specification. Due to the inconsistency of the pseudo-random

9

1.2. Problem to Solve

test generation methods in order to cover the hard cases, theengineers do not know the

requirements of the Directed Functional Verification through simulation, especially with strict

market requirements.

Different criteria in order to perform the functional testsgeneration of a digital system are

needed because exhaustive search in a device of small size can require an exorbitant number

of test vectors. An example is given in [1] and it is as follows: Given a device which has N

inputs and M flip-flops,(2N)M vectors can be needed in order to perform the full functional

verification. A modest size of a device can have 10 inputs and 100 flip-flops (around 3 registers

of 32 bits). This device could require(210)100 or 21000 for the full verification. It means if we

perform the Functional Verification using 1000 test vectorsby second, this can require 339, 540,

588, 380, 062, 907, 492, 466, 172, 668, 391, 072, 376,037, 725, 725, 208, 993, 588, 689, 808,

600, 264, 389, 893, 757, 743, 339, 953, 988, 988, 382, 771, 724, 040, 525, 133, 303, 203, 524,

078, 771, 892, 395, 266, 266, 335, 942, 544, 299, 458, 056, 845, 215, 567, 848, 460, 205, 301,

551, 551, 163, 124, 606, 262, 994, 092, 425, 972, 759, 467, 835, 103, 001, 336, 336, 717, 048,

865, 167, 147, 297, 613, 428, 902, 897, 465, 679, 093, 821, 821, 978, 784, 398, 755, 534, 655,

038, 141, 450, 059, 156, 501 years for the exhaustive test. The functional requirements should

be exhaustively tested through formal methods.

In this research the problem to solve consists in finding testbinary vector sequences which

maximize the functional coverage percentage in a digital system of regular size. It can be defined

as follows:

Given a binary spaceX = {0, 1} and a set of vectorsT = {~t1,~t2, ...,~tn} in order to verify

a given digital system with a functional coverage B. The problem consists in finding a set of

binary test sequences T’ which maximizes B.

Where:~ti ⊆ X,X ≡ {0, 1}n

Due to the increasing complexity of digital systems, the outperformance of the functional

test generation based on the requirements (the functional specification) to be met is needed.

Therefore, the problem to solve consists of proposing a method which produces the Directed

Test Generation of test vector sequences in order to maximize the obtained coverage and reduce

the time which is used to verify a digital system.

10

1.3. Justification

1.3 Justification

Currently, the cost of designing and manufacturing processof digital systems is greatly

impacted by the step of verification and testing of such systems. Today, it is estimated that the

cost of functional verification process involves between 60% and 70% of the total cost. Also,

to perform the functional verification of digital systems isan open topic, since due to the high

complexity of these systems, time and understanding of the temporary results of the progress of

verification are required. That is, why does it take more efficient ways to perform the functional

verification process?, and also, how to obtain high values ofthe total coverage percentage that

is verified.

1.4 General Objective

To propose a new test vector generation method in order to generate optimal functional

coverages in the Functional Verification of Digital Systemsusing hardware simulation and meta-

heuristic algorithms.

1.4.1 Specific Objectives

• 1.-To design and build a software platform in order to perform the functional verification

of Digital Systems.

• 2.-To design a module in order to configure the different strategies of the test vectors

generation.

• 3.- To design a new binary compact meta-heuristic algorithmin order to maximize the

functional coverage.

• 4.- To compare meta-heuristic algorithms (GA, PSO, Compact-BinDE) and analyze the

obtained results.

• 5.- To propose and solve the different optimization problems involved in the generation of

optimal coverages for the different digital systems to be verified.

1.5 Research and developed method

The methodology which is used in this research is composed ofthe following steps:

11

1.6. Scope of work

• To perform the study of the state of the art related.

• To review the specification of digital systems to be tested.

• To analyze the implementation of the design at RTL level (VHDL, Verilog,

SystemVerilog).

• To generate a verification plan based on the device to be tested.

• To propose functional coverage models based on the functional specification.

• To propose a heuristic criteria in order to perform the directed functional verification.

• To make the Directed Functional Verification of the digital systems based on a software

tool.

• To analyze the obtained results and measure the advance of the functional coverage which

is reached.

• To propose modifications of the verification process based onthe obtained advances and

the digital system which is tested.

1.6 Scope of work

This research develops an automatic verification method in order to perform Directed

Functional Verification of digital systems of medium size (ip core bus UART and FIFO memory)

that obtain high coverage percentages based on the exerciseof most of coverage points from the

functional coverage models.

1.7 Contributions

An improved methodology in order to verify the functionality of digital systems based

on a hybrid method (meta-heuristic and dynamic methods) which outperforms the original

designs based on the verification.

A hybrid method which performs the Directed Test Vector Generation based onmeta-

heuristic algorithms, coverage models and cost functions.

The application for first time of compact meta-heuristics to the Directed Functional

Verification.

A new schemain order to generate optimal functional coverage in digitalsystems.

12

1.8. Organization

1.8 Organization

• Chapter 1: The fundamentals of this research are described. These are:Introduction,

Problem statement, justification, the main objective and specific objectives, the

methodology, the scopes and the contributions.

• Chapter 2: Different techniques and methodologies which have been used in order to

perform the functional verification of digital systems are given.

• Chapter 3: The main definitions about the functional verification area are presented.

Moreover, a background is mentioned. Among these definitions are: functional coverage,

coverage metric, coverage models, etc.

• Chapter 4: The meta-heuristics background on the binary space is highlighted.

• Chapter 5: The architecture of the proposed system and the proposed method are

described.

• Chapter 6: The experiments and obtained results based on the proposed method are

shown and analyzed.

• Conclusions and future work are presented according to the obtained results and the

development shown in the last chapters.

1.9 Resume

In this chapter the problem to solve, the objectives, the justification and the main problems

involved in the scope of this research are presented. On the other hand, a new method of

test vector generation based on the union of dynamic techniques (based on simulations of

digital systems by means of software tools), and meta-heuristic techniques (Compact binary

Differential Evolution algorithm, Particle Swarm Optimization algorithm) is proposed. This

method performs the Directed Verification of digital systems. The method uses coverage models

which represent the behavior of a digital system by means of aset of coverage points. In order

to verify the correct operation of the Device Under Verification (DUV) it is necessary to take

into account that one of the main characteristics is the temporal logic because the variables need

to be sampled in the correct times. Furthermore, it is necessary to restrict the range of the input

values and the amount of tests based on the specification and the device characteristics.

13

CHAPTER II

State of the Art

15

Chapter 2

State of the Art

2.1 Introduction

Due to the increase in the complexity of digital systems in recent years, the importance

of developing efficient designs and reducing their verification time has generated the need to

create more efficient design verification techniques, whichreduce the time and increase the test

coverage percentage. Because of this, different methods have been developed to perform the

verification process. Moreover, new software tools have been produced [2–4]. However, these

software platforms were tested with different digital systems, and the obtained results showed

that it is necessary to develop more efficient methods that can let us have more confidence and

cover the most difficult design cases.

Functional verification has been performed by means of different strategies. Nowadays, there

are three different philosophies to perform the functionalverification: formal or static methods,

dynamic or informal methods and hybrid methods.

Formal, or static methods, use a set of mathematical or logical expressions to represent the

device behavior which are based on the sets of formal tests. When these types of methods are

applied, a formal software platform is used for verification. These methods include theorem

proving, equivalence, and model checking. The advantage ofthese methods is that all logical

functions can be proved based on a formal preposition set [5,6].

Dynamic methods are based on a run-time hardware simulationusing a software platform.

Generally, the main objective of these techniques is to increase the coverage of the design space

and the logical changes to find mistakes in the design during the simulation. These types of

methods are commonly used in industry because they have shown good results in spite of the

17

2.2. Coverage Directed Test Generation for Functional Verification

increase in the complexity of functionality of digital systems. Furthermore, these methods can

test the full functionality, but it is difficult to ensure that the design does not contain errors.

The third category is composed of the hybrid methods which are defined as techniques that

do not fall under formal and informal methods because these methods combine both techniques.

The main objective of a hybrid method is to address the verification bottleneck by enhancing

coverage of the traversed state space combining two or more techniques, but that combination

to obtain better results is not trivial.

Another important aspect of the functional verification is the measurement of the progress

when the device is being verified. Different coverage metrics are studied during the process in

order to measure how well the device functions are. Some works studying the coverage metrics

have been proposed [7–10]. Multiple metrics are used because the representation of the coverage

models is different from the strategy used.

Due to the fact that the relationships between the inputs andthe relevant events or conditions

are not trivial when the verification is performed, there arevery difficult cases to test during

the verification of a digital system. Using all possible binary test input sequences is not a good

strategy, especially when the device complexity is increasing, because the simulation time is too

long. If a good strategy is not used, then a lot of time is wasted because the same points are tested

repeatedly. Therefore, the importance of finding good test sequences to prove all characteristics

of device behavior represents one of the biggest challengesto the functional verification. In

the next section the introduction about Test Generation forFunctional Verification focused on

coverage is described.

2.2 Coverage Directed Test Generation for Functional

Verification

In order to automate the verification process, a variety of ways to close the loop between the

end of simulation and new generation of tests have been proposed. The Coverage Directed Test

Generation (CDG) has been proposed as a possible way to automate the verification process. We

can define the CDG as a heuristic which searches a finite set of sequences to probe the device

behavior using the information obtained at the end of the simulation. Different experiments

show that the directed probes are promising because a small number of them can reach the same

coverage goal with respect to the constrained random probes. However, when the Coverage

18

2.2. Coverage Directed Test Generation for Functional Verification

Directed Test Generation is applied, sets of holes are detected at the end of the simulation and

one or more conditions need to be tested in a new iteration. This means that one of the main

problems consists in exercising all functional coverage events in the device, which is difficult to

solve due to the increase of functional complexity in circuits.

Figure 2.1 shows a general schema of Coverage Directed Test Generationfor functional

verification. In this schema, a set of stimulus scenarios arewritten in order to test the device.

Also, a verification environment is configured. This environment connects the automatic

stimulus generation module with the device and the physicallayer which is the interface between

the device and the generation of stimulus. Finally, when theverification finishes, a coverage

report is created with the information about which part of the behavior was exercised. New test

cases are written based on the coverage information, this process is repeated until a stop criteria

is met.

Stimulus

scenarios

Device Under

Verification

Automatic stimulus generation

Verification environment

Coverage

reports

Physical layer

Figure 2.1. Coverage Directed Test Generation schema.

In the next section functional verification works based on meta-heuristic algorithms are

presented. In the state-of-the-art that will be presented later different works were based on the

use of genetic algorithms and other meta-heuristic algorithms in order to perform the coverage

directed test generation schema. However, there are different algorithms that could be used in

this area.

19

2.3. Meta-heuristics algorithms

2.3 Meta-heuristics algorithms

Searching for sets of test sequences which adequately exercise the functional properties of a

system under verification is non-trivial. Deterministic algorithms are exponential in complexity

based on circuit size. Meta-heuristic algorithms have beenused extensively to manage the

growth in complexity in circuit tests. These types of algorithms can be defined as techniques

which control one or more heuristics by using mechanisms with a set of parameters. Moreover,

these may produce good solutions for problems which cannot be solved in polynomial time in

other methods.

In 1975, John Holland published a book (Adaptation in Natural and Artificial Systems),

which showed that a evolutionary process (genetic algorithm) can be applied to solving different

optimization problems. The genetic algorithms use a population of individuals (each one

represents a possible solution to a given problem) each is associated to a fitness value. The

algorithm transforms the population using the Darwinian principle in each iteration until a good

solution is found. The evolutive algorithms have been used in the verification methods to reach

higher coverage percentage values.

Some works were published with meta-heuristic methods applied to functional verification,

especially using genetic algorithms [11–15]. The genetic algorithm (GA) is a meta-heuristic

which has been used to solve different optimization problems in a useful way. These kind of

algorithms algorithm manages a population of individuals,using the analogy of the Darwinian

theory, where each individual is associated with a fitness value that represents how good is

the population to solve a specific problem. After a number of training epochs, the best found

solution is an individual which has the best fitness value. In2001, Mrinal Bose, et al. [13] used a

genetic algorithm to perform the verification of a PowerPC architecture. The genetic algorithm

biases custom instructions for a pseudo-random generator.The encoding used for chromosome

in the genetic algorithm had a fixed length, which represented a sequence of instructions to carry

out the system testing. The population size used for the algorithm was small, because the authors

concluded that the time cost in the system simulation increases. Better results were found using

this technique than using only pseudo-random generation. However, nowadays there are more

efficient meta-heuristic optimizer algorithms.

Other work was carried out in 2006, Amer Samarah, et al. [14] used a genetic algorithm

to generate directed tests. Each cell was used to represent achromosome; this means each one

represented a random uniform distribution weight over two limits. A set of cells represented

20

2.3. Meta-heuristics algorithms

one possible solution. This method was tested with some digital systems using coverage

points as a coverage metric, and good results were obtained using this methodology. However,

the used representation was very complex and the different configuration values were not

automatically generated. Therefore, an extensive knowledge of evolutionary framework by the

user is necessary.

Also, in 2008, Haihua Shen, et al. [15] published a paper using a genetic algorithm which

was included in a software platform to improve directed functional coverage in a digital system.

The chromosome coding form was made based on the instructionset used in the Device Under

Verification (DUV). They used a general processor based on animproved Godson1 as DUV.

The experiments found better results than the pseudo-random vector generation method. It was

concluded that the method helped to achieve non covered tasks and increased the hit rate in hard

cover cases.

On the other hand, some methods using the Ant Colony Optimization (ACO) technique have

been proposed [16, 17]. The Ant Colony Optimization technique is a meta-heuristic which is

based on the swarm intelligence. The algorithm imitates thebehavior of the ants finding best

paths from the initial state of the food source. The ants search for food by means of the feedback

of the pheromone placed by themselves and other ants when they walk through the paths. Also,

in 2009, Min Li and Michael S. Hsiao [16] proposed a verification method based on the ACO

algorithm. The proposed method used the patches as a coverage metric, and they combined the

random generation vectors with a software tool that generates the different states of the digital

system. They found that the method could reduce the computational complexity in comparison

with the random generation and two heuristics based on the GAalgorithms.

Little work has been carried out on techniques for hardware verification based on meta-

heuristics. However, now, there are more efficient optimizer meta-heuristic techniques (i.e.

Particle Swarm Optimization algorithm (PSO), Differential Evolution algorithm (DE)) [18].

The Differential Evolution algorithm which was proposed byRainer Storn and Kenneth

Price [19]. This is an evolutive algorithm based on the difference between two individuals and

a crossover mechanism to generate new possible solutions. One advantage of the algorithm is

that only better solutions are used to create a new population. The algorithm has obtained good

results in many optimization problems [20]. Moreover, in [21] we propose the use of a binary

Differential Evolution algorithm to perform the test sequences generation for the functional

verification of a digital system. The main contribution was the application of a binary version

describing the behavior through different iteration numbers.

21

2.4. Bayesian Networks and Markov Model approaches

This research differs in that the proposed test generation method performs an efficient binary

search by mean of a new compact binary meta-heuristic algorithm (Compact-BinDE) using the

principle of Differential Evolution and the compact meta-heuristic algorithms. Also, a Particle

Swarm Optimization (PSO) algorithm is used. The proposed strategy uses a hybrid heuristic

dynamic verification method to obtain sets of vectors that maximize the functional coverage

percentage during the verification of digital systems. The method uses coverage models with sets

of points as a functional coverage metric in the binary domain. In the case of Compact-BinDE

algorithm, one advantage is that the algorithm performs a reduction of memory requirements,

saving only some values of the possible solutions.

Table2.1 shows some carried out works using meta-heuristic algorithms in order to verify

digital systems. In most of works genetic algorithms were used and the obtained results showed

that the performance was better than pseudo-random test generation.

Table 2.1.Works using meta-heuristic algorithms to perform functional verification

Year Author Title Device Coverage
2001 Mrinal Bose A Genetic Approach to Automatic

Bias Generation for Biased Random
Instruction Generation

load-store reservation
station buffer

95 %

2002 Xiaoming Yu A Genetic Testing Framework for
Digital Integrated Circuits

Path (code) coverage 67.8 %

2003 Shai Fine Coverage Directed Test Generation for
Functional Verification using Bayesian
Networks

processor Power PC 94 %

2006 Amer Samarah Automated Coverage Directed Test
Generation Using a Cell-Based Genetic
Algorithm

Specman e Simple CPU
and Router models

100 %

2008 Haihua Shen Coverage Directed Test Generation:
Godson Experience

Godson1 processor 92 %

2013 Kelson Gent and Michael S. HsiaoFunctional Test Generation at the RTL
Using Swarm Intelligence and Bounded
Model Checking

ITC99 benchmark 90-100 %

2.4 Bayesian Networks and Markov Model approaches

The Bayesian networks are probabilistic graphical models.In this case, each node represents

a random variable and each edge between nodes represents theprobabilistic dependencies

among the random variables.

These networks can express the joint probabilistic distribution compactly between variables

22

2.4. Bayesian Networks and Markov Model approaches

and can express the conditional independence. These combine the principles from graph

theory, computer science, and statistics. Moreover, the Bayesian Networks contain conditional

parameter and network structure.

We define the number of nodes as n, andparentXi are the set ofXi’s parents, then the

conditional probabilistic distribution ofXi could be defined asp(Xi|parent(Xi)). So the

probabilistic distribution of the Bayesian networks is defined as:

p(X) =
n∏

i=1

p(Xi|X1, X2, ..., Xi−1) =
n∏

i=1

(p(Xi|parent(Xi)) (2.1)

The Bayesian networks have been applied into this topic and the works published show good

results. However, manual configuration is necessary to perform the functional verification.

In 2003, Shai Fine and Avi Ziv [22] published the Coverage Directed Test Generation

for Functional Verification using Bayesian Networks. They experimented with a model of a

PowerPC processor and a Storage Control Element (SCE) of an IBM z-series system. They

concluded that the method provides the ability to perform functional verification with feedback

(CDG), as well as the ability to cover hard cases and improve the coverage rate of progress.

However, some manual configuration was necessary for perform the verification.

On the other hand, Markov models are also approaches that could be used to do the coverage

of digital systems, which were introduced by Andrey Andreyevich Markov. These models are

statistic methods which use probability measurements for sequential models of the represented

data by vector sequences. In 2007, Ilya Wagner, Valeria Bertacco and Todd Austin [23] proposed

a simulation technique of closed loop for hardware verification. They presented a tool named

StressTest, which was based on random instructions generator by means of a Markov directed

model with activity monitors. They used two micro-architectures for the developed experiments

and proved that StressTest found more bugs with less effort than generation techniques of

random probes.

Other work carried out is [24] where Jian Wang, Huawei Li, et al. proposed a method based

on Markov analysis and a finite state machine models. Also, the model abstraction is made in a

manual way. Due to this, the fidelity of the model depends of the human intervention. They used

some benchmark circuits using the proposed method. According to the results, they concluded

that the proposed method was more efficient than constrainedrandom simulation in abstract

state space exploring. Also, they mentioned that guided simulation has much better efficiency

in target states exercising than the traditional abstract distances guided simulation.

23

2.5. Methods based on mutations

2.5 Methods based on mutations

This technique was originally proposed in the software design where a software program is

syntactically modified. The mutation analysis technique consists of the systematic application

of faults to the original hardware description (e.j. VHDL, Verilog description). The hypothesis

is based on the original hardware implementation because ifthis implementation is correct then

one or more faults applied could be detected during the functional verification process.

A mutation is considered killed when it is detected by the insertion of a test sequence during

the verification process, after that, the test sequence is saved into the test suite and is considered

efficient. Sometimes, an applied fault does not produce a different behavior in the device then,

this fault is considered equivalent mutation. These cases need to be considered in the verification

plan, to avoid waste in the simulation process.

An example of fault insertion is shown in the next code where theor operator is changed by

theand operator.

Listing 2.1. Example of fault injection

/ / Be fo re f a u l t i n j e c t i o n

D <= (A and B) or C

/ / A f t e r f a u l t i n j e c t i o n : or <− and

D <= (A and B) and C

There are different works using mutation analysis to searchbugs in designs, however, one

problem with this technique is that a lot of time is require ifall faults are evaluated.

A mutation is a single fault injected into a design copy. For each test case, the mutant is

executed after the simulation of the original design and both simulation results are compared.

When the simulation is performed if there is any difference at the design output, then this test is

capable of killing the mutant. A huge database of mutants by applying different predefined fault

injections is obtained. The number of mutations becomes thecoverage metric. The analysis is

a form to measure the quality of test data and show the main characteristics for their capability

of simulating potential design errors and the propagation of the erroneous behavior to some

monitoring points.

In 2011, Jorge Tonfat, Gustavo Neuberger and Ricardo Reis [25], proposed a methodology

based on the verification methodology manual (VMM). This methodology was used for the

verification of logic modules in a Gigabit Ethernet Switch. The verification environment was

24

2.6. Methods based on data mining

composed of some modules which may be reused, for the functional verification of other devices.

The results obtained showed high coverage percentages of the device under verification. The

obtained values were greater than ninety percent.

Also, in 2011, Xiaoke Qin and Prabhat Mishra [29], proposed atechnique that exploits the

structural similarity within the same bound as well as between different bounds. They concluded

that their approach saved time to rediscover the same knowledge for each core, without the

overhead of forwarding too many conflicting clauses. They said that their approach is smaller

(2-10 times) compared to existing methods. They used the information from the first core for

test the next cores in a multi-core architecture.

Different works have been published using techniques basedon mutations [26–30]. In 2012,

Tao Xie, Wolfgang Mueller and Florian Letombe [30] proposeda verification methodology

based on the generation of mutations in the device under verification (implementation). In this

case a mutation was defined as a modification or alteration of the design code. These mutations

served as a metric to guide the coverage progress during the simulation. For each test case, the

mutations were simulated after the original design and bothresults are compared. The tests were

performed with a microprocessor soft MB-LITE. The results obtained with this methodology

reported that the tests were verified in the majority, with anaverage value in the number of

iterations. One problem is that a lot of simulations can be used to evaluate the mutations and

there are redundant mutations that increase the simulationtime.

2.6 Methods based on data mining

Data mining has been applied to design some verification methods. This area has shown good

results in different methods according to researches. Also, some works on data mining have

been applied to design verification [31–34]. For example, Shobha Vasudevan, David Sheridan,

et al. in their work [35] proposed a methodology based on a data mining algorithm, which uses

a decision tree based on a supervised learning algorithm. Before their assertions are entered,

these are passed through a formal verification engine to filter out the spurious candidates. They

presented GoldMine, which is a tool for automatically generating RTL assertions. The method

proposed was divided into two spaces; one static and the other dynamic techniques. The static

analysis techniques were used to direct the data mining process. And the dynamic technique

was used to simulate the device and obtain the coverage results. Some their contributions are as

follows:

25

2.6. Methods based on data mining

• Their method reduced the validation phase by distilling random stimuli and achieves

coverage of unexplored spaces earlier than typical in the design cycle.

• Their GoldMine tool was applied in the OpenSparc T2 processor.

• They introduced an algorithmic design methodology based onthe combination of

statistical, dynamic methods with deterministic, static methods.

They used the input coverage space to evaluate the coverage of an assertion. They said that

an assertion covers an entry in such a truth table if the values of the features are met. The input

coverage space of an assertion refers to the percentage of truth table entries covered by that

assertion. They did to mention that though methodologies compute the RTL statement coverage

of an assertion, none have been implemented practically, due to using input coverage space to

evaluate the coverage of an assertion.

Another work is [31] where Samuel Hertz, David Sheridan and Shobha Vasudevan presented

a method generating assertions automatically in hardware devices. This method involves a

combination of data mining and analysis of the register transfer level (RTL) design. Their

methodology uses a combination of data mining and static analysis. The experiments were

development using OpenSparc T2 processor. Their methodology is composed of:

• Static analysis

• Data generator

• A-MINER

• Formal verification

• A-VAL Evaluation and Ranking

They introduced an algorithmic methodology design subjectivity into the assertion

generation process. The combination of statistical, dynamic methods was novel in the context

of assertion generation. Their method abridged the validation phase by distilling random stimuli

and achieved coverage of unexplored spaces earlier than typical in the design cycle.

On the other hand, in the work [32], When Chen, Li-Chung Wang,et al., proposed a

methodology of knowledge extraction from constrained-random simulation data. The extracted

knowledge then was reused for two purposes:

• For producing more tests similar to those important ones

• For producing new important tests that, for example, can activate assertions not covered

before.

Their methodology begins by extracting a list of conditionsfrom the assertions for

monitoring. A novel test with respect to these conditions isidentified in the simulation. The

26

2.7. Functional Test Generation based on extraction of State Machines

extracted knowledge means the rules describing the specialproperties of the novel tests.

This methodology was based on the representation of programs in multiple snippets of

instruction sequences of equal length k where k is user-supplied input. Their work proposed

a learning methodology to extract knowledge from simulation in constrained-random processor

verification. They used a dual-thread low-power 64-bit Power Architecture-based processor

core.

2.7 Functional Test Generation based on extraction of State

Machines

According to [36] the metrics based on finite state machines use coverage of states,

transitions or paths in a representation of finite state machines (FSM). Some control portions

are represent better by a FSM’s collections interacting between them. In this case, we can

use metrics defined by multiple state machines. For example,the metric of pars of arcs needs to

exercise all possible pars of transitions for each FSM’s controller par. The FSM’s can be classify

in two categories:

• Hand-written is a FSM’s which captures the behavior of the design at a high level.

• Finite State Machines extracted in an automated way from thedesign description.

Typically, after the set of state variables is chosen, the design is mapped with this set

in order to obtain an abstract FSM.

The metrics in the first category are less independent from the implementation details. The

variables of state in the metrics for the second category canbe chosen in a manual way by mean

heuristics. Generally, the small processors have a big number of paths, but due to the simulation

cost is small then it is tolerable.

When the amount of details in the finite state machines (FSMs)is increased then the precision

of the coverage metric is increased, but it produces an increase of complexity in the interpretation

of the coverage data.

In the case of designs which have a big amount of concurrent control where few iterations

of a FSM’s can produce a more difficult search of bugs, there are simple concerning metrics.

A set of test which covers all transitions of all possible states of control, can maximize the

probability of finding errors in the design while minimizingthe simulation time. It is necessary

to distinguish between the data and control to extract the control part of a design.

27

2.8. Methods based on Theorem Proving

In [37] Iuseppe Di Guglielmo, Luigi Di Guglielmo, et al. proposed a methodology of

functional coverage based on the generation of finite exceeded state machines. The results

obtained are compared with other generation methods based on genetic algorithms and pseudo-

deterministic methods.

2.8 Methods based on Theorem Proving

Theorem proving is a technique which begins with a specific goal and then it split this goal

in two or more sub-goals. These sub-goals are split again building proof trees. The proof trees

can be solved by: lemmas, axioms, decision procedures, trajectory-evaluation runs among other

techniques. The proof is complete when all conditions are verified.

The methods based on Theorem proving use a model of the digital system which is a set of

mathematical definitions in mathematical formal logic. Theproperties of the system are mapped

like theorems. These theorems are generated based on these definitions. The classic version of

theorem proving methods is based on high logic variants of high order. Software tools as HOL,

PVS and ISABELLE/HOL have been developed in order to performthe functional verification

based on Theorem proving.

Theorem proving uses a constructive logic. An advantage consists of the variation of a probe

which produces an executable version of the algorithm that has been verified. A disadvantage is

the constructive probes are stronger than classic probes.

Another advantage of these type of techniques is the methodscan test complex systems while

it does not review directly each one, each state, while the logic is commonly more expressive.

A disadvantage is that it needs the intervention of humans and creativity in order to finish the

probes increasing the verification time.

There are different works [38–41] using theorem proving in order to perform the functional

verification of digital systems. For example in [38], Mark D.Aagaard, Robert B. Jones and

Carl-Johan H. Seger presented the verification of an instruction-length marker (the IM) against

an implementation-independent specification of IA-32 instruction lengths. That was performed

by mean a combination between model-checking and theorem proving techniques. The theorem

proving guided the decomposition in different tasks into the limits of model-checking. They

concluded their method founds new bugs in the design and it improved the original specification.

On the other hand, in [40] John O’Leary and Roope Kaivola presented an approach for

verification based on symbolic simulation (Relational STE). The method used a descomposition

28

2.9. Methods based on Model Checking

in a logical level by means theorem proving. The method was added into a software tool in

order to outperform the symbolic simulation. They use multipliers as devices under verification

concluding the proposed method is a good alternative improving formal verification.

Also, in [39] Roope Kaivola and Mark D. Aagaard proposed the combination of model-

checking and theorem proving in order to verify a floating-point divider unit of an Intel IA-

32 microprocessor. They used a software tool which support model-checking and theorem

proving techniques. They concluded the main advantages of their approach are: the safety of a

mechanically verified proof combined with the freedom of complete control in order to perform

the verification of a complex device.

2.9 Methods based on Model Checking

Model checking technique was introduced by Edmund M. Clarkeand E. Allen Emerson [42].

The technique consists in verifying that the logical conditions follow to be true through all

reached states from the Device Under Verification (DUV). If apropriety is kept then Model

checking produces an opposite-example, it means, an execution path which produces a state

where the propriety is false. Model checking can be used to verify if a set of specified functions

is met using a temporal logic language with respect to systembehavior model.

Definition 1 Model checkingis an automated technique that given a finite state model of a

system and a formal propriety, this reviews in a systematic way if a propriety is met for that

model. This technique is based on temporal logic. Temporal logic idea means an equation

which is not static true or false in the model as it is in the propositional and predicative logic.

Also, temporal logic models contain different states and anequation can be true in some cases

and false in other [43].

A lot of dynamic systems contain components of state which change through time. For

example, sequential circuits, which contain flip-flops and latches. Also, in this technique, the

models are defined as M which are transition systems and proprieties asφ which are equations

in temporal logic.

Model Checking can be specified in two ways:

• Model Checking global problem. Given a model of a finite structure, M, and an

equation,φ, a set of states is determinate in M which satisfyφ.

29

2.9. Methods based on Model Checking

• Model Checking local problem. Given a model of finite structure, M, an equation,φ,

and a state “s” in M determines if “s” satisfiesφ.

Where: The outputs consist in a “YES” if M|= φ and “NO” in the other case. In the second

case, also, a path in the system behavior is executed, which produces the fault. This automated

generation of paths is a main tool in the design and the detection of faults of the system.

The objective of model checking is to perform the functionalverification of the sequential

proprieties of a dynamic system. A dynamic system has a component of state, which changes

through time. The typical systems, are sequential circuitswhich contains delay elements such

as flip-flops and latches [44].

Different works have been carried out based on Model checking technique. The

investigators, Javanand Asok Kumar and Ahobba Shobba Vasudevan in [45] proposed a statistic

method using Model Checking in order to perform the verification of a schema for the multi-core

processor management. They used this technique in order to complement the results obtained

during the simulation of the device with statistical results obtained by means of that technique.

They considered a set of properties to be verified based on thecharacteristics of time-out and

the adaptive power gain. In the results the obtained percentages were over 80 % and 90 % for

different modules.

On the other hand, the researchers Ali Alphan and Sharad Malik in [46] proposed a method

based on the validation on run time of a device using Model Checking. They considered the use

of a hardware on-chip in order to detect bugs using hardware sentences. According to obtained

results using this hybrid method, they concluded that this technique obtains sentences which

help to Model Checking in order to obtain good results on run time verification.

Other works were based on the Model Checking method [47–53].These methods use

Boolean satisfiability procedures (SAT procedures) or compact representations of Boolean

functions such as binary decision diagrams. The algorithmsdetermine the states that satisfy

a model formula by a graph-theoretic analysis of the space (kripke structure). One problem of

these algorithms is caused when the size of the state graph grows exponentially with the number

of parallel components in the digital system.

30

2.10. Resume

2.10 Resume

In this chapter, we described the importance of the functional verification by the industry.

Also, different methods have been proposed in order to perform the Directed Coverage test

generation (CDG). This technique has represented an important technique for the test of digital

systems in real applications.

Among the carried out works, there are some works where the Artificial techniques have been

used. The main used techniques in the functional verification are: Genetic algorithms, Bayesian

networks, Markov models, Data mining, Mutations, etc. Every technique has obtained good

results. Moreover, some proposed techniques have reached high functional coverage percentages

using different devices. Although, one disadvantage is that most of these methods require a lot

of computer resources. According the researches these methods were better than the pseudo-

random test generation method.

There are some works using evolutive algorithms as Genetic algorithms and swarm

intelligence. According the authors the methods using these meta-heuristic algorithms have

produce better results than the generation based on pseudo-random generation. Also, we can

mention that there have been proposed new meta-heuristics as Particle Swarm Optimization

algorithm, Differential Evolution algorithm among others. Due to this, we propose the use of

these meta-heuristics in order to find test vector sequencesto maximize the functional coverage

obtained from the verification of the devices. In the next chapter, the main definitions about

functional verification will be presented, also, the formaldefinition of coverage model, directed

functional verification, coverage metrics, etc. will be described.

31

CHAPTER III

Digital Design and Functional

Verification of Digital Systems

33

Chapter 3

Digital Design and Functional Verification

of Digital Systems

Different devices such as smart-phones, tablets, lap-tops, smart-watches, drones, etc. contain

chips with millions of transistors on small encapsulates. According to the Law of Moore

every eighteen months the digital circuits contain twice the number of transistors, therefore,

the complexity of their design and functionality is increasing. The design of digital systems

needs to meet the necessary and requirements according to the current technology advances.

Functional Verification is one of most relevant steps duringthe design of digital systems.

Different from the errors in the software, the errors of hardware are more expensive because the

hardware devices need to be physically replaced. Due to the constant increase of functionality

complexity in digital systems new verification methods havebeen proposed. Moreover, new

software tools and platforms are used in order to reduce the time used to perform the verification

of devices. Compatibility and scalability are new challenges produced by the new capabilities

of the digital systems.

Different elements are used in the Functional Verification area. Moreover, the behavior of

a Digital System needs to be modeled in order to measure what portion is exercised during the

Functional Verification process. Different software toolsare employed in order to model the

functional verification process for a device. Also, the engineers review if the correct behavior

is met based on a representation which allows them to analyzethe responses of the device in

different conditions.

Figure3.1 represents a diagram which contains three fundamental elements in the design

process of digital systems, which are: the design intention, specification and implementation.

35

3.1. Digital systems design

The main objective of Functional Verification is to overlap these three elements because if this is

achieved, the specification will be contained into the design intention, and finally, the intention

will be contained in the implementation of the device [1].

Specification

Design

Intent

Implementation

Figure 3.1. Design Intention diagram.

In this chapter, different elements about functional verification will be explained. For

example, the main definitions as digital system, functionalcoverage, functional verification,

coverage model, among others will be explained. Also, the design, modeling and simulation of

digital systems are described in order to perform the functional verification process.

3.1 Digital systems design

Currently the design of digital circuits represents an art because it involves human intention.

Therefore, the representation of the functionality of digital systems can be mapped in different

implementations according to human criteria. The first stepto design a digital system consists in

organizing the requirements and characteristics which areneeded to translate all characteristics

to a physical device. Different abstraction levels are usedin order to represent the digital circuit.

In all abstraction levels, the intention is to improve the design phase reducing the effort during

that process.

An important aspect is the definition of Boolean functions which constitute the main

elements of digital systems. A Boolean function can be defined as follows:

36

3.1. Digital systems design

Definition 2 A Boolean function is a functionf : {0, 1}m → {0, 1} for some m∈ N.

A digital circuit can be described as a graphical representation of propositional formulas where

common sub-formulas may be re-used by allowing what we will call fan-out greater than one.

A digital circuit can be defined based on a set of Boolean functions as follows:

Definition 3 A digital circuit can be described as a set of Boolean functions which receives

a set of input sequencesI = {i0, i1, ..., in} to produce a setO = {o0, o1, ..., om} of output

sequences. Whereij is the jth input data sequence accepted by the device andok is thekth
output data sequence produced by this.

A sequential digital circuit can perform one or more operations every clock cycle, even if it keeps

in the same state as the previous cycle. Basically, there aretwo types of circuits: combinatorial

and sequential circuits. The first type consists in circuitswithout clock signal. The information

is processed immediately when a test sequence in injected atthe input. The second type consists

of circuits with one or more clock signals. The information is processed based on the clock

cycles. The sequential circuits can be split in synchronousand asynchronous. In the fist case a

sequential synchronous design can be defined as follows:

Definition 4 A sequential synchronous hardware design can be represented as a finite state

machineM = (I, O, S, t, δ, λ, n,m) where:

n = number of Boolean inputs.

m = number of Boolean outputs.

t = number of Boolean state variables.

I = input space of2n inputs.

0 = output space of2m outputs.

S = state space of2t states

δ: S × I → S is the next state of the system.

λ : S × I → O is the output function.

Taking account the last definitions in general way a digital system can be defined as follows:

Definition 5 A digital system is a set of devices for the generation, transmission, processing

or storage of digital signals. This is a combination of devices designed to manipulate physical

quantities or information that are represented in digital form; that is, they can only take discrete

values.

37

3.1. Digital systems design

Other main term into the functional verification refers to the device behavior. A definition is as

follow:

Definition 6 The device behavioris composed of a set of logic functionsf : Γn → Θm where:

Γn is the Cartesian product :i0 × i2 × ...× in
Θm is the Cartesian product:o0 × o1 × ...× om

On the other hand, a digital system can be modeled using different abstraction levels. There are

four abstraction levels in order to represent and model a digital circuit.

• Structural representation. Is the representation with allsignals which constitute the device.

It is not necessary to specify the functionality of all modules because the objective is to

present the different signals and blocks of the device.

• Functional representation. Consists of the functionalityof the device. It can be described

as the black box representation of the circuit with input andoutput signals.

• Physical representation. The physical characteristics such as weight, size, temperature,

etc.

In order to perform the functional verification of a device itis necessary to make

the implementation of a digital system in a hardware description language i.e. VHDL,

SystemVerilog, Verilog. A hardware model means the implementation of a digital system

specification.

Digital systems modeling involves a set of steps which allowthe implementation of a device.

These steps are:

• Establish specifications.

• Define inputs and outputs.

• Capture the design (HDL schematic).

• Syntax verification.

• Model syntax (translate to an equivalent of logic gates).

• Functional simulation.

• Mapping (Becomes the equivalent of the logic gates to deviceresources to be

programmed. Backpropagation).

• Place and Route (placement, routing, internal interconnection).

• Simulation times.

• Configuration.

• Depuration.

38

3.2. Main elements of Functional Verification

Figure3.2 shows the main steps for the manufacture of a digital circuit. First, the design

engineer reviews the requirements and provides a specification. Then, the device is in high level

modeling, that is, at a black box level describing inputs andoutputs to perform the functions

required in the specification. The next step is to capture a schematic design using a design

tool and a Hardware Description Language (HDL). Once the implementation of the device is

completed, verification engineers review the implementation and the functional specification.

This process is conducted in order to produce a verification plan. After a verification plan is

proposed, the verification problem is defined and a set of elements (coverage metrics, verification

environment, test sequences) is proposed for verification.After the implementation of the device

is completed, the device is mapped, placed and routed. After, the component is packaged

and tested physically. In the next section the main elementsof functional verification will be

described.

3.2 Main elements of Functional Verification

There are different elements involved in the functional verification process. First, the

verification engineers need to review the specification. This document contains the requirements

and constraints of the device. Also, a verification plan is designed based on the characteristics

of the implementation and the specification. This plan involves what and how will be verified

during the verification process. There are different aspects of the verification plan some of

them are: the coverage measurement, the response checking and the stimulus generation. The

coverage measurement defines the scope of the verification problem. It means, the type of

coverage metric, the coverage goals and events to be covered. The response checking describes

how the responses of the device will be compared with the specified responses. The stimulus

generation consists of the set of techniques to be used in order to generate the test sequences.

The assertions represent conditions that must be met. Unlike software verification,

where only the assertions are then verified, in hardware designs these assertions need to be

accomplished in a specific time. Due to this, it is necessary to implement the design in a temporal

language.

Figure. 3.3 shows the flow diagram of a methodology for performing the functional

verification process. This functional coverage methodology starts by reviewing the digital

system specification after analyzing the design implementation or device. Based on the above,

a functional coverage model is proposed. Given that model, it is necessary to propose a

39

3
.2

.
M

a
in

e
le

m
e
n

ts
o

fF
u

n
ctio

n
a

lV
e
rifica

tio
n

ec fica

puts

and outputs

Capture the design

(HDL schematic).

Digital

system

inputs outputs

Schematic
Packaging

and testing

Mapping

place and route
Fabrication

Define inputs

and outputs
Functional

simulation and

verification

Stimulus
Response

Verify the design

pre-silicon level

F
igure

3.2.M
ain

steps
ofdigitalsystem

design.

4
0

3.2. Main elements of Functional Verification

verification plan. From this plan the verification engineersperform the functional verification

of the digital design. Once the simulation stage is over, theresults are reviewed and if a desired

percentage was reached, the process finishes and if not, the verification tests are modified and

the simulation is performed once again.

Review the digital system specification

Analize the implementation of the design

at the level RTL (VHDL, Verilog, Systemverilog)

Propose a functional coverage model

Define a verification plan based

on the design

Perform the functional verification of the

digital system based on a software system

Analize the results and measure

the advance in the coverage reached

Process end

Modifying tests

yes

not

Start

Figure 3.3. General methodology for the functional verification process.

3.2.1 Functional Coverage

Coverage is the measure of the integrity of set of test. It is important to differentiate the

functional coverage and manufacturing fault coverage, which is used to assess the number of

faults in the manufacture of integrated circuit.

A definition of coverage is the number of goals achieved by thetest set applied. Generally,

the coverage is expressed as the percentage of defined goals that are concretized. For example,

the percentage of sentences exercised from the RTL hardwaredescription.

Functional coverage is based on the specification and the type of coverage metrics to be

recorded. This is used in order to measure the relevant or interest characteristics of the Device

Under Verification (DUV). For instance, to measure an address of 32 bits could generate 4

41

3.2. Main elements of Functional Verification

billions of values. However, there are values numerically different but functionally equivalent.

Therefore, the representation of these values by mean coverage points can be made based on the

functionality. This strategy can reduce the search space, then reducing the verification time.

Functional coverage can be defined in terms of the device behavior as follows:

Definition 7 Functional Coverage represents the region of the device behavior which is

exercised by the stimulus at the input. It means the percentage of the verification goals which

have been met.

Functional coverage is responsible for defining the specification and implementation of

metrics to be remembered.

Another definition of coverage is defined as the percentage ofverification objectives that

have been met. It is used as a metric for evaluating the progress of a project verification in order

to reduce the number of simulation cycles expected in verifying a design.

A purpose in identifying the functional coverage remains tobe done. During the analysis,

the tool that report the functional coverage can compare thenumber of containers that store at

least one sample against the total number of containers. If acontainer has at least one sample,

it is known as the functional coverage gap. Using Hardware Description Languages (HDL) like

SystemVerilog different characteristics of the implementation can be monitored, some of them

are:

1.- Coverage variables and expressions , as well as cross coverage.

2.- Bins automatic and defined by the user.

3.- Bins associated with sets of values or cross product transitions.

4.- Conditions filtering on multiple levels.

5.- Events and sequences to trigger automatic coverage.

6.- Activation and procedural query coverage.

7.- Optional directives to control and regulate the coverage.

A goal of the functional coverage consists in identifying what needs to be done. During the

analysis, the tool which produces the coverage report can compare the number of containers

which save almost one sample regarding the total number of containers. One container which

has not one sample is named as a coverage hole.

Figure 3.4 presents the main trends in functional verification techniques. In this case,

functional coverage is one of more used parameters for functional verification.

42

3.2. Main elements of Functional Verification

Figure 3.4. Trends in Functional Verification Techniques.

3.2.2 Coverage Points

A coverage point is the representation of the values of a variable in a coverage model. The

formal definition is as follows:

Definition 8 “Given a device implementationγ based onβi characteristics and a functional

specificationϕ, a coverage point is the set of possible valuesb0, b1, ..., bk by every characteristic

βi ∈ γ".

A coverage point can be defined as the sign of a scalar value or expression. It can be a

variable or integral expression. Each point includes a set of binsassociated with sampled values

or the values of the transitions. The main goal of a coverage point is to ensure that all interesting

and relevant values are observed in sampled expression. Examples of coverage points are: packet

length, instruction code, interrupt level, bus transaction, completion status, buffer occupancy,

demand patterns bus. The coverage points can be grouped in coverage groups. A coverage

group contains the set of coverage points and other elementsamong which are:

• Clock event. Defines the event when coverage points are sampled. If the clock event is

omitted, users must proceed.

43

3.2. Main elements of Functional Verification

• Coverage points.Can be a variable or an expression in the implementation.

• Crossover coverage.Is a relation between two or more coverage points or variables.

• Coverage options.Are used in order to control the group behavior.

• Optional formal arguments. It means the arguments which are mapped when an instance

of coverage group is generated.

When a coverage point is in use, the goal consists in observing different values of the above

mentioned point. Due to this, Hardware Verification Languages like SystemVerilog can create

automatically fields known asbins. For example, when the mechanism of automatic creation of

bins is used, SystemVerilog create Nbins to store the sampled values of a coverage point. The

N value is determined as follows:

• For a coverage point, N is the cardinality of the numeration

• For some other point of integral coverage, N is the minimum of2M values and the value

of the optionauto_bin_max, where M is the number of bits required to represent the

coverage point.

If the number of automaticbins is less than the number of possible valuesN < 2M , then2M

values are uniformly distributed in the N bits. If the numberof values,2M , is not divisible by

N, then the lastbin might include the rest of the (N-1) additional items. For instance if M is

3 and N is 3, then the eight possible values are distributed asfollows: < 0 : 1 >,< 2 : 3 >

,< 4, 5, 6, 7 >. These properties of Hardware Verification Languages can help to make more

efficient verification environments.

The coverage holes can be seen as correct tasks which have notbeen checked in the

simulation. It is necessary to analyze that the generated holes are valid tasks, since in the case

they are not valid tasks, it is necessary to adjust the restrictions introduced inside the model to

eliminate that holes. When incorrect tasks are generated and have not been covered (false holes),

it reflects problems in the coverage model which is used.

After the device simulation is made the analysis of generated holes is required. The coverage

information shows which tasks have been covered and which are not covered even.

Some points have common tasks, therefore, it is possible to group them in order to reduce

the number of holes and thus to direct the vectors generationto cover the holes [54].

44

3.2. Main elements of Functional Verification

3.2.3 Functional Coverage Metrics

Coverage metrics ensure optimal use of resources simulation, measurement validation, and

the direct simulation to design areas. Due to the need of knowhow much functionality is

exercised coverage metrics are required in order to measurewhich region has been covered.

A general definition of coverage metric is described as follows:

Definition 9 A coverage metric can be defined as a heuristic to measure the portion of the

device behavior that has been verified. The main objective ofthis measure is to reflect which

parts of the functionality have been met with a correct execution during the processing of the

information by the device.

According to [36] coverage metrics help to improve the functional verification of digital

systems:

• Acting as heuristic measures that quantify the full verification.

• Identifying aspects adequately trained in-leading designand generation of input stimulus.

An appropriate metric for evaluating the functional coverage of a set of tests can be a fraction

of the specified behavior of a digital system that is exercised. That is, the fraction of errors

detected by that set. Finding all possible tasks has an exponential complexity and trying to

prove each one may require huge computing resources. Another metric can achieve fraction of

states or transitions that have been exercised.

Usually the designers use a set of metrics to measure the progress of simulation based

on validation, starting with simple metrics that require little effort and gradually use more

sophisticated and expensive metrics. A formal way for more sophisticated simulations also

creates a difficulty. For instance; if a metricM1 involves theM2 metric, then the input stimulus

reaching the full coverageM1 does not necessarily improve the error detection (bugs) that the

input stimulus reaches to complete the coverageM2. (The metricM1 involves the metricM2 if

and only if, when in any design the set of input stimulusS reaches100% of coverageM1, S also

reaches100% of coverageM2).

One of the main uses of coverage analysis is to measure the efforts of the adequate and

progressive validation. The direct correspondence between the coverage metrics and error

classes should ensure that full coverage could detect all errors of a certain type with respect

to the metric.

The level of confidence is directly proportional to the quality of the coverage metric. In most

of cases, the coverage metrics inform how many tasks were exercised by the test cases saving the

45

3.2. Main elements of Functional Verification

number of changes of the characteristics which describe theexercised proportion of the device

behavior. It means, when more information is reflected from the implementation through the

coverage metric, then, more confidence is obtained about howwell the device functionality was

verified.

According to the specification and the implementation the coverage metrics can be divided

in two different categories: implicit and explicit metrics[5]. The first case consists of

coverage metrics based on the features of the design implementation (using hardware description

languages: VHDL, Verilog, SystemVerilog) for example the code coverage metric. The second

case consists of metrics based on the functional specification and the characteristics of the

behavior, for example the functional coverage metric.

There are differences between the implicit and explicit metrics, for example the next set of

code represents a set of instructions of a CPU. In the code theRST instruction is not enabled into

the options. In this case a code coverage report can tell us that 100 % was reached. However, the

functional coverage metric should report different results because one variable was not exercised

during the verification.

Listing 3.1. Example of coding error undetectable by code coverage

enum{ADD, SUB, JMP , RTS , NOP} opcode ;

. . .

case (opcode)

ADD: . . .

SUB: . . .

JMP : . . .

d e f a u l t : . . .

endcase

The last example shows that the functional characteristicsdepend on the functional

specification and not of the device implementation. The differences must be understood and used

together to improve the confidence of the verification process. In the next section some main

concepts about how the obtained information from the deviceis managed will be described.

There are different coverage metrics among which are:

• Statement coverage: This metric is known as block coverage because it measures a set of

lines which is executed in a block of code in the implementation. The visual representation

can depend of the software tool which is used.

46

3.2. Main elements of Functional Verification

• Expression coverage: Measures how many expressions are executed into the

implementation code.

• Paths coverage: Measures the different ways to execute a sequence of statements.

Different from statement coverage the path coverage can detect if a block of code was

exercised using only a subset of the all possible conditionsto execute it.

• Coverage of mutations: This is a measure of the number of changes of the different

conditions into the code which are executed in the implementation.

• Functional coverage: is a metric based on the functional specification. This metric

measures the number of characteristics of behavior which are exercised. Different from

metrics based on implementation functional coverage showsif a specific part of behavior

has been not exercised. In order to use the coverage metric a functional coverage model

needs to be proposed.

• Code coverage: This type of coverage measures the number of lines of code which

have been executed during the simulation of a digital system. It is implicit from the

implementation and it is named as implementation coverage.The main objective of this

coverage metric is to show which portion of code has not been exercise.

• Coverage Discounting: This type of metric combines mutation and functional coverage

metrics in order to discover which points actually have not been covered

3.2.4 Calculation of Functional Coverage

The cumulative coverage considers the distribution of all instances of a particular item or

coverage point. In contrast, the coverage of an instance means the specified coverage of the

specific coverage instance in which is focused.

To make the calculation of coverage for a coverage point, we must first determine the total

number of possible values, also known as the domain. There may be a valuebin or multiple

valuesbins. Coverage is the number of sampled values split by the numberof binsin the domain.

For instance, a coverage point can be a variable of three bitswhich has a domain of [0:7] and is

normally divided into 8bins. If during the simulation the involved values to 7bins, are sampled,

the report will show 7/8 or 87.5% coverage for this point. Allthese points are combined to

show the coverage of the whole group, and then all groups are combined to generate a coverage

percentage for all simulation databases.

This is the state of a single simulation, so we need to store the coverage over time. We must

47

3.2. Main elements of Functional Verification

take care for changes, and we can see further simulations or add new restrictions or tests. Eq.3.1

describes the calculation of functional coverage for a set of points. The coverage is the division

between the sum of the product of coverageCi for each point with the weighWi of each one

divided by the sum of all weights.

Cg =

∑
iWi ∗ Ci∑
iWi

(3.1)

This is the state of a single simulation, so we need to store coverage over time. Watch for

changes, and we can see further simulations or add new restrictions or tests.

The calculation of coverage for a coverage point depends on whether thebins are explicitly

defined by user or automatically created by the tool. For thebin defined by user, the coverage

of a point is calculated as follows:

Ci =
|binscovered|

|bins|
(3.2)

where:

|bins| Is the cardinality of the set of defined bins.

binscovered Is the cardinality of the coveredbins, it means the subset of allbins(defined) which

are covered.

For thebinsgenerated automatically, the coverage of a coverage point is calculated as follows:

Ci =
|binscovered|

MIN(auto_bin_max, 2M)
(3.3)

where:

binscovered Is the cardinality of the coveredbins, the subset of allbins (self-defined) that are

covered.

M : Is the minimum number of bits needed to represent a coverage point (Coverpoint).

auto_bin_max Is the value of the optionauto_bin_max in SystemVerilog.

It is important to understand that the union considers cumulative coverage of all significant

bits; this includes the contribution of allbins(including thebinsoverlapped) of all instances).

To determine if a particularbin of a coverage group is covered, the calculation of the

cumulative coverage considers the value ofat_least option for all instances that are covered.

48

3.2. Main elements of Functional Verification

Due to this, abin is not considered covered unless the amount “hit count” equals or exceeds the

maximum valuesat_least of all instances. Using the maximum value that represents the most

kept selection.

3.2.5 Functional Coverage Model description

A functional coverage model represents the initial step into the functional verification. It

is defined as a coverage space representing the interrelationships between the inputs, outputs

and components of a device [1]. Independently of the method,when the functional verification

process is performed, a coverage model is used. The coveragemodel is based on a type of

coverage structure or coverage metric, i.e. finite state machine (FSM), statement, branch path,

and expression coverage, etc. The model is a fundamental piece of the verification method

representing a golden model to describe the device behavior.

A coverage model consists of tasks, events, conditions, etc. which capture the Device Under

Verification behavior. In other words, it is an abstract representation of the device behavior

composed by attributes, features and their interrelations. In this research we define a coverage

model as follows:

Definition 10 “Given a functional specificationϕ, the coverage model is defined as the set of

featuresζ which has a set of used constraintsτ representing the full device behavior".

where:

ζ = {β1, β2, β3...βn} (3.4)

βi = {b0, b1, ..., bk} (3.5)

Eachbi is a relevant feature value of a coverage pointβi and the set of constraints:

τ = {p0, p1, ..., pt} (3.6)

Wherepi is a possible valid set of values for eachbi.

Figure3.5 shows a coverage model example for a UART-IP core device. Theset of points

represents the abstract way to represent the behavior. In general, a coverage point can be a scalar

value, an expression, an event or a condition in a digital system. An example of a coverage point

49

3.2. Main elements of Functional Verification

can be a command instruction code, since this is a variable which can take a set of values

(0, 1, 2, ..., k). Each value is known as abin. Other examples of points are: an interruption level,

a register input, package longitude, etc. The main objective of a coverage point is to ensure that

all relevant values are represented in the proposed variable. These points are grouped in sets,

which are commonly known as coverage groups.

Figure 3.5. Model representation of a Device Under Verification (UART-bus) using coverage points to
describe the behavior.

The coverage model contains explicit device behavior characteristics. However, this can

be used with implicit coverage metrics taking the coverage information as feedback and then

analyzing and evaluating the current test.

During the verification of the device behavior, a functionalcoverage model is proposed based

on the functional specification and the device implementation. This model is designed using

different levels of granularity, which means that the modelcan represent the original intention

using a different number of characteristics. The verification engineers make a decision on the

amount of fidelity by taking into account the relevant aspects of the device function and the

set of values that represents the main functional regions within the functional behavior space.

Moreover, the fidelity of a coverage model depends on these aspects, especially when all main

characteristics are included. One problem with functionalverification is that it can identify if

there is a deviation between the implementation and the original intention, but it cannot ensure

that there are no errors in the final implementation because the initial specification is designed by

human criteria. Also, the characteristics of the device behavior, which constitute the proposed

coverage model, may not be sufficient to test all device behavior.

50

3.2. Main elements of Functional Verification

A coverage model is a functional space coverage, which captures the behavior of a device.

In other words it is a definition of a subset of the space of stimulus/response that could show an

acceptable degree of confidence, that the functionality of the design is correct.

The fidelity of a coverage model is a measure of how similar themodel represents the

behavior of the device. If the coverage model has high-fidelity output, all device responses to

stimuli applied have corresponding points or regions within the model. The functional coverage

measures progress through the requirements of the device.

A coverage model contains requirements of functional verification process. The total stimuli

and response space for a complex design is multi-dimensional and almost infinite. So it is

unrealistic to expect the comprehensive verification of a design for all possible combinations,

sequences of stimuli and responses.

For example, a solution for an adder of 32 bit is a three-dimensional space measuring a space

of 232×232×2 (Input A x Input B x carry- in). The exhaustive verification ofthis simple design

assumes a set of input values which can be verified every nano-second and might require 1000

years . But an adequate level of confidence in the correctnessof an implementation can be

obtained using only a small set of peers. And that set of inputs will be the coverage model for

combinational adder.

3.2.6 Directed Functional Verification for Digital Systems

The functional verification process can be described similarly as processes used in digital

communication, since in digital communication original data is delivered with additional

information which permits us to detect errors and correct them. In a similar way, in performing

verification based on simulation, the original intended behavior (It can be seen as original

information) is implemented according to functional specification and the designer criteria (It

represents the additional information). Through different process steps, the behavior is verified

by means of monitors, test-benches, assertions, etc. Finally, when the process finishes, the

method determines whether or not the implementation meets the original proposed behavior. In

a formal way the functional verification can be defined as follows:

Definition 11 “Given a device implementationγ based onβi characteristics and a functional

specificationϕ, the functional verification is the process which ensures that each characteristic

βi of the specificationϕ is met byγ".

51

3.2. Main elements of Functional Verification

Where:

βi ∈ ϕ

ϕ = {β0, β1, ..., βk}

Figure3.6 shows the general scheme of verification process using the functional coverage as

a coverage metric. In this case, at the beginning of the process, test sequences are generated

in a pseudo-random way. Then different events, variables, and tasks change their initial state.

However, during the process, some events are not covered, revealing coverage holes which need

to be tested. Due to this, the coverage analysis is a relevantstep to exercise new tasks and can

be used to cover hard cases. It means that the analysis can reduce the number of repeated tasks

during the verification, which reduces the simulation time.

Figure 3.6. Coverage Directed Test Generation blocks diagram.

The Coverage Directed Test Generation can be described as the process which generates

test sequences at the DUV input according to the feedback information during simulation. It

includes different elements used to exercise the device andproduce the environment interaction.

In a formal way:

Definition 12 “Given a device implementationγ and a functional specificationϕ, Coverage

Directed Test Generation is the process which generates thetest sequencest = {i0, i1, ..., in} ∈

(2l)n+1 exercising the featuresβi of the coverage modelζ which represent the functionality of

the device".

52

3.2. Main elements of Functional Verification

Where:

l is the length of the input sequence.

n+ 1 is the maximal number of sequences.

ik is the k-th binary test sequence.

When a test sequenceik is introduced inside the device, if a new value offk(ik) function of the

specification is exercised, then that value and the sequenceis saved into a file. After that, the set

V of states is reviewed and a new test sequence is generated to test the device again. When all

vi specified states are verified, the coverage metric is reviewed [55].

When the functional verification is performed, one or more coverage models and the

implementation device are connected to test the device. Then different functional tests verify

which feature, also called “relevant event” (coverage point) or “variable” assigned in the model

is covered and review if the functionality is working correctly. When the process finishes, the

characteristics tested are reported into a file [56].

We describe the used coverage directed test generation model in this research as a 11-tuple:

〈I, O, S,M, PT , Pc, Ph, F, E, C, IPc〉 (3.7)

where:

I is the set of the possible input sequences2{l}∗(n+1)∗.

O is the set of the possible output sequencesok.

S is the Control Flow Graph describing the device behavior.

M is the proposed coverage model.

PT is the number of coverage points.

Pc = PT − Ph is the set of the covered points in the verification process.

Ph = PT − Pc is the set of the holes (not covered points) during verification.

F is the set of cost functions{f1, f2, ..., fn} to determine how well the generated binary test

sequences work.

E is the test-bench interacting between the device and the data and control signals.

C is the set of checkers used to verify the different inputs andoutputs of the DUV.

IPc is the set of test sequences which exercise the maximum coverage points percentage in the

M .

The actions between these elements produce the directed generation of test sequences, which

can be described as follows: first, a test input sequenceik is generated in a pseudo-random way,

53

3.2. Main elements of Functional Verification

and then the device implementation is evaluated. At the end of the evaluation a set of coverage

information is obtained. The test vector sequences are modified according to the values of the

functionsfi. These cost functions are obtained using the values ofPc andPh at the end of each

simulation respectively.PT includesPh andPc, which means all coverage points. All input and

output data are reviewed by the set of checkersC during the simulation. Also, the exchanged

information between the coverage modelM and the environmentE are checked. In addition, a

scoreboard module can be used in order to review whether the input and output data are correct.

This is performed by capturing the data at the input of the device and the processed output. Then,

the scoreboard compares the data generated from the device with the data generated based on the

specification. Finally, when the stop criteria is met a test sequenceIPc is obtained. It is important

to mention that the coverage percentage in most of the cases is less than one hundred percent due

to differing factors such as: redundant test cases, insufficient number of simulation iterations ,

bad checkers, low number of test sequences, lack of information from the coverage metrics, etc.

Due to this, one of the challenges is to find good alternativesto test all the characteristics of the

device behavior.

3.2.7 Controllability and Observability in digital systems

During Functional Verification, the way to direct the signals is a fundamental aspect. The

control of the stimulus at the input of the device can increase the coverage and help to detect

bugs. If a bad control of the signals is performed then less regions could be covered. Therefore,

techniques which make a good control of the signals allow exercising and covering most of

regions of the behavior. The controllability can be defined as follows:

Definition 13 The “Controllability” can be defined as the ability of a testbench to generate

stimulus which can exercise every part of the device behavior. Therefore, it is the ability to

change the values in every node to obtain a determinate valueat the device output.

This means that not all stimuli are suitable to reduce the time and increase the advance of

exercised behavior because of the signal management in the device under verification.

On the other hand, the change of state of different signals needs to be detected in the probe

points. If an error in one or more signals is activated but is not propagated at a probe point, then,

the error could be undetected. The observability is defined as follows:

Definition 14 The “Observability” is the ability to shift an error to a place where it can be

observed. This can reduce the cost of the error detection by the verification environment.

54

3.2. Main elements of Functional Verification

Under this condition is important in order to detect the cause of the errors and improve the device

implementation.

Based on the last concepts we can mention of “Testability” which is the difficulty observing

and controlling the logical values of internal signals at the input and output of the digital

system [57]. Figure3.7 shows the observability and Controllability in the verification of a

digital system.

Observability: Effect of internal bug is

observed directly at the source.
Controllability: Effect of internal bug in observed

at the output or other part of the logic.

Stimulus
Response

Figure 3.7. Observability and Controllability in a Digital system.

3.2.8 Pseudo-random Constraint Stimulus

Constraints define what and when the device stimulus need to be inserted at the device input.

These are defined by the device behavior. A constraint can be represented as a Boolean formula

over a design signals. There are two types of constraints: the environment constraints and the

constraints which are used as test directives.

The simulation of constraint random stimulus can be made when the stimuli meet certain

requirements of the environment and can be used to reach hardcases of the device behavior.

The feedback of the functional coverage can be used for the constrained random generation

in order to direct the constrain solving and the randomization to exercise the not yet covered

behavior.

55

3.2. Main elements of Functional Verification

Generating stimuli is required to fully exercise the device, in other words, to cause

completely display all possible behaviors. Some techniques that have been used are:

• Generating random test program (RTGP).

• Based test generators models (MBTG).

In performing verification of a device we should take appropriate account ranges for

stimulus. The stimulus generation can be composed of constants and generating sequences.

Restrictions generation has rules, which control the generation of the input data. Data streams

that are sent to the device to produce coordinated actions. The restrictions generation is divided

into groups based on the source:

• The functional specification of the device: are those functional restrictions that are

required to validate the device.

• The verification plan: are those that make a useful subset forverification.

Both types of restrictions are necessary to reduce the amount of all valid stimuli to those who

exercise the necessary conditions limit the device. The specifications concerning the generation

of stimuli must be referenced by the section of the verification plan.

Figure3.8 shows the constraint random test generation process. The process begins with

the pseudo-random generation of a set of tests. After that, the device simulation is performed,

then the coverage analysis is made. Using the coverage information obtained if a set of holes

is identified, then some minimal code modifications are implemented in order to generate a

directed test case or a new pseudo-random test in generated using different seeds. The process

is repeated again until a stop criteria is met.

DUV

Identify

holes

Add

constrains

Functional

coverage

Constrained

random tests

Directed

testcase

Minimal code

modifications

Physical layer

Figure 3.8. Constraint random test generation.

56

3.2. Main elements of Functional Verification

3.2.9 Modeling Functional Verification through Hardware Description

Language (HDL)

When the engineers develop a hardware device the digital system needs to be modeled by

means of a Hardware Description Language (VHDL, Verilog, SystemVerilog, SystemC). The

original intention is a fundamental part to design a digitalsystem because the design engineer

translates the requirements from this intention to lines ofcode using the hardware description

language and the structures from the programming language.

On the other hand, the verification engineers can model the functionality of the device and

the input stimulus using different software tools through asimulation process. The simulation is

the process which allows modeling the full behavior of a device. When the device is modeled by

means of a software tool the real response speed of the semiconductor device is represented at

a fraction. It means that the waveforms of signals are shown using a determined time according

to that software tool.

Different environments can be modeled using a Hardware Description language such as:

Verilog, SystemVerilog, VHDL, etc. The engineers model thewished environment according to

the conditions which are needed to exercised the device behavior. Moreover, in order to check

the correct behavior and detect the changes of the behavior different modules such as: Score

boards, Monitors, among others are created.

Figure 3.9 shows the modeling process of a hardware design by means a Hardware

Description Language. At the beginning, the design engineer reviews the original intention from

the specification. After that; the functionality of the design is modeled in a black box level, then,

this functionality is mapped to code lines based on a Hardware Description Language (HDL).

When a implementation is made, this is tested using a simulation tool and the results obtained

are analyzed.

3.2.10 Proving the Design through the Simulation

Emulation of digital systems is a process where the implementation is mapped to a physical

device that can be a FPGA, logic arrays, etc. and is driven by means of a testbench or by a real

environment where it is supposed that the device will be placed. The objective of emulation is

to accelerate the simulation in hardware.

In the case where a testbench is used from the computer the latency of the communication

with the device can be an order of magnitude slower than the emulation using only the real

57

3.2. Main elements of Functional Verification

Device
Inputs Outputs

Original Intention HDL implementationBlack box level

Functionality

Inputs outputs

Device

simulation

Figure 3.9. Modeling a device through HDL simulation.

environment.

Given an initial specification of a design, designers move these specifications to a hardware

description language such as SystemVerilog, VHDL, Verilogor SystemC. This description is

given to register transfer level (RTL), in which, the functionality between combinatorial blocks

and different building blocks of a digital design is specified. RTL implementation is synthesized

at a network of transistors or logic gates, called gate leveldescription. From a design we can

go through the behavioral, RTL, and gate levels. Given thesedifferent levels, it is important to

verify the initial description and the equivalence of descriptions at different levels of abstraction

involved in the design process.

Figure3.10shows a flowchart of verification of a digital system based on the simulation.

The success of the check depends on how to analyze the resultsto conclude whether the digital

system meets a proper operation.

Formal verification techniques have shown to be effective for tasks such as verifying the

equivalence of two circuits at different levels of abstraction. However, at simulation level it

remains a critical part of the verification process. It is necessary to order the test vectors to

simulate a design, and lookup tables should be appropriate to exercise all aspects of the design.

Later, when the design is made, the test vectors of the input-output can be applied to the design

through to detect systematic failures caused in the manufacturing process tests. Test vectors

must be available at each level of abstraction of the design to ensure that it is possible to verify

58

3.3. Resume

Design specification

meet the expected

results

Functional verification plan

End

Yes
No

Device Under Verification

Checking results

Figure 3.10.Flowchart of verification based on simulation.

the design.

The methodology based on simulation consists in simulatingthe design for all vectors in

a set of tests (test) within an environment which models the current system hardware, and

the simulation outputs are reviewed to analyze the behaviorand review if the system meets

specifications. Test vectors can be obtained through generators or pseudo-random vectors and

they can be entered by designers based on the functional specification of the design. With these

methods it is difficult to ensure a degree to which the design has been proven.

Figure3.11shows the main HVL techniques used to perform the verification process. The

general method based on simulation involves the application of techniques for generating test

according to the level. After each level of the design is completed the vector sequences are

generated and then the device is simulated at that level of abstraction and lower levels. The

results are compared through different levels to check if they match. However, the test generation

process is complicated and time consuming. There are two problems associated with validation

through simulation, which are: coverage and generation of simulation inputs.

3.3 Resume

In this chapter the main concepts about the functional verification of digital systems were

described. Functional Verification includes a set of steps that involves a general methodology to

59

3.3. Resume

Figure 3.11.Trends in Functional Verification Techniques.

be followed today. In addition to measuring the progress of the functional coverage of digital

systems, it is necessary to use a coverage metric or measure that allows to know the progress of

the coverage advance during the test of a device. Among the most commonly coverage metrics

are: paths coverage, statement coverage, coverage of statemachines, fault coverage.

A definition of functional coverage was also described, which can be understood as the

percentage of the device behavior that has been verified. We may also mention the importance

of using a good coverage model for proper verification of a device, as this represents the device

behavior and thus a space of inputs and outputs that are mapped into the model. Also, the

concepts about digital design, modeling and simulating were described. These concepts are

important to understand the principles of functional verification and the current challenges

generated from the technology advances.

In short, these concepts will be useful to understand the proposed method in chapter 5. In

the next chapter the concepts of binary meta-heuristic algorithms are presented. Moreover, their

principles, differences and advantages with respect to other types of algorithms are described.

60

CHAPTER IV

Meta-Heuristics on the Binary Space

61

Chapter 4

Meta-Heuristics on the Binary Space

The word heuristic is derived from the verbενρισκειν which means to find, to invent or to

discover. The Greek wordmetameans beyond or upper level. According to Fred Glover in his

seminal paper [58] a meta-heuristic is a master strategy that guides and modifies other heuristics

to produce solutions beyond those that are normally generated in a quest for local optimization.

Also, the heuristics can be seen as a criteria, methods or principles which decide between several

possible options to be the most effective in order to achievesome goal.

Meta-heuristics can produce a reduction of possible solutions in the search space. This is

because they use different strategies to explore and exploit the search space. Initially different

points in the search space are explored using pseudo-randomgenerated data. After new points

are chosen based on the interaction and the fitness values of the points previously evaluated.

These points represent possible solutions in the search space. By finding points near a global

solution, the areas near these points are largely exploited, and what we see depends on the

convergence in which these algorithms can find the area that contains a solution with a higher

fitness value compared with others in that space without being trapped in a relatively good but

not necessarily in areas where the best solutions are.

In the present chapter, the principles of the Genetic algorithm, Particle Swarm Optimization

algorithm, Differential Evolution algorithm, Compact Genetic algorithm are presented. Also,

the characteristics of the meta-heuristics on the binary spaces are described.

63

4.1. Binary search space

4.1 Binary search space

Different heuristic methods have been proposed to solve optimization problems in

continuous spaces. However, there are problems which are represented over discrete search

spaces; one of such spaces is the problem of Functional Verification of digital systems because

the binary representation is implicit into the discrete domain of digital systems.

Unlike others, the binary representation can be used to represent a wide range of

characteristics, numbers, variables, etc. For example, the binary number: 101011 may represent

the number 43 in decimal but can also represent the presence of four features or the absent of 2

in a particular set of variables.

Adding a bit to a binary string the search space is doubled. This can be exemplified

by initiating a single binary digit, which can represent a point in the binary space that

can take the values zero or one. Adding a bit we can have four different combinations:

{(0, 0), (0, 1), (1, 0), (1, 1)} the set of points could be represented by a square in two dimensions,

where each vertex contains a possible tuple of binary valuesand each edge represents the

distance between each tuple. For example, with the first point (0, 0) neighboring corners will be

(0, 1) and(1, 0) the opposite corner will be(1, 1). Adding a bit more, three-digit binary strings

have 8 possible values(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

This set of 3-tuples could represent a cube where each vertexhas a possible value of 3-tuples.

Increasing the binary string with more digits, this gives analmost incomprehensible increase in

the search space, as each new binary digit adds another dimension to all previous points (This

is known as a hyper-cube). For example, if we have a 20-bit binary string, the search spaceS

is equivalent toS = 220 = 1, 048, 576. This complicates the search for a point within the set

of all possible options. That means trying to find a point which meets the solution to a problem

in this space may be intractable. Even in real problems whichrequire finding good solutions

in a reasonable amount of time, it is impractical to perform an exhaustive search of all possible

points.

Because of the issues described, it is necessary to use algorithms that make a search in this

binary space and find the optimal points within a reasonable time. At the same time, this process

is based on the information obtained to evaluate possible solutions through directed functional

verification. In the next section the main aspects about evolutionary algorithms are presented.

64

4.2. Evolutionary algorithms

4.2 Evolutionary algorithms

Most times meta-heuristic provides a good solution in a modest time period. Meta-heuristics

involves the evolutionary algorithms. According to A. E. Eiben and J. E. Smith [59] these

algorithms are based on the evolution theory where given a population of individuals within

some environment that has limited resources, competition for those resources causes natural

selection (survival of the fittest). This in turn causes a rise in the fitness of the population. The

selection of better individuals produces a better solution. There are two fundamental operators

that form the basis of evolutionary systems:

• Variation operators (recombination and mutation) create the diversity of the population

which permits performing a good search in the search space.

• Selection permits making a difference between the quality of the solutions.

Recombination is an operator which is applied to two or more candidate solutions (called

parents) producing one or more new candidates (the children). Mutation is applied to one

candidate and results in one new candidate. Then, the application of these operators creates

a new population (offspring). The process can be iterated until a termination condition is met or

whether the best solution is reached by the algorithm.

The genetic algorithms have been used to make the search for the functional verification of

digital systems. In the works which were described in the state-of-the-art the researches used the

basic genetic algorithm to search for vector sequences optimizing the values of coverage in the

test of digital systems. However, other meta-heuristics have been proposed among which are:

Particle Swarm Optimization algorithm (PSO), Differential Evolution algorithm (DE), Compact

Genetic algorithm, among others. In this chapter the binaryversions of these meta-heuristics

will be described.

Different from other types of algorithms the meta-heuristics represent mechanics which

reach good solutions in the search space using a reasonable amount of time. These algorithms

take decisions based on the evaluation of the possible solutions. The change in the algorithms

performance can be seen more clearly when the problem implies a big search space and the use

of exhaustive search is not practically. In real problems, the time used in order to evaluate the

digital systems is very expensive. Even for devices with a regular size it is not practically to try

all possible options because the regions of interest to be covered into the behavior space requires

to use good strategies in order to reach sequences in a suitable time. This is the reason why the

use of meta-heuristic algorithms is the main proposal of this research.

65

4.2. Evolutionary algorithms

Another important aspect is the concept of optimization. Inthis research the term global

optimization is defined as the process of attempting to find the solutionx∗ out of a set of possible

solutions S that has the optimal value for some fitness functionf . In other words, we are trying

to find the solutionx∗ such thatx 6= x∗ ⇒ f(x∗) ≥ f(x). In this case, a maximization problem

is assumed. These meta-heuristic algorithms have the ability to maintain a diverse set of points

which provides not only a means of escaping from local optima, but also a means of coping with

large and discontinuous spaces. In the next subsection the main characteristics of the genetic

algorithm will be described.

4.2.1 Binary Genetic Algorithm

The genetic algorithm was proposed by John H. Holland in the early 1960’s was motivated to

solve machine learning problems. This algorithm was designed based on the Darwinian theory

where the interactions between the individuals of the population can produce better solutions.

After different epochs better solutions are found.

The genetic algorithm uses binary strings (genotypes) to represent each possible solution

(phenotypes). Every binary string is composed of a set of positions (genes), a value into each

position (allele) and a set of operators (crossover, mutation and selection). The genetic algorithm

uses the principle based on population of individuals wherethey share the characteristics in

order to produce better individuals and reach a good solution of the problem. There are five

basic components in order to apply the genetic algorithm:

• A representation of potential solutions of the problem.

• A way to create the initial population (commonly a pseudo-aleatory process).

• A cost function which plays the role of environment, classifying solutions by mean their

aptitude value.

• Genetic operators to modify the composition of the individuals to be produced in the next

epoch.

• Values of the parameters (population size, crossover probability, mutation probability,

number of epochs, etc.).

Algorithm 1 shows the pseudo-code of the binary genetic algorithm. There are four main

steps which are executed in every epoch until a stop condition is not meet. The binary genetic

algorithm uses operators of crossover, mutation and selection in order to create a new population.

66

4.2. Evolutionary algorithms

Different parameters need to be configured: crossover percentage, mutation, selection in order

to perform the search.

Algorithm 1: Binary Genetic algorithm

while Stop condition is not metdo
Generate a initial population.
Calculate the fitness values for every individual.
Select (probabilistic) based on aptitude.
Apply genetic operators (crossover and mutation) in order to generate the offspring.

end

The crossover operator is the recombination of two or more Individuals (parents), which

are selected using different criteria based on their value aptitude. Generally, the operation of

crossing is done by taking a reference point within the binary string and combining each of the

sub-strings of the two parents to produce two children. Thisoperation can be repeated with other

individuals to form a new population for the next generation.

The mutation operator or alteration consists of small changes in some positions of binary

strings. Generally, these changes are made in a pseudo-random way and produce a new solution.

This new solution must be evaluated and will constitute partof the new population.

Other step of the genetic algorithms is the selection of individuals. This consists of selecting

two or more individuals in order to apply the crossover and mutation operators. There are

different criteria to select the individuals. After new population is created then a new iteration

is performed and the stop criteria is checked. In the next subsection, the Particle Swarm

Optimization (PSO) algorithm will be described in its binary version.

67

4.2. Evolutionary algorithms

4.2.2 Binary Particle Swarm Optimization algorithm (BinPSO)

In 1995, Eberhart and Russel James Kennedy [60] proposed a new algorithm based on

particle swarm intelligence. The algorithm was based on thepsychological and social theory,

which suggests that individuals moving through a social-cognitive space should be influenced

by their previous behavior and the better performance within their neighborhood. This influence

can be the better of all population or only near to the particle.

In this algorithm, each individual of the population is named as a particle and these particles

are grouped into neighborhoods, which constitute the population. Each particle has a social

and a cognitive behavior. There are two types of configurations: gbestand lbest. The first

configuration can be interpreted asgbest which connects a particle with all others in the

population. This causes the behavior of each individual to be influenced by the best performance

of any particle in the population. The second configurationlbest creates a set of swarms

consisting of a number of particles. The behavior of each particle is influenced by the best

performance of a particle within the swarm.

Algorithm 2 presents the pseudo-code of the Particle Swarm Optimization algorithm with

binary representation proposed by James Kennedy. The first step is to initialize every value of

particles. The fitness value of each is then calculated, then, the value obtained with the value

of their previous best position is compared. If best previous position is replaced by the current,

then, the values of velocity are calculated and then compared. If the best position is less than

the value calculated of the sigmoidal speed function, thenxid is set to 1 but takes the value of 0.

The process is repeated again until a top condition is satisfied.

The probability that each individual decides whether an element is 1 or 0, is defined as a

function of personal and social factors. This function is defined in Eq.4.1.

vt(t) = vid (t− 1) + r1× ϕ1 (pid − xid (t− 1)) + r2× ϕ2 (pid − xid (t− 1)) (4.1)

Where:

• vid (t− 1) is a measure of the individuals predisposition or current probability of deciding

1.

• ϕ1 is a positive random number drawn from a uniform distribution with a predefined upper

limit.

• r1 andr2 are positive random numbers between 0 and 1.

• xid (t) is the current state of the bitstring site d of individual i.

68

4.2. Evolutionary algorithms

Algorithm 2: The Binary Particle Swarm Optimization algorithm (BinPSO)
swarm← initSwarm()
bestParticlePosition← getBestParticlePosition()
globalBest← getGlobalBest()
while 6 terminationConditionMeet do

while 6 terminationConditionMeet do
Loop
for i = 1→ number of individuals do

Compute:
if G(xi) > G(pi) then

for d = 1→ dimensions do
pid = xid
next d

end
end
g = i
for j = indexes of neighbors do

if G(pi) > G(p2) then
g = j

end
Next j
for d = 1→ number of dimensions do
vt(t) = vid (t− 1) + r1× ϕ1 (pid − xid (t− 1)) + r2× ϕ2 (pid − xid (t− 1))
vid ∈ (−Vmax + Vmax)
if ρid < s(vid(t)) then
xid(t) = 1;

else
xid(t) = 0;

end
Next d
Next i
Until criterion

end
end

end
end
swarm← restartSwarm(swarm, globalBest)

end

• tmeans the current time step, andt− 1 is the previous step.

• pid is the best state found so far, for example, it is 1 if the individuals best success occurred

whenxid was 1 and 0 if it was 0.

• pgd is the best neighborhood, again 1 if the best success attained by any number of the

neighborhood was when it was in the 1 state and 0 otherwise.

Since the original version of the Particle Swarm Optimization algorithm was designed to

work in the domain of real values, so a function was proposed to change the values of each

element of the particles using a probability value. The Sigmoid function in equation4.2 is used

to change the value 1 or 0 of each bit that is part of the particle, depending on the probability

threshold. If the valuevid is higher, the particle is more likely to select 1 and if the value is

69

4.2. Evolutionary algorithms

lower, it is more likely to select a 0. Thevid value is restricted in the range [0.0,1.0].

S (Vid) =
1

1 + exp (−vid)
(4.2)

How to control the influence of the traveled path by each particle and the influence of the

other particles in the population may cause the particles move quickly to regions with better

fitness values. To do this, pseudo-random values are used, which produce similar effects to the

mutation operator in genetic algorithms. In the next subsection the main characteristics of the

binary differential evolution algorithm are described.

4.2.3 Binary Differential Evolution Algorithm (DE Algorit hm)

Differential Evolution algorithm was proposed by Rainer Storn and Kenneth Price [19].

This is an evolutive algorithm based on the difference between two individuals and a crossover

mechanism to generate new possible solutions. One advantage of the algorithm is that only

best solutions are used to create a new population. The algorithm has obtained good results

in many optimization problems [20]. Differential Evolution algorithm have been successfully

in different optimization problems [18]. The DifferentialEvolution algorithm has shown good

results in problems with discrete and real spaces.

Although, the initial version of the Differential Evolution algorithm was proposed for

problems with real representation of variables, obtainingbetter results in most cases [61]. Later,

different works were carried out for binary representation[62, 63]. Application of the original

version of the Different Evolution algorithm in discrete spaces is complicated because of the

origin of the operators which are used in the original version of the Differential Evolution

algorithm. Due to this, it is necessary to use operators to let the algorithm apply over discrete

spaces. Different works were carried out using new crossover and mutation functions in discrete

spaces [64–68].

In 2007, A. P. Engelbrecht and G. Pampará published a paper [64] which describes different

strategies by the Differential Evolution algorithm. The obtained results show good solutions in

different optimization problems. On the other hand, in the work [65] in 2011, Changshou Deng,

Bingyan Zhao, et al. proposed a version of the algorithm based on a mutation function which

can be used in the discrete domain. The mutation function is defined in the equation4.3.

hij(t+ 1) =MOD2(xr3j + (xr1j XOR xr2,j) (4.3)

70

4.2. Evolutionary algorithms

Where:

• MOD2: is the function of addition module 2.

• hij(t+ 1): is the is the offspring generated.

• xr1j : is the individual selected by a pseudo-random numberr1.

• xr2j : is the individual selected by a pseudo-random numberr2.

• xr3j : is the individual selected by a pseudo-random numberr3.

• Based on these experimental results we selected this mutation function.

Algorithm 3 represents the pseudo-code of the algorithm of Binary Differential Evolution

which was proposed by Rainer Storn and Kenneth Price with a crossover and mutation function

proposed by Changshou Deng, Bingyan Zhao, et al. [65]. At first, an initial population is

generated pseudo-randomly. Each of the vectors is evaluated in order to obtain a fitness

value. After, three different vectors are selected from thepopulation. Once three vectors are

selected, based on a predefined percentage value CR the operators of crossover and mutation

are performed. These are based on the difference of two of them, which is added to the third

selected. If a random value is higher than CR value then, the corresponding element of the best

current vector is taken. If the new vector is better than the current, then the new vector replaces

the original vector in the population.

Algorithm 3: Binary Differential Evolution Algorithm
G = 0
To generate the initial population:~xi,G∀ i i = 1, ...NP
To evaluate every vector:f(~xi,G)∀ i i = 1, ...NP
Calculate:for G = 1→MAX_GEN do

for i = 1→ NP do
Select randomly r1 6= r2 6= r3 : jrand = randint(1, D) for j = 1→ D do

if randj [0, 1) < CR or j = jrand then
Ui,j,G+1 =MOD2(xr3,j,G + (xr1,j,G XOR xr2,j,G))

else
ui,j,G+1 = xi,j,G

end
end
if f(~ui,j,G+1 ≤ ~ui,j,G) then
xi,j,G+1 = ui,G+1

else
xi,j,G+1 = xi,G

end
end
G = G+1

end

Figure 4.1 shows the generation of new vectors based on the addition of the difference

between two vectors and a third vector which were chosen randomly. In the case of the problems

with binary domain that difference between vectors can be mapped in a binary difference.

71

4.3. Compact meta-heuristic algorithms

Therefore, the operations between bits generate new vectors Ui′s which are evaluated and

compared with the originals in order to choose the vectors tokeep and will be replaced in the new

population. In the next section the main characteristics ofCompact meta-heuristic algorithms

X1

X2

..

.

. .

.

.

.

.
.

.

.

.

Xr3

U0

Vector diferencia

de pesos:

(X(r1,i) XOR X(r2,i))

U0 = Xr3 + X(r1,i) XOR X(r2,i)

Vector seleccionado

pseudo-aleatoriamente

X1, maxX1, min

X2, min

X2, max

Figure 4.1. Generation of new vectors in the Binary Differential Evolution algorithm.

will be presented.

4.3 Compact meta-heuristic algorithms

The compact meta-heuristic algorithms are reduced versions of the meta-heuristics. Because

these techniques use a reduced number of individuals in the population, there is a reduction

in memory requirements in hardware devices. One of the strategies used to reduce memory

requirements consists of representing the population as a probability distribution over the set of

possible solutions. Unlike the meta-heuristics based on population, the Compact meta-heuristics

are based on the increase of the probability distribution byeach bit position of the possible

solutions.

Different works have been carried out, i.e., a compact genetic algorithm (cGA) which

was proposed by Fernando G. Lobo, Georges R. Harik and David E. Goldberg in [69]. In

72

4.3. Compact meta-heuristic algorithms

this work, the authors proposed a genetic algorithm which reduced the memory requirements

using a probability distribution for the population. The strategy consisted in obtaining different

probability values for each individual bit based on the fitness function. Only one vector

represented the probability distribution of the population to generate new individuals and find a

better solution.

Another work is [70] where Chang Wook Ahn and R. S. Ramakrishna presented two new

versions of the original compact genetic algorithm using the elitism concept (pe-cGA and ne-

cGA). The elitism consisted in saving the best current solution to keep it in the new iteration.

In this case, they presented persistent elitism and non persistent elitism concepts. In the first

case, the best solution is saved in order to be compared with anew possible solution in the

next generation. In the second case, the best solution is saved only if a value criteria maintains

a determinate length of inherent. According the results using a set of optimization problems,

these versions improved the original version of the compactgenetic algorithm proposed in [69].

Recently, a compact version of the Differential Evolution algorithm was proposed by

Francesco Cupertino Ernesto Mininno, Ferrante Neri and David Naso in [71] for problems

with real representation of variables. In this work, they used the principle of the Compact

genetic algorithm because the algorithm stored a reduced number of individuals as a population

by means of statistic values. The algorithm was applied to solve different numeric problems,

obtaining very competitive results. Also, to improve the performance of the algorithm, some

work carried out with a local search has been proposed. In thework [72], Ferrante Neri and

Ernesto Mininno carried out a Compact Differential Evolution algorithm with a simple Local

Search mechanism for real representation. The algorithm was applied to solve a control system

design problem for a Cartesian robot for variable mass movements, and it obtained good results.

Unlike other works, in this research the proposed Compact-BinDE algorithm is used to

maximize the functional coverage percentage in the verification of digital systems in the binary

domain. The algorithm follows the principle of these compact meta-heuristic algorithms based

on the probability values over the set of possible solutions, and the binary mutation and crossover

of the Differential Evolution algorithm with a simple localsearch. In the next subsection we

explain the principle of the compact genetic algorithm.

73

4.3. Compact meta-heuristic algorithms

4.3.1 Compact Binary Genetic algorithm

The Compact Binary Genetic algorithm was proposed by Fernando G. Lobo, Georges R.

Harik and David E. Goldberg in [69]. The original version wasbased on the principle of random

walk model proposed by George Harik [73]. The algorithm usesa probability distribution over

the population. These probability values are saved in a vector which represents the information

for every bit position of the individuals from the population.

Different from the original Binary Genetic Algorithm the compact version can save memory

resources because it saves only the proportion of ones and zeros generated by mean evaluations

and, the original Genetic Algorithm needs to store n bits foreach bit position. Therefore, the

Compact Binary Genetic Algorithm does not replace the original Binary Genetic algorithm but

it saves the memory requirements. This characteristic is useful specially in problems where a

huge population size is required.

Selection of the individuals is based on samples from the PV vector in order to produce a new

individual and save the information after to evaluate how good is that solution. The crossover is

performed based on the added information in the PV vector andthe selection of every element

from this vector.

Algorithm4 represents the pseudo-code of the Compact Genetic algorithm using non elitism.

The algorithm can be described as follows: at the beginning,the p vector is initialized with 0.5

in all bit positions. The population size n and the chromosome length are configured according

the values required. After that, every iteration a and b values are sampled from p vector. Then,

a competition is made between these values and the winner andloser are assigned with these

values respectively. After that, every bit position is compared using the values of winner and

loser the values of p vector are increased or decreased by1/n.

A compact version of Genetic algorithm with Elitism was proposed by Chang Wook Ahn and

R. S. Ramakrishna in [70]. This version uses the Elitist individual which is a survivor in the next

generation. Different from the original version of the Compact Genetic algorithm, the Elitism

version takes the best individual in a persistent way. This means that in every iteration the best

solution is kept. Two different versions were proposed: persistent Elitism and non persistent

Elitism. The non persistent Elitism is based on a parameterη that is a specified length which is

used to determine when the Elitism individual is kept for thenext iteration or if it is replaced by

a new individual. According the obtained results the algorithms outperform the original version

of the Compact Genetic algorithm.

74

4.3. Compact meta-heuristic algorithms

Algorithm 4: Pseudo-code of the Compact Genetic algorithm
n: population size, l: chromosome length;
Initialize probability vector;
for i = 1→ l do
p[i] = 0.5

end
Generate two chromosomes from the probability vector;
a = generate(p);
b= generate(p);
Let them compete;
winner, loser = compete(a,b);
Update the probability vector;
for i = 1→ l do

if winner[i] 6= loser[i] then
if winner[i] == 1 then
p[i] = p[i] + 1/n

else
p[i] = p[i]− 1/n

end
end

end
Check if the probability vector has converged.
Go to step 2, if it is not satisfied.
The probability vector represents the final solution.

Algorithm 5 shows the pseudo-code of the steps for persistent elitism ofthe compact binary

genetic algorithm. In the algorithm, the best solution is saved in the next generation and

is compared with the solution of the next iteration. If the new solution is better than the

best solution then this replaces the best solution. According to Chang Wook Ahn and R. S.

Ramakrishna this version produces better results than the original version of the compact genetic

algorithm.

Different from the versions of meta-heuristics based on population the compact version of

genetic algorithm reduces the memory resources because it uses the statistics values of the

population by means of a vector of probabilities. This allows the application of these algorithms

in hardware devices with low memory resources.

75

4.4. Resume

Algorithm 5: Modification of the cGA with pe-cGA.
Echrom: elite chromosome,Nchrom: new chromosome.
Step 2: Generate one chromosome from the probability vector.
if the first generationthen
Echrom = generate(p) /* initialize the elite chromosome */.

Nchrom = generate(p) /* generate a new chromosome */.
Step 3: Let them compete and let the winner inherit persistently.
winner, loser = compete(Echrom, Nchrom);
Echrom = winner /* update the elite chromosome */

4.4 Resume

In this chapter some concepts about binary meta-heuristic algorithms were presented. The

Binary Genetic, the Particle Swarm Optimization and the Differential Evolution algorithms were

described. Different from the problems with variables of real representation, the problems

involving a discrete domain require the use of meta-heuristics using operators which permit

making an operation between variables of binary representation. There are different meta-

heuristic algorithms which perform the binary search usingdifferent philosophies. Such

algorithms have been successfully used in different optimization problems and almost have been

adapted and implemented as part of the test vector generation for functional verification devices.

Also, a version of a Compact genetic algorithm was described. Different from meta-

heuristics based on population this type of Compact meta-heuristics use a probability vector

to represent the population over the set of statistic values. This strategy reduces memory

requirements to implement the algorithm over a hardware device. This principle is used in

the proposed binary differential evolution algorithm. In short, these concepts will be useful to

understand and propose the methodology presented in the next chapter.

Finally, meta-heuristics are methods that have been used for problem solving where it is

difficult to obtain a good solution in a reasonable time, and have an efficient performing of

search based on findings obtained in the evaluation of possible solutions. These characteristics

and given the previous work of the state-of-the-art allows us to propose the use of meta-heuristics

to optimize coverage values making a proper search in the discrete space.

In the next chapter the proposed test generation method willbe presented. Besides, the meta-

heuristics used, coverage models, devices as well as the construction of the platform used for

the functional verification process is given.

76

CHAPTER V

Proposed Method

77

Chapter 5

Proposed Method

Search for test vector sequences in all binary space of digital systems is very expensive

because the extensive search is inefficient and it requires much time to evaluate the device under

verification. Moreover, long binary sequences represent a big problem when different blocks of

bits are required in order to test the functionality. Therefore, to try to search appropriated test

sequences which exercise specific points is not a trivial problem; different CoverPoints can be

covered excessively representing a waste of time for the simulation and the points which were

not covered represent holes. These points could require special analysis because can represent

regions of the behavior which were not implemented during the design step.

In this research we propose the use of meta-heuristic algorithms in order to maximize the

percentage of coverage points during the functional verification, reducing the number of holes

at the same time. Also, the functional coverage models map the functionality of the device to

the CoverPoints, therefore, they represent the full behavior of the device under verification.

The method includes a binary Particle Swarm Optimization (PSO) algorithm and a compact

binary differential evolution (Compact-BinDE) algorithm[74]. The test generation method

directs the search using the coverage information obtainedat the end of the simulation. Also,

the proposed software platform is used in order to evaluate the device and control the interaction

between the DUV and the verification environment. Differentfrom other methods based

on meta-heuristics, the proposed method uses functional coverage models, proposed fitness

functions and these meta-heuristics in their binary versions. The use of these versions is because

of the translation between the phenotype (test sequences) of the solutions in the verification

problem and genotype (bit-strings) is implicit. This genotype is used by these algorithms in

order to generate test vector sequences which cover the set of CoverPoints.

79

5.1. Proposed Compact Binary Differential Evolution Algorithm

Other important aspect of this thesis proposal is the development of a proposed soft platform

in order to communicate the device simulation tool with the algorithms. To do this, an

interface between the hardware description languages (verilog, systemverilog) and C language

was developed. Different modules to analyze, save and calculate the fitness functions were

implemented. An objective to do that was the automation of the functional verification process.

In the present chapter the proposed method is described. Moreover, the use of the meta-

heuristic algorithms and the characteristics of the software platform are presented.

5.1 Proposed Compact Binary Differential Evolution

Algorithm (Compact-BinDE)

In this research we propose a version of a Compact binary Differential Evolution algorithm

(Compact-BinDE) to maximize the functional coverage percentage in the functional verification

process. Before describing the characteristics of the Compact-BinDE algorithm, we need to

understand the relationship between the meta-heuristics and the functional verification. To

begin, the directed functional coverage generation can be interpreted as a heuristic which

searches a set of binary sequences to test the device behavior using the coverage information

obtained at the end of the device simulation. Also, the set ofsequences needs to reach a high

functional coverage percentage. In other words, in every iteration we expect to obtain a set of

test sequences which covers an increasing number of functional characteristics of the Device

Under Verification (DUV).

However, at the beginning, we do not yet know which set of sequences is the best, and the

number of possible options is increased proportionally to the complexity of the functionality of

the device. Due to this, it is necessary to use a technique which can search the best options by

doing an efficient binary search.

Also, the principle of the Differential Evolution algorithm is based on the selection of three

test sequences done in a pseudo-random way. One of them is chosen as a base vector and the

difference between the other two binary sequences is added to this. This difference between the

two binary sequences represents the new direction and the step which will be taken by the first

vector to produce a new possible solution. The new directiondirects the new vector towards

a better solution. At the beginning, the difference betweentwo sequences is long because one

sequence is distant from the other. When more information isobtained from the simulations,

80

5.1. Proposed Compact Binary Differential Evolution Algorithm

the difference is reduced and better solutions are found. Inevery iteration the new test sequence

is evaluated and compared with the best current solution to decide which is the best. The best

solution will be replaced by a new sequence only if the new sequence has an equal or better

fitness function value.

Based on these ideas, we propose a Compact Binary Differential Evolution algorithm

(Compact-binDE) using the Differential Evolution algorithm and the compact meta-heuristics

principle. Moreover, in the proposed algorithm, a simple local binary search is added. The

proposed version is based on the compact version of the genetic algorithm and the compact

Differential Evolution algorithm described in the last chapter, using a mutation mechanism

similar to the work [65] for binary representation. Also, a local search based on a pseudo-

random changes of the best solution is added to improve the search during the evaluations of the

circuit. The local binary search modifies the best binary solution in order to try to improve the

solution, this is made through different probability values [72, 75]. Other techniques could also

be applied to make the local search.

It is important to mention the concept of mutation. In general, a mutation is defined as

an alteration or change. However, in Evolutive algorithms,a mutation is seen as a change

with a random element or random value. This means that a change will be produced using

a probability distribution function (PDF). In this case theDifferential Evolution algorithm

uses a uniform distribution. The algorithm6 shows the pseudo-code of the Compact Binary

Differential Evolution algorithm (Compact-BinDE) with binary Local Search.

In the algorithm6 PV represents the probability vector for each one bit N position of the

sequence.Pls value is used to apply the mutation and crossover of BinDE or the local search for

each individual. ~elite Is the best current sequence.CR is the value of the crossover probability

for each bit of the sequences.MAX_GEN is the maximum number of generations for the

algorithm.

The algorithm is described as follows: First, each element of the probability vector PV

is initialized to 0.5 and the ~elite test sequence is generated by means of these values. This

sequence represents the best current solution. After that,if a pseudo-random value rand[0,1]

is greater than thePls value, then, the Mutation and crossover operations of the Differential

Evolution algorithm are performed. In this case, three sequences: r0, r1, r2 are generated from

the PV vector. Then, for each bit of length, the CR value determines if the mutation operation

is applied or if the element of the new solution will be replaced by the element of ~elite. The

mutation mechanism consists of an XOR operation between r1 and r2. This binary difference

81

5.1. Proposed Compact Binary Differential Evolution Algorithm

Algorithm 6: BinDE/rand/1/bin version of Compact Binary Differential Evolution
algorithm (Compact-BinDE) with Local search.

G = 0
PV initialization PVi,G = 0.5 ∀ i i = 1, ...N

Generate ~elite by meanPV vector.
Evaluate the fitness functionf(~elitei,G)
Calculate:for G = 1→ MAX_GEN do

if randj [0, 1) > Pls then
Generate three vectors~ri by mean ofPV vector
Generate a number pseudo-randomlyjrand = randint(1, D)
for j = 1→ D do

if randj [0, 1) < CR or j == jrand then
~X′j,G+1 =MOD2(xr0,j,G + (xr1,j,G XOR xr2,j,G))

else
~X′i,G+1 = ~elitei,G

end
end

else
Local search is applied

end

if f(~X′j,G+1) ≥ f(~elitej,G) then
elitej,G+1 = X′

j,G+1

end
Update of VP vector:
for j = 1→ D do

if winner[j] 6= looser[j] then
if winner[j] == 1 then
PV [j] = PV [j] + 1

Np

else
PV [j] = PV [j]− 1

Np

end
end

end
G = G+1
for j = 1→ D do

if PV [j] > 0 ∧ PV [j] < 1 then
exit = return

end
end

end

is added to the r0 vector and theMOD2 ensure that the result remains in the binary domain.

Then, the new sequence is compared with the~elite to determine which is better. The winner

solution represents the sequence with the best fitness valueand the looser solution represents

the sequence with the least fitness value. After that, the PV vector is updated according to

the comparison between the elements of the winner and loosersolutions. The comparison is

performed as follows: For every element, if the element of the winner solution is different from

the looser solution and this element is 1, then the value ofPVj is increased by1/N . If the

element is zero,PVj is decreased by1/N . When any element of the PV vector is over 0 and

82

5.1. Proposed Compact Binary Differential Evolution Algorithm

less than 1, then a new iteration is performed. The stop criteria can be a specified number of

evaluations or a given coverage percentage.

There are different ways to perform the crossover and the mutation for the Differential

Evolution algorithm. The equation (5.1) shows the basic way of the algorithm known as:

DE/rand/1/bin, the term “rand” (as in “random”) is used because the base vector is chosen

in a pseudo-random way. The value “1” is because only one difference between two vectors

is added and the name “bin” is used because it is a binomial distribution. TheXOR operator

calculates the binary difference between two sequences andtheMOD2 operator maps the sum

of that difference with the chosen vector in the binary domain. According to the same criteria,

the configurations: DE/Best/1/bin, DE/Rand/2/bin, DE/Best/2/bin can be used as mutation

operations of the Binary Differential Evolution algorithm.

DE/Rand/1/bin:

~X ′j,G+1 =MOD2(xr0,j,G + (xr1,j,G XOR xr2,j,G)) (5.1)

DE/Best/1/bin:

~X ′j,G+1 =MOD2(xBest,j,G + (xr1,j,G XOR xr2,j,G)) (5.2)

DE/Rand/2/bin:

~X ′j,G+1 =MOD2(xr0,j,G + (xr1,j,G XOR

xr2,j,G) + (xr3,j,G XOR xr4,j,G))
(5.3)

DE/Best/2/bin:

~X ′j,G+1 =MOD2(xBest,j,G + (xr1,j,G XOR

xr2,j,G) + (xr3,j,G XOR xr4,j,G))
(5.4)

Each configuration can be implemented in the algorithm, the results of which are described

in section6.3. In the next subsection we describe the proposed test vectorgeneration method.

83

5.2. Proposed test vector generation method

5.2 Proposed test vector generation method

The test vector generation method used in this research involves the necessary steps to

perform the simulation of the device using the input sequences. To do this, the method generates

sets of sequences through the use of the Compact Binary Differential Evolution algorithm

(Compact-BinDE) and Particle Swarm Optimization (PSO) algorithm. The algorithms use

fitness functions which are based on the number of holes and covered points obtained during

the run time simulation. This method focuses on the coveragepoints that are not completely

covered. The meta-heuristic algorithms use the fitness function values to evaluate how good

the binary test sequences are. It is important to mention that the binary search is performed as

follows: During the first iteration, the initial binary testsequences are generated in a pseudo-

random way. Then, the Device Under Verification is verified using these input sequences.

After that, the coverage information is processed and the Compact-BinDE or PSO algorithms

calculate the fitness value to evaluate the sequence, and a new possible solution is generated.

One advantage of the algorithm is that only saves the best current solution for the next iteration,

thus reducing the memory requirements. The algorithm7 presents the steps of the test vector

generation method used in this research (using Compact-BinDE algorithm).

Algorithm 7: General method used to perform the generation of test vectorsequences
Configuration of the Device Under Verification (DUV).
Initialization of variables in the testbenches
Configuration of the verification modules.
Meta-Heuristic algorithm initialization.
while Stop condition is not metdo

while Convergence criteria is not metdo
Generate new test sequences based on the PV vector values.
If the criteria is met, then the BinDE mutation and crossoverare applied. If the
criteria is not met, then a binary Local search is performed.
Evaluate the device.
Analyze the functional coverage information.
Evaluate the fitness function based on the set of coverage points.
Save the current best solution.

end
end

To configure the size of the test vector sequences, it is necessary to review the functional

device specification, the size of the connections between the device and the vector generator

84

5.2. Proposed test vector generation method

module, as well as the testbenches information. In this research the configuration of the length

and command fields for every test sequence was reconfigured ina manual way.

The Verification process of our proposal involves several modules, the blocks diagram of

this process is shown in Figure5.1. A set of vector sequences is generated at the beginning of

the process. The coverage points are sampled during the device simulation. Each evaluation of

a set of sequences is performed by the ModelSim simulator over linux OS. Once the functional

verification is finished, the coverage information is analyzed. This analysis determines how good

the sequence is. Afterwards, a new sequence is generated. The obtained results are reviewed

based on the functional specification. This method uses the coverage information obtained at

the end of the simulation. This information is carried to thedirected automatic test generation

module which decides if the sequence will be saved or not, andgenerates a new sequence for

the device. The process is stopped when a determined coverage percentage is reached or when

a specific number of iterations is met.

The representation of the test sequences (possible solutions) is based on a configurable fixed-

length binary string, which represents a set of test vectorsfor the Device Under Verification.

Therefore, the best solution is a set of vectors which produces the best functional coverage

percentage. For example, in the case of a FIFO memory, each sequence can be composed of

a sequence of 256 vectors of 8 bits to test the data registers.This sequence is based on the

number of used data in the instructions verified. Moreover, the command fields were configured

in manual way based on the functional specification. The equation 5.5shows the representation

of the sequences.

Pi = {~v1, ~v2, ~v3, ..., ~vn} (5.5)

where:

~vi ⊆ X,X ≡ {0, 1}
8 (5.6)

In the case of the UART bus device, the command fields of the sequences were configured in

manual way in order to disable invalid sequences during the functional verification. For example,

a reset command is composed by 8 bytes where every field includes an specific value to restart

the device. An example of a binary sequence in order to write binary data at the device is a

sequence which is composed by 270 bits where 11 bits are used by write command fields and

259 by binary data field. In order to check the data written it is necessary to use a read sequence

85

5
.2

.
P

ro
p

o
se

d
te

stve
cto

r
ge

n
e
ra

tio
n

m
e
th

o
d

End

Functional

specification

HDL Device

Implementation

HVL

Testbench

Coverage Model

using functional

coverage

Pseudo-random test

vectors generation

Directed

automatic

test generation

HDL

Simulation

Coverage

analysis

C Models

Simulator and

design tools

yes

Not

Assertions

Stop

condition is

met ?

Fitness functions

calculation

Constraint solving

F
igure

5.1.B
locks

diagram
of

the
test

sequences
generation

m
ethod

usin
g

the
C

overP
oints

inform
ation

as
a

coverage
m

etric.
8

6

5.2. Proposed test vector generation method

where 11 bits are used by read command field and 259 by data. In the next subsection the fitness

functions are defined. The fitness values are required to guide the search during the generation

process.

5.2.1 Fitness functions

Different holes are produced when the functional verification is applied. Giving the same

weight to all test cases can be a bad strategy because if the fitness function is based only on

the total percentage obtained, then, the weight of the easy and hard cases will be equal. Due

to this, sequences which cover common points and sequences which cover hard cases will

not show significant differences. This means that the convergence of the algorithms will be

slow, producing a long simulation time. Even, in the case of adevice with small complexity of

functionality the simulation time can represent tens of minutes. Due to this, it is necessary to

focus on the points with more holes to build the fitness functions using the information obtained

from the all points. The first step is to cover most of the points using the total percentage.

The second step is to cover the sets of CoverPoints with most of the holes, maximizing their

coverage.

The first fitness function is described by the Equation5.7which is defined as the reciprocal of

the percentage of holes to the set of coverage points. In thiscase, the fitness values are focusing

to cover the maximum number of current holes in that set of points. This is an example of a

fitness function using the not covered points (holes) percentage for a specific points set.

f1 =MAX(
1

Peh
) (5.7)

Where:

Peh is the coverage percentage of holes in a specific set of points.

The second fitness function is defined in the equation5.8. It includes the percentage of current

covered bins for all points and the not covered points in specific sets. The fitness function is

defined as the reciprocal of the sum of the percentage of bins not coveredPeh in a specific set of

CoverPoints and the percentage of covered bins for the totalnumber of coverage pointsPTc in

theDUV.

f2 =MAX(
1

Peh + PTc
) (5.8)

87

5.2. Proposed test vector generation method

Where:

Peh = percentage of not covered bins in specific points.

PTc = percentage of current covered bins in all points.

Where:

Peh =
n∑

i=1

bins non covered in specific points

total number of bins
(5.9)

PTc =
n∑

i=1

number of bins covered

total number of bins
(5.10)

In the next subsection the proposed verification platform isdescribed. The designs and the

algorithms were verified using the connection designed for functional verification between C

language and SystemVerilog with the implemented designs.

5.2.2 Verification platform

The verification platform was constructed by an interface between C and SystemVerilog

which connects the DUV with the verification environment andC files used for the different

algorithms interacting for the test generation method. Different steps are performed during

the evaluations in the platform. When the simulation finishes, a set of statistic information is

generated. This information includes the obtained coverage percentages from the simulation,

the number of evaluations, the best, the worst, and the average coverage percentages, the

configuration of the parameters, the number of errors, and the best solutions in each experiment.

All this data is saved in text files.

Figure5.2shows a block diagram of each module of the verification system used to perform

the experiments. The first block shows the Design Under Verification (DUV). It is implemented

using Verilog language. To perform the functional verification process a test environment in

SystemVerilog was implemented and connected with the DUV. Then, a functional coverage

model was proposed using the functional specification and the device implementation. This

model was implemented in SystemVerilog language. The next block represents the simulator

tool. In this case the Modelsim v6.5 simulator was used to perform the device simulations.

When a simulation is made, the coverage information is retrieved, analyzed and sent to the

88

5.2. Proposed test vector generation method

Compact-BinDE algorithm (particle swarm optimization or binary genetic algorithms). Then

the fitness function value is obtained based on the coverage information and assigned to test

sequence. Finally, the best sequence is saved.

Evaluation of coverage points is performed according to thetimes in the specification of the

device. These values are taken from the test generation module after simulation of the device.

A monitor module is used in order to review that data obtainedat the output is according the

expected behavior.

The simulation platform has the necessary times in order to wait for the evaluation of every

device test. Also, it is necessary that functions are contained by the platform to test the device

each time by the test sequences algorithm generation.

Statistic files are saved into text files by the software platform. Figure5.3 shows a schema

of the designed software platform in order to perform the functional verification process.

The connection between the device and the C language module was made using a ”Direct

Programming Interface (DPI) interface”. The verification environment uses the interface to

communicate with the external modules, control the signalsand deliver the information to the

device.

Verification platform is composed by the following modules:

• Test vector generation module. This module contains the evolutive algorithms (genetic

algorithm, compact differential evolution algorithm and particle swarm optimization

algorithm). The functions of this module are: calculate thefitness values, analyze the

possible values and produce a new test sequence.

• Monitor Module. This module is composed by monitors which check the inputs and

outputs of the device under verification. When the functional verification is made, the

data obtained is reviewed in order to check the correct functionality.

• Statistic module. It saves the statistic information whichis obtained from the simulation

of the device. The data includes: coverage information, best, worst and average solution,

configuration parameters among others.

• Connection interface. Connects the coverage model and implementation with verification

environment and the algorithms.

• Coverage models and implementation module. In the first case, the coverage model

represents the functionality by mean coverage points. Thismodel is used in order to

review if the implementation meets the functional specification.

In the next subsection the way to apply the evolutive algorithms over the proposed platform is

89

5.2. Proposed test vector generation method

Figure 5.2. Verification interface using the proposed Compact-BinDE algorithm.

90

5.2. Proposed test vector generation method

DUV

Interface C

Interface System-Verilog

Figure 5.3. Schema of the designed platform in order to perform functional verification.

described. In this research the experiments were made usingtwo different devices (A type FIFO

memory and a UART bus ip core). An objective of this research is to propose a new method to

generate test sequences maximizing the functional coverage using the PSO and Compact-BinDE

algorithms.

5.2.3 Applying meta-heuristic algorithms over the proposed platform

The meta-heuristic algorithms were implemented over the proposed platform using the C

language. Every binary sequence was introduced at the the device input according to the correct

times controlled by the C-SystemVerilog interface. Different from other applications using

evolutive algorithms, the total time required to evaluate every test sequence depends directly

of the time used to make the device simulation and the computing resources. For instance, an

evaluation of a medium size device can require hundreds of milliseconds. Therefore, the meta-

heuristic algorithms need to optimize the resources makinga good search over a big binary

search space.

In this work we implemented the binary Genetic algorithm, binary Particle Swarm

Optimization algorithm and a binary version of Differential Evolution algorithm. These meta-

heuristic algorithms were included in the Directed Automatic Test generation module of the

proposed platform. In order to use each meta-heuristic algorithm a set of configuration

parameters should be set.

Figure5.4shows the steps of the genetic algorithm used on the verification platform. In this

case, every individual represents a set of test vector sequences. At the beginning, the individuals

91

5.2. Proposed test vector generation method

(test sequences) which constitute the population are initialized, then, each of them are evaluated

and chosen based on the fitness values. After that, the crossover and mutation operators are

applied in order to produce the offspring. Finally, the bestsolution is compared with the other

individuals of the population and the best is saved. The set of steps is performed again while a

stop condition is not met.

Figure 5.4. Flow Diagram binary Genetic algorithm algorithm used for generating sequences of vectors
on the proposed verification platform.

On the other hand, the binary Particle Swarm Optimization algorithm was applied using the

same proposed platform. Figure5.5 contains the main steps of the PSO algorithm applied on

the simulation platform for the device evaluation. For thisalgorithm each particle represents a

test sequence for the device which maximizes the functionalcoverage. At the beginning, the

population constituted by a set of particles is initialized. After that, every particle is evaluated

and the fitness values are saved. These fitness values are compare with their last fitness values

and the best position for each particle is saved. The best solution and the new velocity for each

dimension (bit position) of every particle are calculated.Finally, if a stop condition is not met a

new iteration is repeated.

Each time the design is evaluated, and the algorithms reviewthe number of holes that

92

5.2. Proposed test vector generation method

Figure 5.5. Flow Diagram PSO algorithm used for generating sequences ofvectors.

exist and the points that have already been trained by the fitness function. These find the best

sequences for such values and likewise generates better functional coverage values.

Moreover, the proposed compact binary differential evolution algorithm was implemented in

the directed automatic test generation module. Figure5.6contains the main steps of the Compact

Differential Evolution (Compact-BinDE) algorithm which is used in the simulation platform in

order to evaluate the devices. Each vector represents a set of test sequences at the device input

which maximizes the functional coverage. When simulation is made, the coverage percentage

is feed-backed. This information is analyzed and deliveredto the test generation module. After

that, the Compact Differential Evolution algorithm obtains the fitness function values based on

the coverage information; then it generates new test vectorsequences. In the next subsection the

modeling of the digital systems will be shown. To do this we use the coverage points and the

functional specification of the devices.

5.2.4 Modeling the Device Under Verification

The design of digital systems can represent an art because the human intention is implicitly in

the device implementation. It means that different implementations can meet the same expected

93

5.2. Proposed test vector generation method

Figure 5.6. Flow Diagram Compact-BinDE algorithm used for generating sequences of vectors.

behavior which was proposed in the original specification. These implementations are according

to the human criteria and the hardware resources.

In this research, we use functional coverage models based onthe main events (CoverPoints)

of the device implementation. It means that the models are based on the original proposed

intention (functional specification). Figure5.7 shows a UART bus and a coverage model

obtained from the specification. In this case, every signal represents a CoverPoint which is

included in the Coverage Model. Therefore, the set of CoverPoints represents the coverage

model. Each of these points contains the relevant events that allow monitoring the behavior of

the digital circuit during the injection of test sequences under different scenarios. The coverage

model is connected with the implementation and the monitor module which checks if every

condition is correctly exercised through the clock cycles.Both are simulated in the software

platform. The results generated by the device are compared with the expected results based on

the functional specification.

The implementation of coverage models was made in SystemVerilog language, which allows

combining the hardware implementation with other languages such as Verilog, SystemC, etc. In

the case of the coverage model of the UART bus device it contains 785 bins, which are monitored

94

5.2. Proposed test vector generation method

Figure 5.7. Model representation of a Device Under Verification (UART-bus) using coverage points to
describe the behavior.

and stored in coverage reports. Moreover, the values of eachsequence are stored at the end of

each device evaluation.

5.2.5 Calculating and analyzing Functional Coverage

It is important to mention how the Directed Coverage was implemented is this research.

In general, the test cases and the analysis of the coverage information are developed by hand

because after the device evaluation the coverage reports are saved and analyzed in order to focus

on the current holes and write new test vectors.

Figure 5.8 shows the Directed Coverage Functional Verification which is performed in a

manual way. In this case, the verification engineer maps the functional specification and the

implementation in order to build a functional coverage model. After that, a set of test cases

are written by the engineers. Then, the device under verification is simulated by means of a

software tool and the coverage information is saved into files. Then, the information is analyzed

in order to check which CoverPoints have been covered and which points need to be covered

representing holes in the verification.

Different from the last verification method, in this research the proposed platform performs

the Directed Coverage Functional Verification process in anautomatic mode. In this case, the

model is proposed in a manual way; however, the test vectors are generate by means of the

evolutive algorithms. Moreover, the analysis of the coverage information is reviewed and used

95

5.2. Proposed test vector generation method

Figure 5.8. Manual process to perform the Directed Coverage FunctionalVerification.

in order to calculate the fitness function. After that, the meta-heuristic algorithms take the fitness

value of every possible solution and generates a new test sequence to deliver it at the device

input. Figure5.9 shows the Automated Directed Functional Verification process used in this

research.

Figure 5.9. Automated process to perform the Directed Coverage Functional Verification.

96

5.2. Proposed test vector generation method

Important features of the proposed system are the automaticdevice evaluation and the

calculating and evaluating of coverage information according to the proposed fitness functions

at the beginning of the process. These values are used to evaluate the binary test sequences and

determine the search for new sequences to increase the coverage values.

In order to discard the case where the all points have the sameweight, the points were

divided in different sets. The CoverPoints were divided in sets with different weights; For

example, the sets of pointsS = p1, p2, p3, ..., pn can be adjusted with a vector of weights

H = w1, w2, w3, ..., wn in order to focus in the main Coverpoints. Therefore, when the device is

evaluated the functional coverage percentages will be represented by most of the points included

in the specific set. Equation5.11was used in order to calculate the functional coverage for the

CoverPoints. The coverage is used to calculate the fitness functions after simulations.

Cg =

∑
iWi ∗ pi∑
iWi

(5.11)

In the next subsection the HDL simulation will be described,also, main characteristics about

the configuration for the devices will be commented.

5.2.6 HDL Simulation of the Device Under Verification

The control of times and data transfers between the device and the verification environment

is performed by a software tool (modelsim v6.5 simulator). Adigital system can contain very

complex modules working at the same time. The modules process different signals. Due to

this, the evaluation of the operations needs to be monitoredand saved in a correct way using

appropriate software tools.

The first step was to combine the coverage model, device implementation and each of the

verification environment modules. After that, the implemented test-benches inject the sequences

at the digital system input from the binary vector generation module.

The Modelsim v6.5 software from Mentor Graphics company wasused to simulate the

digital systems. Another simulator tool could be used with the restriction of interface

compatibility (Direct Program Interface) DPI. This interface allows programs to combine

high level languages like C, C ++, Matlab, among others with hardware description languages

(SystemC, SystemVerilog, Verilog) that allow interactingwith the implementation of the digital

system. The set of modules that comprise the meta-heuristics and other algorithms as well as text

files were implemented in C language unlike the verification environment which is implemented

97

5.3. Resume

in SystemVerilog and Verilog languages.

Figure5.10shows the implemented process of Directed Coverage Functional Verification.

The schema is composed of coverage models based on the functional specification. These

models are connected with the device implementation by meanof the verification environment.

Therefore, when the test sequences are injected at the device the coverage information is

delivered to the coverage analysis module which selects thepoints values and finally, the fitness

values are calculated. The values are used to direct the search to the interesting points, and at

the same time, covering the characteristics in order to maximize the total functional coverage.

The interaction between the device simulation and the meta-heuristic algorithms represents the

hybrid method to generate the test sequences.

Synchronization of the signals time intervals for driving the DUV were controlled using the

values according to the specification of each device. Such control allows injecting the binary

sequences while verification environment monitors the coverage points. The main task here is

to simulate the device behavior under the required scenarios at each clock edge.

Figure5.11shows the graphical interface of the Modelsim simulator used for the evaluation

of the device test vectors. Each sequence of vectors is introduced into the device in each

simulation. Different from manual simulations the device is automatically verified. The

simulator tool exercises the DUV by means of different signals through the clock signals and

the changes of the input data.

5.3 Resume

This chapter describes in detail the proposal for the test vector generation method. The

method is based on the application of meta-heuristics to generate test vector sequences that

maximize coverage values obtained by performing the functional verification process. This

process is known as directed coverage functional verification.

In this research a new binary differential evolution algorithm based on binary domain

operators as well as on the principle of compact genetic algorithm was described. The algorithm

contains few configuration parameters, which allows applying it in different scenarios making

small changes in the configuration and needs few memory resources required for implementation

in a hardware device. In addition, other meta-heuristics are used, such as: the binary genetic

algorithm and particle warm optimization algorithm. Thesealgorithms were implemented in the

test generation module.

98

5.3. Resume

Figure 5.10. Implemented process to perform the Directed Coverage Functional Verification.

99

5.3. Resume

Figure 5.11.Modelsim simulator used in the experiments.

In addition, different aspects of the proposed method were described among which are:

The steps in the sequence generation during the device evaluation, fitness functions used, the

modeling of hardware devices as well as the simulation and analysis of results at the end of the

simulation.

A software platform was implemented for functional verification. This software platform

uses an interface for connecting the device under verification, verification environment and

external modules containing algorithms and analysis functions coverage obtained. These

modules are responsible for conducting the process of generation of tests aimed at coverage.

In the following chapter, experiments and results obtainedusing the proposed scenarios with

different configurations of parameters are presented. The main contribution is the application

of compact-BinDE and PSO algorithms and proposed fitness functions in order to maximize the

coverage values.

100

CHAPTER VI

Experiments and Results

101

Chapter 6

Experiments and Results

In order to show the performance of the proposed test generation method we take two

different devices (FIFO memory and UART-IP bus core). Different from problems where

the evaluation consumes short times the functional verification can require more than tens of

milliseconds to evaluate the hardware devices. Even devices of small size can require bigger

times than problems of software. The delay generated by thousands of evaluations represents a

considerable difference with respect to other problems.

The device behavior can be expressed by set of variables, events, expressions. It means,

these variables can take a set of values in order to perform functions described in the functional

specification. The test sequences at the input of the device generate changes of the signals and

then exercise the device under verification. In this context, the relationship between the input

sequences and the events (CoverPoints) is not trivial. Also, due to the device implementation

can affect the holes produced after the verification. To focus in set of points can improve the

performance of the verification and reduce the number of iterations of the algorithms.

In this chapter, the case study as well as the experiments will be described in detail. In

the first section the devices for functional verification andthe characteristics of the proposed

coverage models are given. After that, the configuration settings and the characteristics of

the computer equipment which was used to perform the experiments are presented. In the

next section, the results obtained using the compact differential evolution algorithm (Compact-

BinDE). After, experiments using the Genetic algorithm, Particle Swarm Optimization are

described. Then the results of the comparison with a geneticalgorithm, a pseudo-random test

generation, Compact-BinDE and a Particle Swarm Optimization algorithm are shown. Finally,

there is a discussion of the results.

103

6.1. Case Study

6.1 Case Study

This case study was developed to show the main characteristics of the Compact-BinDE

algorithm and Particle Swarm Optimization algorithms. It is important to mention that different

from the conventional genetic algorithms, the Compact-BinDE includes the compact genetic

algorithm principle based on the statistical values of eachof the elements of the population.

Also, the elitism strategy is used, which outperforms the results obtained when using the basic

genetic algorithms [70]. The added differential evolutionprinciple allows us to produce new

solutions which approach a global solution by means of the difference of two sequences added

to a third sequence chosen from the population. One advantage of the compact-BinDE algorithm

is that it allows us to save only three or five individuals, independent of the dimentionality of the

problem, thus reducing the memory requirements even if the problem has a high dimentionality.

In this research two different devices were used to analyze the performance of the algorithm.

To perform the functional verification a UART bus IP core and asynchronous FIFO memory

were used. These devices were obtained from the Opencores page. They were implemented

in Verilog language and the testbenches were designed in SystemVerilog. According to

the platform described in5.2.2 the configuration and the experiments were made using the

functional specification. The experiments were performed using the proposed verification

platform on the Fedora Core Linux operating system.

The first device is a Synchronous FIFO which has a bidirectional bus and chip select, write

enable, read enable, output enable, empty flag, and full flag signals. In this case, for the FIFO

memory, 784 bins were used from the coverage points which include: address, input data, output

data, rd_en, wr_en, full flag, empty flag, wr_cs, rd_cs. Although the complexity of this device

is low, it is a common device which can be part of more complex devices such as UARTs,

processors, etc.

The second device consists of a UART bus IP device, which is a converter of a UART to

bus IP core. This core can be used during initial board debugging or as a permanent solution

when high speed interfaces are not required. The internal bus is designed with an address bus of

16 bits and a data bus of 8 bits. The core contains a UART transmit block and a receive block

which share a common baud rate generator and a command parser. The parser supports two

modes of operation: text mode commands and binary mode commands. Text mode commands

are designed to be used with a hyper terminal software and enable easy access to the internal bus.

Binary mode commands are more efficient and also support buffered read and write operations

104

6.1. Case Study

with or without an automatic address increment. Using the functional specification and the

implementation of the UART bus IP device, 785 bins were used from 12 coverage points. The

stimulus time and clock signals were configured according tothe specification and successful

initialization of this device. In the next section the experimental setup is described.

6.1.1 Experimental Setup

To analyze the performance of the algorithms, we proposed a set of experiments using

different scenarios. In this research, “scenario” means a set of configured parameters for the

Meta-heuristic algorithms. According to each experimental section, every scenario was run a

number of times. Independent from the scenario, the configuration and initialization of every

device were performed using the functional specification for each one.

For each scenario, different parameters were changed, i.e.for the Compact-BinDE

algorithm: crossover CR probability value, probability valuePls for local search, the population

size, number ofLS evaluations for local search, total number of evaluations and, the crossover

and mutation DE functions. In this research “mutation” means a change in each new generated

solution using a pseudo-random value, accomplished by adding the difference of two sequences

to another sequence, chosen according to the structure of the Compact-algorithm as was

explained in5.1. Also, two fitness functions which were introduced in the5.2.1were used to

evaluate the test sequences during the experiments. The proposed algorithm uses these functions

to evaluate how good a possible solution is based on the coverage data obtained in the set of

chosen points.

To present the obtained results, different values were analyzed, including the best coverage

percentage, the worst coverage percentage, the average coverage, and total time of the

simulation. Also, in each section of the experiments, different constraints were changed. For

example, we only used one test sequence as a constraint in onesection and we used two

sequences in another, which provides an increase in the length of possible test sequences.

Experiments using the same devices in the proposed verification platform were performed

in order to make the comparison between the Compac-BinDE algorithm and other algorithms,

such as pseudo random test generation and the general version of the genetic algorithm. The

objective was to show the performance of the algorithms searching test sequences which cover

all coverage points. The same fitness functions were used to do the experiments. Modifying

the different parameters of each algorithm, different results are obtained, however, the PSO and

105

6.1. Case Study

Compact-BinDE algorithms reached the best coverage valuesin most of cases. In the case of

the genetic algorithm, the following parameters were modified: population size, crossover and

mutation percentages, and number of evaluations. Due to thefact that the genetic algorithm is

a meta-heuristic based on population, it requires the evaluation of all individuals or all possible

solutions in each iteration, which produces a slow convergence.

To perform the experiments the following characteristics of the computer used were: Fedora

Core 18 Linux operating system, Processor : AMD Athlon(tm) II X3 440, cache size: 512 KB,

cpu: 3 GHz. RAM memory: 4Gb. The simulator used was: Modelsimversion 6.5. In the

next subsection the set of experiments is described. Different scenarios were used and the best

scenarios are presented.

6.1.2 Experiments and Results with Compact-BinDE Algorithm

In this section, we proposed a set of experiments using different scenarios and devices. In

this research a “scenario” means a set of configured parameters for the algorithms. According

to each experimental section, every experiment was run a number of times. Different values

are shown including the best coverage percentage, the worstcoverage percentage, the average

coverage, and total time of the simulation. Also there are different constrains used in each

section, for example, we used only one test sequence as a constraint in on section and we used

two sequences in another, which provides an increase in the length of possible test sequences,

etc.

In the first section, a FIFO memory was used as a Device Under Verification (DUV). The

experiments were realized taking one test sequence of 2048 bits as the length of each possible

solution. This constraint reduces the possible options considerably. Because of the reduction

of possible options, a higher number of evaluations is required. The experiments were made

changing the following parameters of the Compact-BinDE algorithm: The number of total

individuals (population size), the type and theCR probability value of BinDE crossover, the

total number of evaluations and thePls percentage value for the applied local search.

The Table6.1shows the parameters for 4 best scenarios using different Differential Evolution

structures. Each column represents a set of parameters for different DE structures (/rand/1/bin,

/best/1/bin, /best/2/bin, /rand/2/bin). The first row shows CR probability value of BinDE

crossover. The population size is shown in the second row, and thePls values are shown in

the third row. The stop criteria was 15000 evaluations during the verification process. Each

106

6.1. Case Study

experiment was run 30 times for each scenario.

Table 6.1.Parameters of four different scenarios using Compact-BinDE algorithm

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Compact-BinDE

/rand/1/bin /best/1/bin /best/2/bin /rand/2/bin

CR value 0.00065 0.00065 0.00010 0.00010
Population size 500 500 500 500
Pls 0.002 0.002 0.0025 0.0025
Iterations 15000 15000 15000 15000

Table6.2 shows the obtained results for each scenario which were described in Table6.1.

The first column shows the number of scenarios used in order toperform the generation of

test sequences. The second column shows the total number of evaluations used. The best and

the worst coverage values are shown in the third and fourth columns respectively. The fifth

column shows the average coverage percentage calculated from the 30 runs for each scenario.

Finally, the total time used to perform the verification process is shown in the sixth column.

The algorithm reached values over 99 percent coverage in most of the experiments with 15,000

evaluations as stop criteria. Reviewing the obtained results, we can see that the second scenario

produced the best coverage percentage running the same configuration 30 times.

Table 6.2.Coverage values obtained with four different configurations of the Compact-BinDE algorithm

Scenario Evaluations Best value Worst value Average Time (min)
1 15000 99.023 96.875 98.059 1,688
2 15000 99.414 97.265 98.164 1,675
3 15000 99.218 95.70 98.092 1,697
4 15000 98.828 97.460 98.196 1,717

The second part consisted of running experiments using different population size. In this

case for the experiments, theDE/rand/1/bin version of the Compact-BinDE algorithm was

used. Table6.3shows the set of parameters for four of the best scenarios used. The stop criteria

107

6.1. Case Study

was 15000 evaluations. Different population sizes were used for each scenario: 450, 500, 600,

800. Different CR crossover values were used and each scenario was run 30 times.

Table 6.3.Parameters of four best scenarios using /rand/1/bin version of the Compact-BinDE algorithm
with different population size

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Compact-BinDE

/rand/1/bin /rand/1/bin /rand/1/bin /rand/1/bin

CR value 0.00065 0.00060 0.0006 0.0005
Population size 450 500 600 800
Pls 0.0005 0.0005 0.0005 0.005
LS evaluations 1 1 1 1
Iterations 15000 15000 15000 15000

Table6.4 shows the obtained results for each scenario of Table6.3. The total number of

evaluations, the best, the worst, and average coverage percentage values, and the average of the

simulation time are presented in the second, third, fourth,fifth and sixth columns respectively.

In this case, the first and the fourth scenarios produced the best average values of percentage of

coverage. In the first scenario, this reached 99.218% using 450 individuals.

Table 6.4.Values of Coverage percentage obtained with different population size

Scenarios Evaluations Best value Worst value Average Time (min)
1 15000 99.218 96.875 98.092 1.67
2 15000 99.609 96.484 98.170 1.68
3 15000 98.828 96.484 98.053 1.66
4 15000 99.218 96.093 98.19 1.67

If the length of each possible solution is increased to two input test sequences (4096 bits),

then the performance increases considerably, and the algorithm reduces the total time needed

to obtain test sequences to cover all coverage points. The set of parameters for the four best

scenarios is shown in Table6.5. In this case the stop criteria was 5000 evaluations.

Table6.6shows the obtained results with the scenarios presented in6.5. In the first column

the average of the number of evaluations for each experimentduring the 15 runs is shown,

108

6.1. Case Study

Table 6.5.Parameters of four best scenarios using a solution length oftwo sequences

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Compact-BinDE

/rand/1/bin /best/1/bin /best/2/bin /rand/2/bin

CR value 0.0015 0.0015 0.0015 0.0015
Population size 500 500 500 500
Pls 0.005 0.005 0.005 0.005
LS evaluations 5 5 5 5
Iterations 5000 5000 5000 5000

and the total best coverage value is shown in the second column. Finally, the average time (in

minutes) is included in the third column. In these experiments the algorithm reached 100% with

the functional coverage as coverage metric. Due to the increase of the length of sequences, the

algorithm produced better percentages, thus reducing the time needed for the verification.

Table 6.6. Coverage values and total time for each scenario using different mutation functions for the
Compact-BinDE algorithm

Average evaluations Best value Average Time (min)
1553.00 100.00 0.5248
1429.13 100.00 0.3645
1491.13 100.00 0.3820
1706.20 100.00 0.4373

Also, different scenarios were used to analyze the performance of the algorithm in more

complex devices. In these experiments a UART-IP core devicewas used as a Device Under

Verification using the Compact-BinDE algorithm. Table6.7 shows the parameters for the four

best scenarios using different configurations (rand/1/bin, best/1/bin, best/2/bin, rand/2/bin) of

the algorithm. The CR crossover values are shown in the first row, the population size values

are presented in the second row. ThePls percentages for the local search are shown in the third,

and the number of evaluations for local searchLS is presented in the fourth row. Finally, the

number of evaluations is shown in the fifth row. In this case, the length of each test sequence

109

6.1. Case Study

was reduced to one sequence of 2072 bits as a constraint. Eachscenario was run 15 times. The

stop criteria was 6000 evaluations.

Table 6.7.Parameters of four best scenarios using the UART-IP device

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Compact-BinDE

/rand/1/bin /best/1/bin /best/2/bin /rand/2/bin

CR value 0.00080 0.00050 0.00050 0.00060
Population size 600 600 600 600
Pls 0.005 0.005 0.005 0.005
LS evaluations 5 5 5 5
Iterations 6000 6000 6000 6000

Table 6.8 shows the obtained results with the scenarios presented in Table 6.7 using the

UART-IP core. The first column shows the number of scenarios and the second column presents

the total number of evaluations for each scenario. The best,the worst, and the average coverage

percentage are shown in the third, fourth and fifth columns respectively. Finally, the average

time of simulation for each scenario is presented in the sixth column. In this case, the fourth

scenario reached an average coverage value of 97.5%, using 122.63 minutes as a average time

from 15 runs.

Table 6.8.Obtained results for four scenarios using Compact-BinDE algorithm

Scenario Number of evaluations Best value Worst value Average Time (min)
1 6000 97.916 97.005 97.421 133.860
2 6000 98.177 96.223 97.291 136.002
3 6000 98.567 95.833 97.005 135.868
4 6000 97.786 97.135 97.578 122.634

Different scenarios were used to analyze the performance ofthe Compact-BinDE algorithm

with an increase in the length of each possible solution. Thelength of each possible solution was

increased to two sequences (4144 bits), thef1 fitness function for a set of points, and the stop

criteria was decreased to 1500 evaluations with different CR crossover percentage values. The

110

6.1. Case Study

scenarios were run 15 times. Table6.9 shows different parameters for 4 best scenarios. Every

column represents a different structure of the compact-BinDE algorithm. The crossover CR

values are shown in the first row, while the second row shows the population size. The third row

presents the probability value for the local searchPls. The number of evaluations of the local

search and the total number of iterations are shown in the fourth, and fifth rows respectively.

Table 6.9.Parameters of the Compact-BinDE using a length of two sequences with the UART-IP device

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Compact-BinDE

/rand/1/bin /best/1/bin /best/2/bin /rand/2/bin

CR value 0.0015 0.0015 0.0015 0.0015
Population size 600 600 600 600
Pls 0.005 0.005 0.005 0.005
LS evaluations 5 5 5 5
Iterations 1500 1500 1500 1500

The obtained results are shown in Table6.10. The number of scenarios is shown in the first

column. The number of evaluations used as stop criteria is shown in the second column,while

the best, the worst and the average coverage percentage values are shown in the third, fourth,

and fifth column respectively. The average time is shown is the sixth column. According to the

results, when the fitness values were focused in a set of points in most of cases the algorithm

reached 100% using different scenarios, with average coverage values over 99%. When the

length of the possible solutions was increased, the time wasreduced considerably. In this case

the fourth row shows the best average of coverage percentageusing 29.216 minutes. The first

and the fourth scenarios produced the best averages of coverage values.

The Compact-BinDE algorithm produced good solutions even though only one test sequence

is used to cover the set of coverage points. When the length was increased to two or more test

sequences, the total time was reduced considerably. The results show that averages of coverage

percentages over 99% were reached with less time than when the length of one sequence was

used for every possible solution. One improvement will be made by modifying the original

coverage model and reviewing the verification environment after the verification. Figure6.1

shows the coverage values obtained according to the number of evaluations using thef1 fitness

function and the DE/rand/1/bin configuration for the Compact-BinDE algorithm verifying the

111

6.1. Case Study

Table 6.10.Results obtained using different configurations of the Compact-BinDE algorithm to test the
UART-IP device

Scenario Number of evaluations Best value Worst value Average Time (min)
1 1500 100.00 99.479 99.895 21.634
2 1500 100.00 99.348 99.661 16.588
3 1500 100.00 96.223 99.895 17.877
4 1500 100.00 99.869 99.921 29.216

UART-IP core. Six hundred individuals, and 6000 evaluations were selected as stop criteria. In

this case, it is important to say that the constraint used wasa length equal to one sequence for

every possible solution. According to the obtained results, after 3000 evaluations the coverage

percentage was over 95%, and the percentage was around 98% when the stop criteria was

reached.

0 1000 2000 3000 4000 5000 6000
75

80

85

90

95

100

C
ov

er
ag

e
P

er
ce

nt
ag

e

Number of Evaluations

Best coverage value for evaluations

Figure 6.1.Coverage values obtained according to the number of evaluations using thef1 fitness function
and the DE/rand/1/bin configuration for the Compact-BinDE algorithm and the UART-IP core.

Figure6.2shows a comparison of different configurations of the Compact-BinDE using the

112

6.1. Case Study

UART-IP core as Device Under Verification. According to the graph, the coverage percentage

values are increased in different ways when the crossover valueCR is changed. In the first 2000

evaluations there are different coverage values, but, after that, the coverage percentages reach

values over 98% of coverage.

0 1000 2000 3000 4000 5000 6000 7000 8000
70

75

80

85

90

95

100
C

ov
er

ag
e

P
er

ce
nt

ag
e

Number of Evaluations

Best coverage value DE/rand/2/bin CR = 0.00080
Best coverage value DE/rand/2/bin CR = 0.000700
Best coverage value DE/rand/1/bin CR = 0.00060

Figure 6.2. Comparison of the Coverage Directed Test Generation using different configurations.

Figure6.3 shows the coverage percentage using a length equal to 2 sequences (4,144 bits)

for every possible solution with the Compact-BinDE algorithm. The horizontal axis shows the

number of evaluations used to obtain the coverage percentage values which are shown in the

vertical axis. In this case, the configuration for the algorithm was DE/rand/1/bin.

The comparison between different crossover CR values usingthe DE/rand/1/bin

configuration is shown in Figure6.4. According to the obtained results, the scenario with

CR = 0.0016 converged quickly. Even in this case, the scenario usingCR = 0.0014 converged

more slowly but this reached 100% before the others. The CR value determines the degree of the

mutation and crossover applied to produce a new solution. This factor can help to increase the

speed of the convergence of the algorithm, but it can also getstuck on a local solution. The same

parameters of the local search were used for the three scenarios, in which 100% was reached in

the first and second cases.

113

6.1. Case Study

0 200 400 600 800 1000 1200
91

92

93

94

95

96

97

98

99

100

C
ov

er
ag

e
P

er
ce

nt
ag

e

Number of Evaluations

Best coverage value for evaluations

Figure 6.3. Coverage Directed Test Generation percentages for different iterations number using 2
sequences and a CompactBinDE/rand/1/bin configuration.

Also, the comparison betweenf1 andf2 fitness functions was performed using the UART-

IP bus core. Figure6.5 shows the comparison betweenf1 andf2 fitness functions using the

DE/rand/1/bin configuration for the Compact-BinDE algorithm. The horizontal axis shows

the number of evaluations and the vertical axis represents the coverage percentage values.

According to the obtained results, using fitness functionf1, the algorithm obtains better

coverage percentages than fitness functionf2 and the convergence is reached more quickly

in most of cases. The reason is that the values obtained from fitness functionf1 are inversely

proportional to the set of generated holes during the functional verification. It means function

f1 focuses on the set of generated holes on run time. Other fitness functions can be proposed

to improve the performance of the algorithm. In the next section a Comparison between the

Compact-BinDE algorithm, a general version of the binary genetic algorithm, and a pseudo-

random generation will be presented.

114

6.2. Experiments and Results with other Meta-heuristic Algorithms

0 200 400 600 800 1000 1200 1400 1600
90

91

92

93

94

95

96

97

98

99

100

C
ov

er
ag

e
P

er
ce

nt
ag

e

Number of Evaluations

Best coverage value DE/rand/1/bin CR = 0.0014
Best coverage value DE/rand/1/bin CR = 0.0016
Best coverage value DE/rand/1/bin CR = 0.0013

Figure 6.4. Comparison of Coverage Directed Test Generation with different CR values using 2
sequences and a CompactBinDE/rand/1/bin configuration.

6.2 Experiments and Results with other Meta-heuristic

Algorithms

In addition, to compare the performance of the compact differential evolution (Compact-

BinDE) algorithm, other algorithms were used. The genetic algorithm, the Particle Swarm

Optimization algorithm and the pseudo-random generation were used in the proposed platform.

These algorithms were implemented on the proposed platformand different parameters were set

to configure the different scenarios.

Beside, the proposed test generation method uses the Particle Swarm Optimization algorithm

in order to verify the devices. The binary version of PSO algorithm was proposed by Keneddy

[60]. This version was implemented on the proposed verification platform. Moreover, the simple

version with elitism of Genetic algorithm was implemented to make a comparison with the other

algorithms.

For the experiments with meta-heuristicsf1 fitness function was used. Sequences of 4144

bits were used to verify the UART device. Also, test sequences of length 4096 bits were used

115

6.2. Experiments and Results with other Meta-heuristic Algorithms

0 200 400 600 800 1000 1200 1400 1600 1800
90

91

92

93

94

95

96

97

98

99

100

C
ov

er
ag

e
P

er
ce

nt
ag

e

Number of Evaluations

Best coverage values using DE/rand/1/bin −F1
Best coverage values using DE/rand/1/bin −F2

Figure 6.5. Comparison of Coverage Directed Test Generation using 2 different fitness functionsf1 and
f2 and sequences of 4144 bits as the length of each possible solution, and CompactBinDE/rand/1/bin
configuration.

to verify the FIFO memory. Different scenarios were set to analyze the results and get the

best scenarios based on the above conditions. In the case of the genetic algorithm population

sizes, crossover and mutation percentages were changed. Inthe case of the PSO algorithm, the

globalbest and localbest topologies were implemented withdifferent scenarios and the results

were compared. The same coverage models and devices were used for all algorithms. The next

subsection presents the experiments and results obtained using the genetic algorithm.

6.2.1 Experiments using a binary Genetic algorithm

Also, the genetic algorithm was implemented in the proposedplatform. Different

experiments were performed using different scenarios. In each scenario, the population size,

crossover and mutation percentages were changed. The UART device and FIFO memory were

used as devices under verification. Also, 30 runs were made using f1 fitness function and the

number of evaluations as stop criteria. According to this, the experiments were made and some

116

6.2. Experiments and Results with other Meta-heuristic Algorithms

of the best scenarios are presented in this section.

Table6.11shows the parameters of the genetic algorithm to verify the FIFO memory. Each

column represents a set of parameters for 3 best scenarios. The first row contains the crossover

percentages which were set to 0.5 in the three cases. The mutation percentages are shown in

second row. The third row shows the population sizes. A stochastic universal sampling was

used as type of selection in all cases, this is shown in the fourth row. Finally, the number of

evaluations is shown in the fifth row. For these experiments 30 runs were made with 5000

evaluations as stop criteria.

Table 6.11.Parameters for experiment using binary Genetic algorithm for FIFO memory

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Values

1 2 3

Crossover Percentage 0.50 0.5 0.5
Mutation Percentage 0.0012 0.0018 0.0015
Population size 100 200 125
Type of selection stochastic universal sampling yes yes
Number of Evaluations 5000 5000 5000

Table 6.12 shows the results obtained using the given scenarios from Table 6.11. Each

column shows the coverage values obtained using each scenario. The best, the worst, and

the average of coverage percentages are given in the first, second and third rows respectively.

Average of the number of evaluations and average time in minutes are given in the fourth and

fifth rows.

Table 6.12.Results obtained using the binary Genetic algorithm for FIFO memory

Final values Scenario 1 Scenario 2 Scenario 3
Best value 99.60 96.67 98.43
Worst value 94.92 92.77 94.33
Average value 97.29 94.86 96.41
Average evaluations 5000 5000 5000
Average Time (min) 1.079 1.071 1.065

117

6.2. Experiments and Results with other Meta-heuristic Algorithms

According the obtained results, when 100 individuals were used as population size, the

algorithm reached higher coverage percentages than biggerpopulations. Using the same number

of evaluations the average value of coverage percentages for using this scenario was 97.29%.

Even the algorithm not reached the convergence with 5000 evaluations, in this scenario the

algorithm reached coverage percentages higher than 97%. Also it was observed that mutation

percentages produced different results even without change of other parameters. For example,

using values of: 0.0012, 0.0015, 0.0010 the coverage percentages were close using all other

parameters equal. On the other hand, when 125 were used (third scenario) the average of

percentages around 96.41% were reached. Different from thelast cases, in the second scenario

using 200 individuals the algorithm covered the Coverpoints slower than the other scenarios. Is

important to do mention that the number of iterations depends on the number of test sequences

from the chromosome (short lengths). It means, if less test sequences are chosen to test the

device, then the algorithms can need more iterations to search good solutions.

On the other hand, the genetic algorithm was used with different configurations in order

to verify the UART device, thereby, experiments with each ofthe different scenarios were

performed. Table6.13 shows the values of the parameters for three best scenarios using the

genetic algorithm withf1 fitness function. Each column shows the parameters for each scenario.

The crossover percentages are shown in the first row, the second row shows the mutation

percentages, the population sizes are shown in the third row, finally, the type of selection and the

number of evaluations are given in fourth and fifth rows respectively. In these experiments, test

vector sequences of 4,144 bits were used. 30 runs for every configuration were performed and

the stop criteria was 6000 evaluations.

Table 6.13.Parameters for experiment using binary Genetic algorithm

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Values

1 2 3

Crossover Percentage 0.5 0.5 0.5
Mutation Percentage 0.001 0.0015 0.0003
Population size 150 200 100
Type of selection stochastic universal sampling yes yes
Number of Evaluations 6000 6000 6000

Table6.14shows the results obtained in each of the scenarios. The firstrow shows the best

118

6.2. Experiments and Results with other Meta-heuristic Algorithms

coverage value obtained in all experiments for each scenario, the second row shows the worst

coverage value and the third row shows the average of the bestcoverage percentages obtained in

all runs; in the fourth row the average of the number of evaluations is shown, the fifth and sixth

rows show the average time value in minutes and hours respectively. For this set of experiments

the third scenario presented the best results. The best coverage value obtained was 99.73% with

an average of coverage of 98.78% and an average time around 246.94 minutes (4.1 hours). The

results showed that one hundred individuals were needed to reach percentages over 98%. One

disadvantage is the increase in simulation time due to a greater number of individuals. In the

case of the first and second scenarios the coverage percentages were less than third scenario.

Using the first scenario, coverage percentages around 97.5%were reached. When the second

scenario was used lower coverage percentages were obtained. Also, the total time required to

make each experiment was over 4 hours. The total time required is directly proportional to the

number of iterations, the simulation tool and computing resources used. In the next subsection

experiments using the Particle Swarm Optimization algorithm will be described.

Table 6.14.Results obtained using the binary Genetic algorithm

Final values Scenario 1 Scenario 2 Scenario 3
Best value 99.479 98.43 99.739
Worst value 95.833 95.05 96.875
Average value 97.513 96.727 98.78
Average evaluations 6000 6000 6000
Average Time (min) 245.127 254.807 246.94
Average Time (hrs) 4.085 4.246 4.115

6.2.2 Experiments using a Binary Particle Swarm Optimization (PSO)

algorithm

The Particle Swarm Optimization algorithm was used to perform the experiments using the

UART bus and the FIFO memory. Different scenarios to test themethod were used in the

119

6.2. Experiments and Results with other Meta-heuristic Algorithms

experiments, velocity, number of particles and number of neighborhoods were changed. The

topology of PSO algorithm waslbestandgbestusing thef1 fitness function for each scenario,

30 runs were performed.

In the fist part a FIFO memory was tested using the proposed platform. Table6.15shows

the configuration parameters of the PSO algorithm for three of the best scenarios using test

sequences of 4096 bits in order to verify a FIFO memory. Each column shows the set of

parameters for each scenario. The first row shows the number of particles, the number of

neighborhoods is shown in the second row, the maximum and minimum velocity for each

particle are shown in the third and fourth rows, the fifth row shows the maximum value ofφ

(positive random number), the type of topology, the number of experiments and the stop criteria

are given in the sixth, seventh and eighth rows respectively.

Table 6.15.Algorithm parameter values used for PSO scenarios with FIFOmemory

Parameters Scenario 1 Scenario 2 Scenario 3
number of particles 9 9 3

number of neighborhoods 3 3 1
Velocity max 8.0 8.6 8.5
Velocity min -8.0 -8.6 -8.5
φmax 2.0 2.0 2.0

Topology lbest gbest gbest
Number of experiments 30 30 30

Stop criteria 5000 5000 5000

Table 6.16 shows the average of coverage percentages, the average of the number of

evaluations and the average time obtained using the three scenarios from Table6.15. In this

case, test sequences of 4096 bits were used to test the FIFO memory. Reviewing the results, these

showed that in most of cases, the best coverage percentage values obtained with these parameters

were around 100%. Using 5000 generations as a top criteria. The Particle Swarm Optimization

(PSO) algorithm had better performance when the velocity ofparticles were between 6.0 to 9.0

because the algorithm converged quicker when the particle velocity is kept in those ranges.

Experiments were also conducted using the global version ofPSO algorithm and a UART

bus core with a stop criteria of 6000 evaluations. Table6.17shows the parameter values for

120

6.2. Experiments and Results with other Meta-heuristic Algorithms

Table 6.16.Results obtained for experiment 1 using a FIFO memory

Final values Scenario 1 Scenario 2 Scenario 3
Average value 100 100 100
Average evaluations 4960 3811 2092
Average Time (min) 1.121 1.30 0.5339

three of best scenarios. For these sets of parameters 30 runswere carried out for each scenario.

Each column represents a different scenario. The number of particles is shown in the first row.

The second row shows the number of neighborhoods, the maximum and minimum velocities are

shown in third and fourth rows respectively. The maximumφ value is shown in the fifth row.

Finally, the number of evaluations is shown in the sixth row.

Table 6.17.Parameters for Particle Swarm Optimization algorithm using a UART device

❤
❤

❤
❤

❤
❤

❤
❤❤

Parameters
Values

Scenario 1 Scenario 2 Scenario 3

Number of Particles 16 16 9
Number of neighborhoods 4 4 3
Max velocity 9.0 8.5 8.5
Min velocity -9.0 -8.5 -8.5
φ max 2.0 2.0 2.0
Number of evaluations 6000 6000 6000

Table6.18shows the results obtained using the three scenarios of the PSO algorithm from

Table6.17. The best, the worst and the average of coverage percentagesare shown in first,

second, and third rows respectively. The average of the number of evaluations is shown in

the fourth row. Finally, the total times in minutes and hoursare shown in fifth and sixth rows

respectively.

Using test sequences of 4,144 bits, the algorithm reached average of coverage values over

98%. It was seen as increasing the velocity parameter and theconvergence was quicker. One of

best scenarios has a velocity over 8.5 and 9 particles with 3 neighborhoods.

121

6.2. Experiments and Results with other Meta-heuristic Algorithms

Table 6.18.Results obtained using the Particle Swarm Optimization algorithm with a UART bus ip core

Final values Scenario 1 Scenario 2 Scenario 3
Best value 100.0 100.0 100.0
Worst value 98.95 98.95 100.0
Average value 99.80 99.71 100.0
Average evaluations 5757.86 5764 3697.83
Average Time (min) 236.38 233.25 155.81
Average Time (hours) 3.93 3.88 2.59

It is important to mention that the Particle Swarm Optimization algorithm generated levels

over ninety nine percent of functional coverage when this used a set of 9 particles with 3

neighborhoods and a length of 4,144 bits. In the case of sixteen particles, percentages reaching

more than ninety eight percent from six thousand algorithm generations as stop criteria were

obtained. The results showed that at the beginning of the algorithm execution, percentages

of over eighty percent were quickly reached. This is due to initializing the particles pseudo-

randomly which generated different test vectors covering many bins of the coverage model.

After that, the particles move very quickly over functionalverification space. In the next

subsection a comparison between the algorithms will be presented.

6.2.3 Comparison between algorithms

Experiments were performed using the pseudo-random generation, genetic algorithm,

particle swarm optimization and Compact-BinDE algorithm.In the first part, 30 runs were

made in order to test the FIFO memory. In the case of the pseudo-random generation, test

sequences were generated based on the coverage informationobtained in every iteration. After

every iteration if a new generated sequence covers new points then it replaces the current best

sequence. For the Genetic algorithm the parameters were setas follow: Population size = 100,

Mutation percentage = 0.0012, Crossover percentage = 0.50,and a length of 4096 bits. In

the case of PSO algorithm the parameters were: Number of particles = 3, Neighborhoods =

1, Vmax = 8.5, Vmin = -8.5, φ = 2.0, Topology = gbest. For the Compact-BinDE algorithm

the parameters were set : CR= 0.995,Pls= 0.0025, Population size = 400 and a local search =

122

6.2. Experiments and Results with other Meta-heuristic Algorithms

pseudo-random. After run the experiments, the coverage percentages obtained were reviewed

and the best scenarios were analyzed.

Table 6.19 shows the obtained results using the last parameters of the algorithms. Each

column represents different parameters of the algorithm. The best, worst and average of

coverage values are shown in the first, second and third rows respectively. The average number

of evaluations and the average time in minutes are given in the fourth and fifth rows. According

the results, the genetic algorithm reached better results than the pseudo-random generation. In

the case of the Compact-BinDE algorithm, in most of the scenarios it reached higher coverage

percentages than the pseudo-random generation and geneticalgorithm. On the other hand, using

the Particle Swarm Optimization algorithm percentages around 100% were obtained. In the

best scenario, the algorithm reaches high coverage percentages reducing the total time used to

perform the number of evaluations.

Table 6.19. Results obtained using the pseudo-random generation, binary Genetic algorithm, the
Compact-BinDE algorithm and PSO algorithm to test FIFO memory

Final values pseudo-random Binary GA Compact-BinDE BinPSO
Best value 94.14 99.60 100.0 100.0
Worst value 91.79 94.92 98.04 100.0
Average value 92.74 97.29 99.63 100.0
Average evaluations 5000 5000 4717.66 2092
Average Time (min) 1.05 1.079 1.065 0.5339

In the second part, experiments using different scenarios were run 10 times for each

generation method. The Device Under Verification used was anUART-IP core. Table6.20

shows the parameters for the best binary Genetic algorithm scenario using 5000 evaluations as

stop criteria. The fitness function wasf1, and a length of 2 input test vectors (4,144 bits) was

used. The first row shows the crossover percentage for each possible solution. The second row

shows the mutation percentage, which, in this case means thepercentage of change for each

element of a sequence by means of a pseudo-random number which determines that probability

value. The population size, type selection and maximum number of evaluations are presented in

the third, fourth and fifth rows respectively.

In each case, 5000 evaluations were performed to reach the stop criteria. Table6.21shows

123

6.2. Experiments and Results with other Meta-heuristic Algorithms

Table 6.20.Parameters for experiment using binary Genetic algorithm

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵

❵
❵❵

Parameters
Values

Binary GA

Crossover Percentage 0.5
Mutation Percentage 0.0003
Population size 100
Type of selection stochastic universal sampling
Number of Evaluations 5000

the comparison of the results obtained using the Binary Genetic algorithm, the pseudo-random

generation, and the Compact-BinDE algorithm algorithms. The best, the worst, and the average

of coverage values obtained during the experiments are presented in first, second and third rows

respectively. Finally, the average of the number of evaluations, the average time (minutes) and

average time in hours are shown in the fourth, fifth and sixth rows, respectively. The results

showed that in the best scenario the Compact-BinDE algorithm obtained 100% using fewer

evaluations than the other two algorithms. The values of theparameters were changed in the

experiments, which showed that the results obtained with the binary Genetic algorithm were

very competitive, and in the best scenarios, using the Compact-BinDE algorithm better coverage

percentages were obtained using less the number of evaluations.

Table 6.21. Results obtained using the binary Genetic algorithm, pseudo-random generation and the
Compact-BinDE algorithm with the UART

Final values Binary GA pseudo-random Compact-BinDE
Best value 98.95 95.83 100.0
Worst value 96.09 94.66 97.91
Average value 98.12 95.10 99.30
Average evaluations 5000 5000 4910
Average Time (min) 218.31 207.36 203.73
Average Time (hrs) 3.63 3.45 3.39

In the case of the pseudo-random generation, different coverage points were covered very

124

6.2. Experiments and Results with other Meta-heuristic Algorithms

quickly because the generation of the test sequences is lesscomplex, and so the total generation

time is good. However, it was observed that when certain coverage percentages are reached,

the algorithm improves the coverage percentages very slowly, which means that the algorithm

repeatedly covers the same sets of coverage points, thus producing a waste of time in the

simulation. Different from the pseudo-random generation,the proposed Compact-BinDE

algorithm searches new test sequences based on the best current sequence, and it saves the

values of each bit position of test sequences using the compact genetic algorithm and differential

evolution principles. Due to this, the algorithm can produce better results with fewer evaluations

than needed using pseudo-random generation.

The binary Genetic algorithm reached better results than the pseudo-random generation. The

Genetic algorithm is based on the population because it takes advantage of a variety of different

solutions to produce the new population. In the experiments, different scenarios were used

for the binary genetic algorithm. According the results, the binary Genetic algorithm reached

solutions over 96%. in most cases. One advantage of the Genetic algorithm with respect to

other generation methods, is that it uses fewer computer resources to perform the generation

of test sequences. However, when the Compact-BinDE algorithm was used, higher coverage

percentages were reached in the best scenarios. The Compact-BinDE algorithm only replaces

one test sequence of the population if, and only if the new test sequence is better. Also, the best

directions direct the search to better sequences, and the algorithm covers more holes every time.

Therefore, high coverage percentages can be reached very quickly.

In order to compare the four algorithms using UART-IP bus core different scenarios were

used. 30 runs were made for every scenario of each algorithm.The pseudo-random test

generation was implemented into the proposed verification platform. The genetic algorithm

was used with 100 individuals, 0.5 as uniform crossover percentage, a mutation percentage of

0.0003 and a selection using stochastic universal sampling. The PSO algorithm was used with 9

particles, 3 neighborhoods,Vmax = +8.5,Vmin = -8.5,φmax = 2.0,Wmax=1.0,Wmin=-1.0. The

parameters of the Compact-BinDE algorithm were: CR = 0.995,Pls = 0.0025, Population size

= 450, Number of evaluations = 6000, version = Rand/1/bin, local search = pseudo-random.

Table6.22shows the obtained results. Each column shows the results for each algorithm. The

best, worst and average of coverage percentages are shown inthe first, second and third rows

respectively. Average of the number of evaluations is shownin the fourth row. The fifth row

shows the average time in minutes and the average time in hours is given in the sixth row.

The Compact-BinDE algorithm can generate sequences for other devices using few

125

6.3. Discussion

Table 6.22. Results obtained using the pseudo-random generation, binary Genetic algorithm, the
Compact-BinDE algorithm and PSO algorithm with a UART device

Final values pseudo-random Binary GA Compact-BinDE BinPSO
Best value 95.833 99.73 100.0 100.0
Worst value 94.791 96.87 99.21 100.0
Average value 95.182 98.78 99.84 100.0
Average evaluations 6000 6000 5502.74 3697.83
Average Time (min) 255.15 246.94 223.41 155.81
Average Time (hrs) 4.252 4.11 3.72 2.59

parameters, which can be changed for other constraints. Also, due to the ability of the algorithm

to represent the population as a probability distribution,the algorithm samples some values from

the probability vector to obtain new test sequences. Therefore, the algorithm can be implemented

with less hardware requirements than a basic version of the binary Genetic algorithm.

The results show that in the best scenarios the CompactBin-DE algorithm reached better

results than the Genetic algorithm and the pseudo-random generation using a lower average of

the number of evaluations. Therefore, the algorithm can be agood choice for generating test

sequences to perform the functional verification of devices.

On the other hand, the Particle Swarm Optimization algorithm produced higher coverage

percentages than pseudo-random and Genetic algorithms. Also in the best scenarios the PSO

algorithm reached higher coverage values than the Compact-BinDE algorithm. Using different

scenarios, the algorithm can produce coverage percentagesover 98%. During the experiments

different scenarios were used. Changing the population size and the number of neighborhoods

the algorithm changed the performance. Depending of the length of sequences different number

of iterations were needed in order to reach high coverage percentages.

6.3 Discussion

We can discuss the results obtained in the experiments on parts. First, according to the

results, the Compact-BinDE algorithm reached high coverage values with appropriated fitness

functions focusing on special CoverPoints on run time simulation. The strategy used increased

126

6.3. Discussion

the number of covered points evaluating every possible solution with the fitness function. When

the evaluation focused on the set of holes generated during run time, more functionality was

exercised because the weight of the evaluation was higher for the points not full covered on run

time.

Coverage percentages over 98% with different scenarios were reached using the Compact-

BinDE algorithm. Also, the algorithm uses a local search to improve the binary search using the

current best sequence. It is important to mention that when the length of test input sequences

was increased, the average of coverage percentage obtainedwas over 99% for the best scenario,

and the required time was reduced because the number of possibilities was increased. However,

it could be interesting to search minimal lengths for the test input sequences which can test most

of the coverage bins. Different from previous works, one objective of this research proposes one

strategy to generate test sequences using the proposed Compact-BinDE algorithm.

Different population sizes were used in this research and the best scenarios were presented

to show the performance of the test sequence generation method. The results show that

the algorithm can generate good test sequences with an binary search selecting appropriate

sequences during the functional verification during the runtime. Moreover, a suitable number

of individuals should be used to obtain better results with different scenarios. Independent of the

dimentionality of the problem, the algorithm saves only a few number of individuals to obtain

good results, thus saving computer memory resources. In thecase of the number of individuals

who are saved, the amount of individuals is different from the total number of individuals of the

population. It means that different from the meta-heuristics based on population, the Compact-

BinDE algorithm saves the statistical information of the total number of individuals into the PV

vector. This information represents the best elements fromall individuals who constitute the

total population. To produce the offspring, the individuals are sampled from this PV vector and

only some of them are saved in memory to produce the new individuals every time. For example,

in the case of the basic configuration DE/Rand/1/bin, four individuals are saved in memory to

produce a new individual every time using the crossover and mutation from the differential

evolution principle. Therefore, the test generation method can be implemented in a device with

reduced memory resources.

One advantage of the proposed algorithm is that few parameters can be modified according

to the DUV and the constraints. The strategy is based on the current best sequence, and it

saves memory for each bit position of the test sequences, which produces good results. On the

other hand, setting different values of crossover probability (CR) and Local Search probability

127

6.3. Discussion

Pls with different scenarios, the algorithm can produce bettercoverage values than the pseudo-

random generation and a basic genetic algorithm.

In the second part experiments using the genetic algorithm were performed. In this case,

different parameters were changed: population size, crossover value, mutation percentage,

number of evaluations. After that; three of the best scenarios were shown in the results section.

In the case of UART device Average of coverage percentages over 96% was reached using

population sizes between 100 and 200 individuals. Also, a FIFO memory was verified using the

Genetic algorithm. In this case, percentages over 97% were obtained in one of best scenarios.

Also, the evaluation time for each experiment was shorter than the evaluation time used by the

UART device, around 1 minute using the computer resources described in section6.1.1. This

depends of the number of evaluations as stop criteria.

On the other hand, in the third part when the Particle Swarm Optimization algorithm was

used to verify a FIFO memory using test sequences of 4096 bitsand 5000 evaluations as stop

criteria. Percentages around 100% were obtained in the bestscenarios using the verification

platform. Different scenarios were tested and it was observed that the global topology showed

better results than the local topology. The algorithm showed good results using the global-best

topology why the algorithm converged quicker covering 100%.

Also, the PSO algorithm was used with a UART-IP device. In this case the algorithm reached

coverage percentages over 98% for best scenarios. In these scenarios the average of coverage

percentages was around 99% using sequences of 4,144 bits andless than 6000 evaluations.

The results were very competitive with respect to the Compact Differential evolution algorithm

and genetic algorithm. Even in the best scenarios the Particle Swarm Optimization algorithm

converged quicker. In order to control the convergence a re-initialization mechanism was used.

Based on the current coverage percentage and velocity values of the particles. This produces

the re-initialization of the velocity when the total coverage percentage is kept in a determined

number of iterations. Using the FIFO memory percentages around 100% were reached for

the best scenarios. Moreover, different scenarios were used, in a scenario with 9 particles and

3 neighborhoods the algorithm produced coverages of 100%. When different velocities were

used the convergence was modified. In the next section the conclusions of this research will be

presented.

128

Conclusions and future work

129

Chapter 7

Conclusions and future work

With the development of this research, good results were obtained using the Compact-BinDE

and Particle Swarm Optimization algorithms. Using the devices (UART bus and FIFO memory)

it was observed that the proposed method is an alternative for generating sequences of test

vectors. Also, the use of fitness functions and coverage models can improve the performance

and reduce the number of iterations required to achieve highfunctional coverage percentages.

The automated functional verification is performed by the interaction between the hardware

implementations and the verification environment over a software tool. Due to this, a verification

interface was designed in order to connect the devices underverification with other modules

performing the directed coverage functional verification.

A Compact binary differential evolution algorithm was proposed. This algorithm is based on

the Compact Genetic algorithm and differential evolution algorithm principles. Different from

other versions, the algorithm uses binary operators for crossover and mutation. It means that the

genotype representation is mapped directly to genotype in order to perform a binary search. So,

statistical information of the population is used in order to reduce the memory requirements to

implement the algorithm.

In this research, a binary Particle Swarm Optimization algorithm was implemented to

generate test sequences for the devices. Different scenarios were used and the results were

analyzed. The use of this algorithm produced competitive results with respect to pseudo-random

generation, genetic algorithm and Compact-BinDE algorithm. Due to this, this algorithm

represents a good alternative for test generation with respect to other algorithms.

In this chapter the conclusions obtained after conducting this research will be given. Further

work for the improvement and application of the proposed test generation method for functional

131

coverages in digital systems is mentioned. Finally, the contribution of this research and

publications in journals and international conferences will be presented.

7.0.1 Conclusions

In this thesis a test sequences generation method was developed in order to maximize the

functional coverage on the functional verification of digital systems. The development and

conclusions of this research can be summarized in differentstages.

1.- The first was the design of a software platform, which allowed carrying out the interaction

between the algorithms in a verification environment and device implementations.

Different from the manual methods where human interventionis needed after the

simulation is finished, in this case, the interaction is madein an automated way. This

means, after the device simulation, the information is delivered, analyzed and the fitness

values are calculated. Therefore, a new test sequence is injected into the device and the

process is repeated until a stop condition is met. Moreover,the platform includes a set

of options to configure the meta-heuristics, coverage models, device implementations, as

well as various options for storing the statistics for the simulations and tests. This platform

was used to perform the experiments and test the proposed method.

2.- The second stage involves the design of a module in order to configure the test-benches,

coverage models, meta-heuristic algorithms and verification environment for the devices.

For this, state-of-the-art current dynamic functional verification techniques were reviewed.

Such techniques are based on device simulation and analysisof coverage information

to produce new device evidence. This scheme was used to perform the simulation,

monitoring, and reviewing of the information during the device stimulation. During

the experiments, different problems were presented, such as clock synchronization and

module configuration of the hardware devices. The characteristics of the devices were

configured manually. The module was designed using C language and SystemVerilog.

It allows configuration of the Genetic algorithm, Particle Swarm Optimization algorithm

and Compact-BinDE algorithm. Also, other functions can be added in order to improve

the proposed method.

3.- In the third stage, a new version of a compact differential evolution algorithm (Compact-

BinDE) for binary representation was proposed. This is based on the compact genetic

algorithm and the differential evolution principles. Thisalgorithm uses the statistical

132

information for each position of binary strings and mutation and crossover operators

between such sequences. Different from the binary genetic algorithm the Compact-BinDE

algorithm uses the statistical information as population to produce individuals reducing

memory requirements independently of the dimensionality of the problem. This algorithm

was implemented in the proposed verification platform and tested with the two devices

(FIFO memory and UART) using similar verification conditions to the other algorithms.

The Compact-BinDE algorithm reached coverage percentagesover 99% using a FIFO

memory. Moreover, in the best scenarios it reached coveragevalues around 100%. In

the case of the UART bus device the algorithm reached percentages over 98%, and for

the best scenarios average percentages around 99% were reached. The results obtained

were competitive with respect to pseudo-random generation, the genetic algorithm and a

Particle Swarm Optimization algorithm.

4.- The fourth stage consisted of the implementation, test and comparison of the

algorithms: genetic algorithm, Particle Swarm Optimization (PSO) algorithm and

Compact differential evolution algorithm (Compact-BinDE). To do this, state-of-the-

art binary versions were reviewed, since unlike the versions for real representation,

binary versions allow us to directly map the phenotype to thegenotype in the binary

representation, which is implicit in the functional verification problem. These algorithms

were tested using different scenarios in two different devices (UART bus and a FIFO

memory). In the case of the UART when the genetic algorithm was used, functional

coverage percentages over 96% were obtained. In the best scenarios average coverages

over 98% were reached. According to the results, when the population size was increased,

the convergence of the algorithm was slower in producing coverage percentages under

the scenarios around 96%. Due to this, the number of evaluations was larger in order

to increase the coverage than the Particle Swarm Optimization algorithm and Compact-

BinDE algorithm.

In the case of PSO algorithm, there are some important aspects to mention. First, the

global version obtained better results than the local version in most of cases. In the case of

the global version, the influence of the best global particlein the population produced than

the others moved quicker to the solution generating coverage percentages around 100%

in a FIFO memory. In the best scenarios this algorithm shows better performance than

pseudo-random generation and genetic algorithm, requiring less iterations to reach high

coverage percentages. In the case of the UART device, coverage percentages over 98%

133

were reached. In the best scenarios coverage values of 100% were obtained. It was shown

that when velocity values for every particle were increased, the PSO reached percentages

over 94% very quickly. However, after that, more evaluations were required to reach

higher percentages. Therefore, the results using ParticleSwarm Optimization algorithm

were very competitive with respect to the genetic algorithmand the Compact differential

evolution algorithm.

5.- Finally, in this research two fitness functions were proposed in order to maximize the

coverage percentages using meta-heuristic algorithms. According the results thef1 fitness

function produced better results thanf2 when it was used in the GA, PSO and Compact-

BinDE algorithms. The fitness functions focus on sets of CoverPoints which are selected

using the coverage obtained after device simulations. Also, the device behavior was

modeled using coverage models. These models are composed byCoverPoints which were

split in sets. It was observed from the experiments that focusing in all points the algorithms

required more iterations to reach high coverage percentages. Due to this; different weights

were assigned to the sets of points because when all points have the same weights the same

cases can be covered a lot of times representing a waste in thesimulation time.

There are different highlights of this research, between them, we proposed:

A new test sequences generation methodbased on Directed Coverage functional

verification of digital designs. For this, a hybrid verification method philosophy was used, that

is, the combination of verification based on simulation of the hardware devices and the use of

meta-heuristic algorithms (Compact-BinDE, PSO algorithms) was made. Based on the results,

it was observed that the meta-heuristics represent a feasible alternative in order to generate test

sequences, these can be implemented to interact with the verification environment, and therefore

to perform the functional verification of digital devices.

A new version of Compact binary differential evolution algorithm was proposed. This

algorithm is based on the principle of compact algorithms, which unlike the algorithms based

on the population, uses vectors with statistical values to represent the population, and it is not

necessary to store in memory all individuals. The algorithmproduced competitive results when

applied to generate sequences of binary vectors. Accordingto the results when the algorithm was

used with different configuration scenarios, it was observed that the algorithm reached higher

functional coverage percentages than 98% using an UART bus and a FIFO memory.

Compact meta-heuristics were used for first time. Such is the case of the compact

differential evolution algorithm. The performance was competitive in comparison with other

134

meta-heuristic algorithms such as genetic algorithm and particle swarm optimization. Different

from previous works, the main advantage of the compact meta-heuristic algorithms is that they

require less memory resources for implementation. The compact differential evolution algorithm

requires few configuration parameters and reduces memory consumption.

A verification platform was implemented to perform the functional verification process.

This platform consists of modules for the use of the algorithms and the connection with the

ModelSim Simulator v6.5. The coverage information and statistics results are stored for analysis

and used in the verification process. This platform allows toimplement coverage models as

well as the algorithms for generating test sequences. Othersimulation tools can be used with

certain restrictions of support for the Direct ProgrammingInterface (DPI) in order to connect

the hardware description languages and C language.

A module for generating test sequencesusing meta-heuristic algorithms was implemented.

This module allows setting the parameters for each algorithm and used in conjunction with the

device under verification to be tested. The module interactswith the verification environment,

analyzes the coverage values obtained, and evaluates each generated test sequence.

Coverage modelswere implemented for devices under verification and a strategy was used

based on the division into sets of points focusing on the morerelevant points and increase the

values of total coverage quicker. In addition, fitness functions were proposed to evaluate how

good is each solution.

7.0.2 Future Work

As future work of this research the following lines of research are proposed:

• The use of an extensive set of bench-marks in order to comparethe meta-heuristic

algorithms in functional verification of digital circuits.

• The combination of formal with meta-heuristic methods for the functional verification.

• Implementing parallel meta-heuristic algorithms and makeexperiments with different

digital systems.

• The automatic generation of coverage models based on the useof different coverage

metrics.

135

7.1. Contributions

7.1 Contributions

An improved methodology in order to generate optimal functional coverage in digital

systems.

A new schemain order to verify the functionality of digital systems based on a hybrid

method (combination of meta-heuristic and dynamic methods) which allow outperforming

the original designs based on the verification.

A hybrid method which performs the Directed Test Vector Generation based oncompact

meta-heuristic algorithms, coverage models and cost functions.

The application for the first time of compact meta-heuristics algorithms to the Directed

Functional Verification.

7.1.1 Published papers in Journals

• Alfonso Martinez Cruz, Ricardo Barrón Fernández, Herón Molina Lozano, Marco

Antonio Ramírez Salinas and Luis Alfonso Villa Vargas.Automated Functional Test

Generation for Digital Systems Through a Compact Binary Differential Evolution

Algorithm. Journal of Electronic Testing. Vol. 31, Num 4. pp 361 - 380. September

2015. DOI: 10.1007/s10836-015-5540-6

7.1.2 Published papers in conferences

• Alfonso Martínez Cruz, Ricardo Barrón Fernández and Herón Molina Lozano.

Automated Functional Coverage for a Digital System Based ona Binary Differential

Evolution Algorithm. 1st. BRICS Countries Congress (BRICS-CCI), Recife, Porto de

Galinhas beach, Brazil, September 2013.

• Alfonso Martínez Cruz, Ricardo Barrón Fernández and Herón Molina Lozano.

Automated Functional Coverage for a Digital System Based onParticle Swarm

Optimization algorithm. . Design Automation Conference (DAC), San Francisco, CA

, June 1-5, 2014.

• Alfonso Martínez Cruz, Ricardo Barrón Fernández and Herón Molina Lozano.

Automated functional coverage directed for complex digital systems. Very Large

Scale Integration (VLSI-SoC), 2014 22nd International Conference on. Playa del Carmen,

6-8 Oct. 2014. pp 155 - 156

136

7.1. Contributions

• Alfonso Martínez Cruz, Ricardo Barrón Fernández and Herón Molina Lozano.

Automated Functional Coverage Model for Digital Systems. CORE 2014, 14o

Congreso Internacional en Ciencias de la Computación. Mexico, Distrito Federal, 12-14

November, 2014.

137

Glossary

Application Specific Integrated Circuit . It is an customized integrated circuit for a particular

application. In other words that is intended to be used for particular use.

Circuito integrado de aplicación específica (ASIC). Es un circuito integrado personalizado para

una aplicación particular, en otras palabras que se pretende utilizar para uso particular.

Aptitude. Is a assigned value to each individual and indicates how goodit is compared to

others.

Aptitud. Valor que se asigna a cada individuo y que indica quetan bueno es respecto a los

demás.

Artificial intelligence. A name for a paradigm in which people attempt to elicit intelligence

from machines.

Inteligencia Artificial.Nombre de un paradigma en el cual lagente pretende generar inteligencia

desde las maquinas.

Assertion. A given property that is expected to hold within a specific design.

Afirmación. Es una propiedad dada que se espera que se cumpla en un diseño especiíco.

Attribute . In the context of a device, it is a parameter or characteristic of an input or output of

an interface. In the context of coverage model it is a parameter, or dimension of the model.

Atributo. En el contexto de un dispositivo, es un parámetro ocaracterística de una entrada o

salida de una interface. En el contexto de modelo de cobertura, un parámetro o dimensión del

modelo.

Automatic Test Pattern Generation (ATPG) It is an automatic method of electronic design

used to search an input sequence, that it is applied to a digital circuit to distinguish between

correct operation of the circuit and a bad operation.

Generación automática de patrones de prueba. Es un método automático de diseño electrónico

utilizado para buscar una secuencia de entrada, que cuando se aplique a un circuito digital

139

7.1. Contributions

permita distinguir entre un correcto funcionamiento del circuito y un funcionamiento con

errores.

Bite. Is the minimum unit of information. They may be taking the values 1 or 0.

Bit. Es la unidad mínima de información. Que puede ser tomar los valores de 1 o 0.

Complex digital system. It is one circuit composed of a large number of semiconductor

components that could control numerous devices , from computers to mobile phones and

microwave ovens.

Circuito digital complejo. Es aquel circuito compuesto de un gran número de componentes

semiconductores que podría controlar numerosos aparatos,desde computadoras hasta teléfonos

móviles y hornos microondas.

Coverage. Es la medida que especifica en que proporción se ha realizadola verificación de un

sistema digital.

Cobertura. It is the measure specified in that proportion hascarried out the verification of a

digital system.

Coverage metricIt is an attribute that is used as a unit of measure and is remembered, which

defines a dimension of space coverage.

Métrica de cobertura. Es un atributo que es utilizado como una unidad de medida y es recordado,

el cual define una dimensión del espacio de cobertura.

Coverage property. A property that, when true, indicates that a condition of interest has

occurred. The occurrence is remembered in a database for further analysis.

Propiedad de cobertura. Una propiedad que, cuando es cierta, indica que una condición de

interés ha ocurrido. La ocurrencia es recordada en una base de datos para análisis posteriores.

Coverage model. An abstract representation of the device behavior consisting of attributes and

their inter-relationships.

Modelo de cobertura. Una representación abstracta del comportamiento de un dispositivo

compuesto de atributos y sus inter-relaciones.

Coverage report. It summarizes the progress of verification statements, as ameasure of

coverage, capturing all facets of coverage at multiple levels of abstraction.

Reporte de cobertura. Es un resumen del progreso de verificación de estados, como una medida

de cobertura, capturando todas las facetas de cobertura en múltiples niveles de abstracción.

Coverage space.It is a multi-dimensional region of the coverage attributesand their values.

Espacio de cobertura. Es una región multi-dimensional de los atributos de cobertura y sus

valores.

140

7.1. Contributions

Figure 7.1. Coverage space example.

Controllability. Is the level at which the state changes in the internal nodes of the circuit can be

controlled when changes occur at the inputs of the device.

Controlabilidad. Es el nivel en el cual se pueden controlar los cambios de estado en los nodos

internos del circuito cuando se generan cambios en las entradas.

Coverage based on verification. It is a methodology where coverage planning precedes the

rest of the verification process. Planning coverage is defined defining a strategy to measure

verification progress. For example using code coverage and strategies that could help to increase

the coverage.

Cobertura basada en la verificación. Es una metodología en lacual, la planificación de la

cobertura precede el resto del proceso de verificación. La planificación de la cobertura se plantea

definiendo una estrategia para medir el progreso de la verificación, por ejemplo utilizando

cobertura de código y tácticas que podrían ayudar a incrementar la cobertura.

Corner cases.Design verification scenario which is difficult or not commonly covered in the

test.

Casos corner. Escenario de verificación de un diseño que es difícil o no comúnmente cubierto

en la prueba.

Constraint. A condition (usually on the input signals) which limits the set of behavior to be

141

7.1. Contributions

considered during verification. A constraint may representreal requirements (e.g., clocking

requirements) on the environment in which the design is used, or it may represent artificial

limitations (e.g., mode settings) imposed in order to partition the verification.

Restricción. Una condición (usualmente en las señales de entrada) la cual, límita el conjunto

de comportamiento a ser considerado durante la verificación. Una restricción puede representar

requerimientos reales (por ejemplo, requerimientos de la señal de reloj) en en entorno en el cual

el diseño es utilizado, o puede representar limitaciones (modo de configuración) impuesto para

llevar a cabo la partición de la verificación.

Chromosome.It is a data structure containing a string of design parameters or genes. This data

structure can be stored e.g. as a bit string or an array of integers.

Cromosoma. Es una estructura de datos que contiene una cadena de parametros de diseño o

genes. Esta estructura de datos puede almacenarse, por ejemplo, como una cadena de bits o un

arreglo de enteros.

Crossover. Operator that builds a new chromosome combining parts of each of the parent

chromosomes.

Cruza. Operador que forma un nuevo cromosoma combinando partes de cada uno de los

cromosomas padres.

Digital system. It is a set of devices for the generation , transmission, processing or storage

of digital signals. Also a digital system is a combination ofdevices designed to manipulate

physical quantities or information that are represented indigital form; that is, they can only take

discrete values.

Sistema digital. Es un conjunto de dispositivos destinados a la generación, transmisión,

procesamiento o almacenamiento de señales digitales. También un sistema digital es una

combinación de dispositivos diseñados para manipular cantidades físicas o información que

estén representadas en forma digital; es decir, que sólo puedan tomar valores discretos.

Device Under Test (DUT). Device to be checked. This device is distinguished from device

under verification (DUV) in that this is verified as a DUT is tested device.

Dispositivo bajo prueba. Dispositivo a ser verificado. Este dispositivo es distinguido del

dispositvo bajo verificación (DUV) en que este ultimo es verificado mientras un dispositivo

DUT es probado.

Device Under Verification (DUV). It refers to the device to be checked. it means where the

functional verification process applies.

Dispositivo bajo verificación. Se refiere al dispositivo a ser verificado. Sobre el cual se aplica el

142

7.1. Contributions

proceso de verificación funcional.

Elitism. Mechanism that ensures that the chromosomes of the better members of a population

will pass to the next generation without being altered by genetic operators.

Elitismo. Mecanismo utilizado para asegurar que los cromosomas de los miembros mas aptos de

una población se pasen a la siguiente generación sin ser alterados por los operadores geneticos.

Elitism strategy. In a genetic algorithm, ensuring that the individual chromosome with the

highest fitness is always copied into the next generation.

Estrategia de elitismo. En un algoritmo genetico, asegura que el cromosoma del individuo con

mayor valor de aptitud es copiado siempre en la siguiente generación.

Evolutionary computation. Encompasses methods of simulating evolution on a computer.The

field includes research in genetic algorithms, evolution strategies, evolutionary programming,

genetic programming, particle swarm optimization, artificial life, etc.

Computo evolutivo. Abarca los metódos de simulación de evoluación en una computadora. El

campo incluye investigación en algoritmos genéticos, algoritmo de optimización por cúmulo de

partículas, vida artificial y otras.

Fault. Falla.A deviation of a specified behavior system.

Falla. Es una desviación del comportamiento especifico (correcto) del sistema.

Functional coverage.Is a coverage whose metric is derived from a functional specification or

design. A collection of user-defined metrics if all requiredsettings have been tested.

Cobertura funcional. Es aquella cobertura cuya métrica es derivada de una especificación

funcional o de diseño. Una colección de métricas definidas por el usuario si todos los escenarios

requeridos han sido probados.

Formal verification. A mathematical comparison against an implementation specification or

requirement to determine whether implementation can violate this specification.

Verificación Formal. Una comparación matemática de una implementación againts una

especificación o requerimiento para determinar si la implementación puede violar esta

especificación.

Finit State Machine (FSM) It is a machine, which can be completely described by a finite set

of states, being in a state at some point over a set of rules which determine, when moving from

one state to another.

Maquina de estados finitos. Es una máquina, la cual, puede sertotalmente descrita por un

conjunto finito de estados, estando en un estado en algún momento, más un conjunto de reglas,

las cuales, determinan, cuando se mueve de un estado a otro.

143

7.1. Contributions

Formal verification . It means to the use of mathematical modeling and analysis ofthe

functional verification of the design behavior.

Verificación formal. Se refiere al uso de modelos matemáticosy el análisis de la verificación

funcional del comportamiento del diseño.

Gene. It is a subsection of the chromosome (usually) encodes the parameter value of a single

chromosome.

Gen.Es una subseccion del cromosoma que (usualmente) codifica el valor de un solo parametro

del cromosoma.

Genotype.Coding (e.g binary) of the parameters that represent a solution to the problem to be

solved.

Genotipo. Codificación (por ejemplo binaria) de los parametros que representan una solución

del problema a resolver.

Generation. Each of the aptitude measures and the creation of a new population through

reproduction operators.

Generación. Cada una de las medidas de aptitude y la creaciónde una nueva población por

medio de operadores de producción.

Hardware verification . It the proof that a circuit or system (implementation) behaves

according to a given set of requirements. Is a process which checks the correct operation of

a design.

Verificación de Hardware. Es la prueba de que un circuito o un sistema (la implementación) se

comportan acorde a un conjunto dado de requerimientos. Es decir es un proceso mediante el

cual se demuestra el funcionamiento correcto de un diseño.

Hybrid verification . It means to the integration of verification technologies into a unified

platform to create a higher level of automation.

Verificación híbrida. Se refiere a la integración de tecnologías de verificación en una plataforma

unificada para crear un nivel más alto de automatización.

Hardware Description Language (VHSIC, VHDL, VHSIC). Is a hardware description

language which is used in an automatic electronic design to describe digital and mixed systems

such as gate arrays and programmable logic integrated circuits. This can be done at different

abstraction levels. Examples include VHDL, Verilog, SystemVerilog, SystemC.

Lenguaje de descripción de hardware. Son lenguajes de programación utilizados para para

describir sistemas digitales y mixtos como son arreglos de compuertas lógicos programables

y circuitos integrados.Esto puede hacerse en distintos niveles de abstracción. Algunos ejemplos

144

7.1. Contributions

son VHDL, Verilog, SystemVerilog, SystemC.

Model. It is an abstraction or approach the behavior of a logic design (digital system).

Modelo. Es una abstracción o aproximación del comportamiento de un diseño lógico (sistema

digital).

Mutation. Operator which builds a new chromosome through changes (usually small of the

values of genes of one father chromosome.

Mutación. Operador que forma un nuevo cromosoma a traves de alteraciones (usualmente

pequeñas) de los valores de los genes de un solo cromosoma padre.)

Observabillity . Is the analysis of output values obtained according to the circuit performance

exercise.

Observabilidad. Es el análisis de los valores de salida obtenidos acorde al desempeño que

ejercitamos del circuito.

Optimization. The adjustment of a system in order to minimize or maximize the result of some

function.

Optimización. Es el ajuste de un sistema para minimizar o maximizar el resultado de alguna

función.

Productivity on the verification. It is defined as the ability to control large designs in a short

time. Is other words is the measure of the amount of manual effort which is involved in the

project verification.

Productividad en la verificación. Es definida como la habilidad para manejar grandes diseños

en un corto tiempo. Es otras palabras es la medida de la cantidad de esfuerzo manual que es

involucrado en el proyecto de verificación.

Phenotype.It is the codification of the chromosome. That is, the obtained values by passing the

representation (binary) to that is used for the objective function.

Fenotipo. Es la codificación del cromosoma. Es decir, los valores obtenidos al pasar de la

representación (binaria) a la usada por la función objetivo.

Representation. It amounts to specifying a mapping from the set of phenotypesonto set of

genotypes that said to represent them.

Representación. Equivale a especificar un mapeo del conjunto de fenotipos en los genotipos que

representan.

System On a Chip. SOC. It is an integrated circuit that integrates all the elements of a computer.

It may contain digital, analog circuits, and generally mixed signals or radio frequency functions

. All contained in a single integrated circuit.

145

7.1. Contributions

Sistema en un circuito integrado. Es un circuito integrado que integra todos los elementos

de una computadora. Éste puede contener circuitos digitales, analógicos, o señales mixtas y

generalmente funciones de radiofrecuencia. Todas contenidas en un solo circuito integrado.

Sintesis.It is the process of taking a written design in hardware description language compiling

a list of interconnection gates, which are selected from a library provided by the user.

Síntesis. Es el proceso de tomar un diseño escrito en un lenguaje de descripción de hardware

compilandolo en una lista de interconexión de compuertas, las cuales, son seleccionadas desde

una biblioteca provista por el usuario de varias compuertas.

Testbench. It refers to a simulation code used to create a default entrysequence for a design,

then optionally to observe the response. It is a simulation of environment which can contains

design. It checks whether the RTL implementation meets the design specification or not. This

environment creates conditions and unexplored invalid andvalid conditions to test the design.

Testbench. Se refiere a un código de simulación utilizado para crear una predeterminada

secuencia de entrada para un diseño, entonces opcionalmente para observar la respuesta. Es

un simulador del entorno en el cual, el diseño podría residir. Éste revisa si la implementación

RTL cumple con la especificación del diseño o no. Este entornocrea condiciones invalidas y no

exploradas así como condiciones validas para probar el diseño.

Test vector. It is an n-tuple of binary values where each bit is applied toeach input of the device

under verification (DUV) with the goal of performing functional verification of a digital system

Vector de prueba. Es una n-tupla de valores binarios en la quecada bit es aplicado en cada

entrada del dispositivo bajo verificación (DUV), con el objetivo de realizar la verificación del

funcionamiento de un sistema digital.

Verification . The process showing the functionality of a design is preserved in its

implementation.

Verificación. El proceso de demostrar que la funcionalidad de un diseño se preservada en su

implementación.

Verification interface. A level of abstraction at which a verification process is performed if a

simulation is used. This is a common interface, in which the stimuli are applied, the behavioral

response is reviewed and coverage is measured.

Interfaz de verificación. Un nivel de abstracción en el cual un proceso de verificación es

realizado. Si una simulación es utilizada. Esto es una interfaz común, en la cual, los estímulos

son aplicados, la respuesta comportamental es revisada y semide la cobertura.

Verification plan. It is the mechanism which ensures that the essential characteristics of a

146

7.1. Contributions

design will be properly verified. It describes the scope of the verification problem for the device

and serves as a functional specification for the verificationenvironment. In the verification plan

design parts to be checked are identified and the way how they will be verified.

Plan de verificación. Es el mecanismo mediante el cual se asegura que las características

esenciales de un diseño sean verificadas apropiadamente. Éste describe el alcance del problema

de verificación para el dispositivo y sirve como especificación funcional para el entorno de

verificación. En el plan de verificación se identifican las partes del diseño que se deben verificar

y la forma en que deben verificarse.

147

Bibliography

[1] Andrew Piziali. Functional Verification Coverage Measurement and Analysis. 2008.

[2] Irina Rancea and Valentin Sgarciu. Functional verification of digital circuits using a

software system.Proc. IEEE International Conference on Automation, 1(1):152–157,

May 2008.

[3] Young-Jin Oh and Gi-Yong Song. Simple hardware verification platform using

systemverilog.Proc. IEEE TENCON, 1(1):pp 1414 – 1417, November 2011.

[4] Salim Kalla Riadh Hocine, Hamoudi Kalla and Chafik Arar. Amethodology for

verification of embedded systems based on systemc.Proc. IEEE International

Conference on Complex Systems (ICCS), 1(1):pp 1–6, November 2012.

[5] Armin Biere. Verifying sequencial behavior with model checking. ASIC, 2001.

Proceedings. 4th International Conference on, 1(1):29 – 32, October 2001.

[6] M. Fújital Jawahar Jain, Amit Narayan and A. Sangiovanni-Vincentelli. A survey of

techniques for formal verification of combinational circuits. IEEE Computer Design:

VLSI in Computers and Processors, 1(1):pp 445–454, October 1997.

[7] Serdar Tasiran and Kurt Keutzer. Coverage metrics for functional validation of hardware

designs.IEEE Design & Test of Computers., 18(4):pp 36–45, August 2001.

[8] JohnR. Wallack and Ramaswami Dandapani. Coverage metrics for functional tests.Proc.

IEEE VLSI Test Symposium, 1(1):pp 25–28, April 1994.

[9] Ulrich Heinkel Dietmar Müller Vasco Jerinic, Jan Langer. New methods and coverage

metrics for functional verification.Proc. IEEE Design, Automation and Test in Europe

(DATE), 1(1):pp 1–6, March 2006.

149

Bibliography

[10] Orna Kupferman Hana Chockler and Moshe Vardi. Coveragemetrics for formal

verification. International Journal on Software Tools for Technology, 8(1):pp 373 – 386,

August 2006.

[11] Franco Fummi Xiaoming Yu, Alessandro Fin and ElizabethM. Rudnick. A genetic testing

framework for digital integrated circuits.International Conference on tools with Artificial

Intelligence, 1(1):1–6, November 2002.

[12] Giovanni Squillero A Manzone Fulvio Corno, Matteo Sonza Reorda and Alessandro

Pincetti. Automatic test bench generation for validation of rtl-level descriptions: an

industrial experience.Proc. IEEE Conference on Design, Automation and Test in Europe

(DATE), 1(1):pp 385 – 389, March 2000.

[13] Elizabeth M. Rudnick Todd Dukes Mrinal Bose, Jongshin Shin and Magdy Abadir. A

genetic approach to automatic bias generation for biased random instruction generation.

Evolutionary Computation, 2(1):442–448, May 2001.

[14] Sofiene Tahar Amer Samarah, Ali Habibi and Nawwaf Kharma. Automated coverage

directed test generation using a cell-based genetic algorithm. High-Level Design

Validation and Test Workshop, 1(1):19–26, November 2006.

[15] Yunji Chen Bowen Chen Haihua Shen, Wenli Wei and Qi Guo. Coverage directed test

generation: Godson experience.Asian Test Symposium, 1(1):321–326, November 2008.

[16] Min Li and Michael S. Hsiao. An ant colony optimization technique for abstraction-

guided state justification. Proc. IEEE International Test Conference, 1(1):pp 1–10,

November 2009.

[17] Kelson Gent and Michael S. Hsiao. Functional test generation at the rtl using swarm

intelligence and bounded model checking.Proc. IEEE 22nd Asian Test Symposium,

1(1):pp 233–238., November 2013.

[18] Godfrey C. Onwubolu and Donald Davendra. Differentialevolution: A handbook

for global permutation-based combinatorial optimization. Springer-Verlag Berlin

Heidelberg, 1(1):1–226, – 2009.

150

Bibliography

[19] Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient adaptive

scheme for global optimization over continuous spaces.Journal of Global Optimization,

1(1):pp 341–359, – 1995.

[20] Ponnuthurai Nagaratnam Suganthan Swagatam Das. Differential evolution: A survey of

the state-of-the-art. ieee transactions on evolutionary computation.IEEE Transactions on

Evolutionary Computation, 15(1):pp 4–31, February 2011.

[21] Ricardo Barron Fernandez Alfonso Martinez Cruz and Heron Molina Lozano. Automated

functional coverage for a digital system based on a binary differential evolution algorithm.

Proc. IEEE Congress on Computational Intelligence & 11th Brazilian Congress on

Computational Intelligence (BRICS), 1(1):pp 92 – 97, September 2013.

[22] Shai Fine and Avi Ziv. Coverage directed test generation for functional verification using

bayesian networks.Design Automation Conference, 15(5):286–291, June 2003.

[23] Valeria Bertacco Ilya Wagner and Todd Austin. Microprocessor verification via feedback-

adjusted markov models.Computer-Aided Design of Integrated Circuits and Systems,

26(6):1126–1138, June 2007.

[24] Tao Lv Tiancheng Wang Xiaowei Li Jian Wang, Huawei Li andSandip Kundu.

Abstraction-guided simulation using markov analysis for functional verification. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1(1):1–13,

March 2015.

[25] Gustavo Neuberger Jorge Tonfat and Ricardo Reis. Functional verification of logic

modules for a gigabit ethernet switch.Test Workshop (LATW), 1(1):1–4, March 2011.

[26] Yannick Zoccarato Patrice Vado, Yvon Savaria and Chantal Robach. A methodoly for

validating digital circuits with mutation testing.International symposium on circuits ans

systems, 5(1):343 – 346, May 2000.

[27] Anton Chepurov Hanno Hantson Raimund Ubar Jaan Raik, Urmas Repinski and Maksim

Jenihhin. Automated design error debug using high-level decision diagrams and mutation

operators.Microprocessors and Microsystems, 37(1):505 – 513, December 2012.

151

Bibliography

[28] Vincent Beroulle Youssef Serrestou and Chantal Robach. Functional verification of rtl

designs driven by mutation testing metrics.Digital System Design Architectures, Methods

and Tools, 1(1):pp 222 – 227, August 2007.

[29] Xiaoke Qin and Prabhat Mishra. Efficient directed test generation for validation of

multicore architectures.Quality Electronic Design (ISQED), 1(1):1–8, March 2011.

[30] Wolfgang Mueller Tao Xie and Florian Letombe. Mutation-analysis driven functional

verification of a soft microprocessor.SOC Conference (SOCC), 1(1):283–288, September

2012.

[31] David Sheridan Samuel Hertz and Shobha Vasudevan. Mining hardware assertions

with guidance from static analysis.Computer-Aided Design of Integrated Circuits and

Systems, 32(6):952–965, June 2013.

[32] Jay Bhadra When Chen, Li-Chung Wang and Magdy Abadir. Simulation knowledge

extraction and reuse in constrained random processor verification. Design Automation

Conference (DAC), 1(1):1–6, June 2013.

[33] Sanjay Patel David Tcheng Bill Tuohy Shobha Vasudevan,David Sheridan and Daniel

Johnson. Goldmine: Automatic assertion generation using data mining and static

analysis. Proc. IEEE Design, Automation & Test in Europe Conference & Exhibition

(DATE 2010), 1(1):pp 626 – 629, March 2010.

[34] Edgar Leonardo Romero & Marius Strum and Wang Jiang Chau. Manipulation of training

sets for improving data mining coverage driven verification. Journal of Electronic Testing,

Theory and Applications (JETTA), 29(2):pp 223–236, March 2013.

[35] Sanjay Patel David Tcheng Bill Tuohy Shobha Vasudevan,David Sheridan and Daniel

Johnson. Goldmine: Automatic assertion generation using data mining and static

analysis. Design, Automation & Test in Europe Conference & Exhibition(DATE),

1(1):1530–1591, March 2010.

[36] Serdar Tasiran and Kurt Keutzer. Coverage metrics for functional validation of hardware

designs.Design & Test of Computers, 18(4):36–45, Jul-Aug 2001.

152

Bibliography

[37] Franco Fummi Iuseppe Di Guglielmo, Luigi Di Guglielmo and Graziano Pravadelli.

Efficient generation of stimuli for functional verificationby backjumping across extended

fsms.Electron Test, Springer, 1(27):137–162, March 2011.

[38] Robert B. Jones Mark D. Aagaard and Carl-Johan H. Seger.Combining theorem proving

and trajectory evaluation in an industrial environment.Design Automation Conference,

ISBN:0-89791-964-5(1):538–541, June 1998.

[39] Roope Kaivola, Aagaard, and MarkD. Divider circuit verification with model checking

and theorem proving.Lecture Notes in Computer Science: Theorem Proving in Higher

Order Logics, 1869(1):338–355, 2000.

[40] J. O’Leary, R. Kaivola, and T. Melham. Relational ste and theorem proving for formal

verification of industrial circuit designs.Formal Methods in Computer-Aided Design

(FMCAD), 1(1):97–104, October 2013.

[41] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A. Ziv. Genesys-

pro: innovations in test program generation for functionalprocessor verification.Design

Test of Computers, IEEE, 21(2):84–93, March 2004.

[42] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic.Lecture Notes in Computer Science,

131(1):52 – 71, – 1982.

[43] Carl-Johan Seger. An introduction to formal hardware verification. IEEE,, 1(1):1–27, –

2001.

[44] Armin Biere Mukul R. Prasad and Aarti Gupta. A survey of recent advances in sat-based

formal verification. Software Tools for Tehcnology Transfer manuscript, IEEE, 1(1):1

–18, 2002.

[45] Jayanand Asok Kumar and Shobba Vasudevan. Verifying dynamic power management

schemes using statistical model checking.Design Automation Conference (ASP-DAC),

12(7):579 – 584, January 2012.

[46] Ali Alphan Bayazit and Sharad Malik. Complementary useof runtime validation and

model checking.Computer-Aided Design, 1(1):1052–1059, November 2005.

153

Bibliography

[47] Jayanand Asok Kumar and Shobha Vasudevan. Verifying dynamic power management

schemes using statistical model checking.Proc. IEEE Design Automation Conference

(ASP-DAC), 2012 17th Asia and South Pacific, 1(1):pp 574–584, January 2012.

[48] Cristina Tudose Raluca Lefticaru, Florentin Ipate. Automated model design using genetic

algorithms and model checking.Proc. IEEE Fourth Balkan Conference in Informatics,

1(1):pp 79–84, September 2009.

[49] Ali Alphan Bayazit and Sharad Malik. Complementary useof runtime validation

and model checking. Proc. IEEE Computer-Aided Design, (ICCAD-2005),

November(2005):pp 1049–1056, 1 1.

[50] Ulrich Kühne Daniel Große and Rolf Drechsler. Analyzing functional coverage in

bounded model checking.IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 27(7):pp 1305–1314, July 2008.

[51] Franco Fummi Andrea Fedeli and Granziano Pravadelli. Properties incompleteness

evaluation by functional verification.IEEE Transactions on Computers, 56(4):pp 528–

544, April 2007.

[52] Mingsong Chen and Prabhat Mishra. Decision ordering based property decomposition

for funtional test generation.Proc. IEEE Design, Automation & Test in Europe (DATE),

1(1):pp 1–6, March 2011.

[53] Thomas A. Henzinger. Symbolic model checking for real-time systems. Logic in

Computer Science, 1(1):pp 394–406, June 1992.

[54] Shmuel Ur Oded Lachish, Eitan Marcus and Avi Ziv. Hole analysis for functional

coverage data.Design Automation Conference, 39(1):807–812, June 2002.

[55] Yi-Shing Jian Kang, Sharad C. Seth and Vijay Gangaram. Efficient selection of

observation points for functional tests.Proc. IEEE 9th International Symposium on

Quality electronic Design, 1(1):pp 236–241, March 2008.

[56] Shmuel Ur Oded Lachish, Eitan Marcus and Avi Ziv. Hole analysis for functional

coverage data.Proc. IEEE Design Automation Conference (DAC), 1(1):pp 807–812, June

2002.

154

Bibliography

[57] Adam C. Krolnik Harry D. Foster and David J. Lacey.Assertion based Device. 2005.

[58] Fred Glover. Future paths for integer programming and links to artificial intelligence.

Computers & Operations Research: Applications of Integer Programming, 13(5):533–

549, – 1986.

[59] A. E. Eiben and J. E. Smith.Introduction to Evolutionary Computing. 2007.

[60] Russell Eberhart and James Kennedy. A new optimizer using particle swarm theory.Sixth

International Symposium on Micro Machine and Human Science, 1(1):39–43, October

1995.

[61] Rainer Storn and Kenneth Price. Minimizing the real functions of the icec’96 contest by

differential evolution.Evolutionary Computation, 1(1):pp 842–844, May 1996.

[62] A.P. Engelbrecht and G. Pampará. Binary differential evolution algorithm.Evolutionary

Computation, 1(1):pp 1873–1879, July 2006.

[63] Xingshi He and Lin Han. A novel binary differential evolution algorithm based on

artificial immune system.Proc. IEEE Congress on Evolutionary Computation (CEC),

1(1):pp 2267–2272, September 2007.

[64] Andries Engelbrecht and Gary Pampara. Binary differential evolution strategies.

Evolutionary Computation, 2007. CEC 2007, 1(1):1942–1947, September 2007.

[65] Yanling Yang-Hu Peng Changshou Deng, Bingyan Zhao and Qiming Wei. Novel binary

encoding differential evolution algorithm.Second International Conference, ICSI 2011,

Chongqing, China, 1(1):416–423, June 2011.

[66] Thomas Weise Changshou Deng and Bingyan Zhao. Pseudo binary differential evolution

algorithm.Journal of Computational Information Systems, 8(6):2425–2436, March 2012.

[67] Tao Gong and Andrew L. Tuson. Differential evolution for binary encoding. Soft

Computing in Industrial Applications, 39(1):251–262, March 2007.

[68] Muhammad Ilyas Menhas Ling Wang, Xiping Fu and Minrui Fei. A modified binary

differential evolution algorithm.LSMS/ICSEE 2010, 1(1):49–57, – 2010.

155

Bibliography

[69] Fernando G. Lobo Georges R. Harik and David E. Goldberg.The compact genetic

algorithm. evolutionary computation.IEEE Transactions, 3(4):pp 842–844, May 1996.

[70] Chang Wook Ahn and R. S. Ramakrishna. Elitism-based compact genetic algorithms.

Evolutionary Computation, IEEE Transactions, 7(4):pp 367–385, August 2003.

[71] Francesco Cupertino Ernesto Mininno, Ferrante Neri and David Naso. Compact

differential evolution.Evolutionary Computation, 15(1):pp 32–54, December 2010.

[72] Ferrante Neri and Ernesto Mininno. Memetic compact differential evolution for cartesian

robot control.IEEE Computational Intelligence Magazine., 5(2):pp 54–65, May 2010.

[73] George Harik and Erick Cantu Paz. The gamblers ruin problem, genetic algorithms, and

sizing of populations.Evolutionary Computation, ISBN:0-7803-3949-5(1):7–12, April

1997.

[74] Heron Molina Lozano Marco Ramirez Salinas Alfonso Martinez Cruz, Ricardo

Barron Fernandez and Luis Alfonso Villas. Automated functional test generation for

digital systems through a compact binary differential evolution algorithm. Journal of

Electronic Testing, 31(4):pp 361 – 380, September 2015.

[75] Vecchi Mario P and Scott Kirkpatrick. Global wiring by simulated annealing.IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2(4):pp 215–

222, October 1983.

[76] Yannick Zoccarato Patrice Vado, Yvon Savaria and Chantal Robach. A methodology for

validating digital circuits with mutation testing.Circuits and Systems, 1(1):343–346, June

2000.

[77] Russell Eberhart and James Kennedy. A discrete binary version of the particle swarm

algorithm. Sixth International Symposium on Micro Machine and Human Science,

1(1):39–43, October 1995.

[78] Design Automation Standards Committee. Design automation standards committee

1800-2009 - ieee standard for systemverilog–unified hardware design, specification, and

verification language.IEEE Standards Association Corporate Advisory Group., 1(1):1–

1285, November 2009.

156

Bibliography

[79] Rainer Storn and Kenneth Price. Differential evolution - a simple and efficient adaptive

scheme for global optimization over continuous spaces.Journal of Global Optimization,

1(1):341–359, March 1995.

[80] Serdar Tasiran and Kurt Keutzer. Coverage metrics for functional validation of hardware

designs.Design & Test of Computers, IEEE, 18(4):36–45, July/August 2001.

[81] Alair Dias Junior and Diogenes Cecilio da Silva Junior.Code-coverage based test vector

generation for systemc designs.VLSI, 2007. ISVLSI ’07, 1(1):198–206, March 2007.

[82] Charalambos Ioannides and Kerstin I. Eder. Coverage-directed test generation automated

by machine learning - a review.ACM Transactions on Design Automation of Electronic

Systems, 17(1):7–21, January 2012.

[83] V. Subedha and S. Sridhar. An efficient coverage driven functional verification system

based on genetic algorithm.European Journal of Scientific Research, 81(4):533–542,

2012.

[84] Marius Strum Carlos Iván Castro Márquez, Edgar Leonardo Romero Tobar and

Wang Jiang Chau. A functional verification methodology based on parameter domains for

efficient input stimuli generation and coverage modeling.Journal of Electronic Testing,

27(4):485–503, August 2011.

[85] Matteo Sonza Reorda Fulvio Corno, Ernesto Sánchez and Giovanni Squillero. Automatic

test program generation: A case study.Design & Test of Computers, IEEE, 21(2):102–

109, 2004.

[86] Yi-Shing Chang Jian Kang, Sharad C. Seth and Vijay Gangaram. Efficient selection

of observation points for functional tests.9th International Symposium on Quality

Electronic Design, 1(1):236–241, 2008.

[87] James Kennedy and Russell C. Eberhart. A discrete binary version of the particle swarm

algorithm.Computational Cybernetics and Simulation, 5(1):4104–4108, October 1997.

[88] Shaz Qadee and Serdar Tasiran. Promising directions inhardware design verification.

Proceedings of the International Symposium on Quality Electronic Design, 1(1):1–6,

March 2002.

157

Bibliography

[89] Magdy S. Abadir Jayanta Bhadra and Sandip Ray. A survey of hybrid techniques for

functional verification. Test of Computers- Advances in Functional Validation through

Hybrid Techniques, 24(2):112–122, March 2007.

[90] Armin Biere Mukul R Prasad and Aarti Gupta. A survey of recent advances in sat-based

formal verification. International Journal on Software Tools for Technology Transfer,

7(2):156–173, April 2005.

[91] Jacob A. Abraham Dinos Moundanos and Yatin V. Hoskote. Abstraction techniques

for validation coverage analysis and test generation.IEEE TRANSACTIONS ON

COMPUTERS, 47(1):2–14, January 1998.

[92] Farn Wang. Formal verification of timed systems: a survey and perspective.Proceedings

of the IEEE, 92(8):1283–1305, August 2004.

[93] David Lee and Mihalis Yannakakis. Principles of methods of testing finite state machines-

a survey.Proceedings of the IEEE, 84(8):1–6, August 1996.

[94] Gal Katz and Doron Peled. Model checking-based geneticprogramming with an

application to mutual exclusion.Tools and Algorithms for the Construction and Analysis

of Systems, 4963(1):141–156, Jun 2008.

[95] Robert B. Jones John O’Leary W. Tom Melham D. Mark Aagaard Clark Barrett

Johan Carl, Seger H. and Don Syme. An industrially effectiveenvieronment for formal

hardware verification.Transactions on computer-aided design of integrated circuits and

systems, 24(8):1381–1405, September 2005.

[96] Laurent Fournier Eitan Marcus Michael Rimon Michael Vinov Allon Adir, Eli Almong

and Avi Ziv. Genesys-pro: Innovations in test program generation for functional processor

verification. IEEE Design & Test of Computers, 21(2):84–93, March-April 2004.

[97] Cristina Tudose Raluca Lefticaru, Florentin Ipate. Automatic model design using genetic

algorithms and model checking.IEEE, fourth Balkan Conference in Informatics, 2(1):79–

84, – 2009.

[98] Mihaela Radu. Extensive coverage of functional verification of hardware designs.

Microelectronic Systems Education, 2007. MSE ’07, 1(1):101 – 102, June 2007.

158

Bibliography

[99] Gang Chen. A short historical survey of functional hardware languages.International

Scholarly Research Network ISRN Electronics, 2012(271836):1–11, February 2012.

[100] Alessandro Fin and Franco Fummi. Genetic algorithms:the philosopher’s stone or an

effective solution for high-level tpg?*.High-Level Design Validation and Test Workshop,

2003. Eighth IEEE International, 1(1):163 – 168, November 2003.

[101] Sharad C. Seth Jian Kang and Vijay Gangaram. Efficient rtl coverage metric for functional

test selection.25th IEEE VLSI Test Symmposium (VTS’07), 1(1):318–324, May 2007.

[102] Ali Habibi and Sofiene Tahar. A survey: Systemonachip design and verification.

Technical Report, Montreal, Quebec, Canada, 1(1):1 – 32, January 2003.

[103] Laurent Arditi and Gael Clave. A semi-formal methodology for the functional validation

of an industrial dsp system.ISCAS 2000 IEEE International Symposium on Circuits and

Systems, 1(4):205–208, May 2000.

[104] Orna Kupferman Hana Chockler and Moshe Vardi. Coverage metrics for formal

verification.International Journal on software tools for technology, 2(1):376 – 386, April

2006.

[105] Byoungju Choi Ahyoung Sung and Jangsoo Lee. Interaction mutation testing.Copyright

2003 Chillarege Press, 2(1):1–2, – 2003.

[106] Eamonn Otoole Eamonn Linehan and Siobhan Clarke. Model-driven automation for

simulation-based functional verification.ACM Transactions on Design Automation of

Electronic System, 17(3):31–56, June 2002.

[107] Kurt Shultz Jun Yuan and Carl Pixley. automatic vectorgeneration using constraints and

biasing. Journal of electronic Testing: Theory and Applications, 16(1):107–120, July

2000.

[108] L. Fanucci S. Saponara and M. Coppola. Design and coverage-driven verification of a

novel network-interface ip macrocell for network-on-chipinterconnects.Microprocessors

and Microsystems, 35(1):579–592, July 2011.

159

Bibliography

[109] A. S. Kamkin and M. M. Chupilko. Survey of modern technologies of simulation-

based verification of hardware.Programming and Computer Software, 37(3):147–152,

September 2011.

[110] Eamonn Linehan and Siobhán Clarke. An aspect-oriented, model-driven approach

to functional hardware verification.Journal of Systems Architecture, 58(1):195–208,

February 2012.

[111] Marius Strum Edgar Leonardo Romero and Wang Jiang Chau. Manipulation of training

sets for improving data mining coverage-driven verification. J Electron Test, 29(1):223–

236, March 2013.

[112] Sasan Iman and Sunita Joshi.The e Hardware Verification Languaje. Springer Science-

Kluwer Academic Publishers, United States of America, 1 edition, 2004.

[113] Chris Spear and Greg Tumbush.SystemVerilog for Verification: A Guide to Learning the

Testbench Language Features. 2012.

[114] Carl Pixley Jun Yuan and Adnan Aziz.CONSTRAINT-BASED VERIFICATION. 2006.

[115] Hamilton B. Carter and Shankar Hemmady.Metric Driven Design Verification:An

Engineers and Executives Guide to First Pass Success. 2007.

[116] Rainer M. Storn Kenneth V. Price and Jouni A. Lampinen.Differential Evolution: A

Practical Approach to Global Optimization. 2005.

[117] James Kennedy and Russell C. Eberhart with Yuhui Shi.Swarm Intelligence. Academic

Press, first edition edition, 2001.

[118] John W. O’Leary Tom Melham Mark D. Aagaard Clark Barrett Carl Johan H. Seger,

Robert B. Jones and Don Syme. An industrially effective environment for formal

hardware verification.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS, 24(9):1381–1405, September 2005.

160

	Resumen
	Abstract
	Agradecimientos
	Figures
	Tables
	I Introduction
	Introduction
	Functional Verification of Digital Systems
	Elements of Functional Verification

	Problem to Solve
	Justification
	General Objective
	Specific Objectives

	Research and developed method
	Scope of work
	Contributions
	Organization
	Resume

	II State of the Art
	State of the Art
	Introduction
	Coverage Directed Test Generation for Functional Verification
	Meta-heuristics algorithms
	Bayesian Networks and Markov Model approaches
	Methods based on mutations
	Methods based on data mining
	Functional Test Generation based on extraction of State Machines
	Methods based on Theorem Proving
	Methods based on Model Checking
	Resume

	III Digital Design and Functional Verification of Digital Systems
	Digital Design and Functional Verification of Digital Systems
	Digital systems design
	Main elements of Functional Verification
	Functional Coverage
	Coverage Points
	Functional Coverage Metrics
	Calculation of Functional Coverage
	Functional Coverage Model description
	Directed Functional Verification for Digital Systems
	Controllability and Observability in digital systems
	Pseudo-random Constraint Stimulus
	Modeling Functional Verification through HDL
	Proving the Design through the Simulation

	Resume

	IV Meta-Heuristics on the Binary Space
	Meta-Heuristics on the Binary Space
	Binary search space
	Evolutionary algorithms
	Binary Genetic Algorithm
	Binary Particle Swarm Optimization algorithm (BinPSO)
	Binary Differential Evolution Algorithm (DE Algorithm)

	Compact meta-heuristic algorithms
	Compact Binary Genetic algorithm

	Resume

	V Proposed Method
	Proposed Method
	Proposed Compact Binary Differential Evolution Algorithm
	Proposed test vector generation method
	Fitness functions
	Verification platform
	Applying meta-heuristic algorithms over the proposed platform
	Modeling the Device Under Verification
	Calculating and analyzing Functional Coverage
	HDL Simulation of the Device Under Verification

	Resume

	VI Experiments and Results
	Experiments and Results
	Case Study
	Experimental Setup
	Experiments and Results with Compact-BinDE Algorithm

	Experiments and Results with other Meta-heuristic Algorithms
	Experiments using a binary Genetic algorithm
	Experiments using Binary Particle Swarm Optimization algorithm
	Comparison between algorithms

	Discussion

	 Conclusions and future work
	Conclusions and future work
	Conclusions
	Future Work

	Contributions
	Published papers in Journals
	Published papers in conferences

	Glossary
	Bibliography

