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Resumen

Con la proliferación de los dispositivos móviles estos se han convertido en
una parte integral de la vida cotidiana abriendo nuevas posibilidades de co-
municación. Este tipo de dispositivos incluyen diversos subsistemas como
sensores y actuadores que pueden ser usados para diferentes propósitos, por
ejemplo la adquisición de datos del ambiente para ofrecer una mejor expe-
riencia de usuario. En la practica estos subsistemas pueden ser utilizados
para transmitir información mediante canales alternativos de comunicación
que carecen de controles de red. En este trabajo se proponen dos protocolos
tanto de capa f́ısica como de enlace de datos que en conjunto se denominan
SoundComm-CISEG, estos protocolos utilizan el micrófono y los altavoces
incluidos en los dispositivos móviles Android para establecer comunicación
además de estar basados en el estándar IEEE 802. Estos protocolos son ca-
paces de evadir controles de red evitando la transmisión por radiofrecuencia.

El diseño del protocolo se realizo mediante una metodoloǵıa experimen-
tal, todas las especificaciones del protocolo fueron validadas mediante ex-
perimentación y teniendo en mente las limitaciones de hardware en los dis-
positivos móviles Android. El protocolo alcanza tasas de transferencia mas
altas que el estado del arte y el diseño permite la operación del mismo en
presencia de ruido ambiental. Todas estas caracteŕısticas muestran que el
protocolo puede ser utilizado en ambientes donde evadir la infraestructura
tradicional de red aśı como sus controles de seguridad es imperativo.



Abstract

With the proliferation of mobile devices they have become an integral part
of everyday life, enabling new possibilities of communication. This kind of
devices may include a plethora of subsystems such as sensors and actua-
tors which can be used for diverse purposes, for example, the acquisition
of environmental data for context-aware applications. In practice, these
subsystems can be used to transmit data in alternative channels with the
absence of network controls. In this work, a physical layer and data-link
protocols which use the built-in microphone and speakers to establish com-
munication is presented, these protocols are based on the IEEE 802 standard
and the proposed stack is called SoundComm-CISEG. This channel is capa-
ble of out-of-band transmission evading standard network controls between
mobile devices.

The design of the protocol was done taking as base an experimental
methodology, all specifications of the protocol were validated through tests
and having in mind the resource constraints of the Android platforms. The
protocol is capable to achieve higher bitrates than the state of the art and the
design allows its operation in the presence of environmental noise. All these
characteristics show that the protocol could be used to transmit data using
an acoustic carrier in many scenarios where avoiding traditional network
infrastructure and security mechanisms is imperative.
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Introduction

In the present work a data-link protocol SoundComm-CISEG is proposed,
it uses sound as a carrier signal and is an alternative way to establish com-
munication avoiding the standard network controls, this can be useful on
certain situations where the users want to avoid traditional radio frequency
security mechanisms. The Android devices often include sensors and actu-
ators which are used by the applications to provide different functionalities
(context-aware applications for example), these devices are not often treated
as communication devices. In this work, we use the speakers and the mi-
crophone included on Android mobile devices to establish communication
between devices in order to evade network controls. There are some works
exploring this idea, but at the moment a proposal of a protocol is inexistent.
The protocol in this work was designed using an experimental methodology
and taking as base the IEEE 802 standard as an architectural reference.

The structure of the work is the following, first, the state of the art is
presented with some similar proposals, then the general structure of the pro-
tocol and their functionalities are described, these specifications and func-
tionalities were validated experimentally with a testbed, the details of this
implementation can be seen on chapters 4 and 5. Finally, various tests were
performed showing the behavior of the protocol on different conditions, these
tests aims to show the capacity of adaptation of the proposal to different
scenarios. At the end a comparison with the state of the art is shown and
the main differences explained.
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Chapter 1

Communication protocols
and reference models

The communication systems are complex systems, each element of them
serves a specific function and interacts with other elements making them
huge systems in terms of functionalities, so the implementation is not triv-
ial. In order to overcome these problems, some models which abstract the
operation of these systems are used in the form of services, layered archi-
tectures and reference models. On this chapter, an introduction to these
abstractions and models is given.

1.1 Communication protocol characteristics

A communication protocol is a behavior convention that defines the tempo-
ral order of the interactions between the peer entities as well as the format
(syntax and semantics) of the messages exchanged [4]. The communication
protocols have diverse elements on which they rely on, these elements define
how the parts involved in communication interact and the format of the
interaction.

The process of exchange data between two systems can be treated as a
service, the model of these services can be seen in figure 1.1, a communication
service is comprised by the following parts:

• Service users: The communication service is requested by this part.

• Service provider: It offers the service to the service user.
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• Service access points: A service user invokes a service to the service
provider via service access points (SAPs).

• Service primitives: They are abstractions for describing interactions
between the service users and service providers at the service interface.
These abstractions are independent of the platform.

The mentioned services are provided by entities, which are active ob-
jects who perform the communication exchanging messages, the interaction
between these entities provide the service, as can be seen in figure 1.2.

Figure 1.1: Communication services model [1]

Figure 1.2: Entities interaction to provide a service [1]

1.1.1 Layered Architectures

Today, modern communication systems are constructed following the con-
cept of layering. A layer is comprised by entities which provide the same
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functionality. These layers provide one or more services. On this kind of
architecture, all layers provide services to the immediately adjacent higher
layer, it is, if certain layer is defined as the N layer, this N-layer provides
one or more services to the adjacent higher layer, the N+1 layer, in a similar
fashion, the N-1 layer provides one or more services to the N layer. A pro-
tocol always defines the communication rules of entities of the same layer
level as in figure 1.2, these entities are known as peer entities. The main
advantage of a layered architecture is the principle of transparency, it is that
the processes in each layer are transparent to the user, for example if the
user data is given to the service provider, the service provider manipulates
the data according to the primitives issued by the service user, the service
provider is unaware of the data content, it just delivers the data unchanged
to the receiver so the process is transparent to the service user.

The messages exchanged by peer entities are known as Protocol Data
Units, they have an specific format in order to interpret them in the same
way on both sides, a protocol usually uses at least one PDU for data trans-
fer, other types of PDU are used for various procedures, e.g., connection
establishment. The protocols are defined depending on how each PDU is
processed in relationship with the later, if each PDU is treated indepen-
dently, the protocol is connectionless, in the opposite case, the protocol is
connection-oriented, e.g., the last case is used when the protocol has dynamic
parameters regulated through the duration of the communication. Other im-
portant characteristic of the protocols is how they operate depending on the
behavior of the receiver and transmitter, in this aspect the communications
protocols are subdivided on two categories, symmetric and asymmetric.

• Symmetric: A protocol is symmetric if both communicating entities
show the same behavior, e.g., in a duplex communication when both
entities exchange data on both directions.

• Asymmetric: The protocol is asymmetric if both communicating en-
tities show different behavior, e.g., on a simplex communication which
implies communication in one direction.

1.2 Reference Models of layered architectures

The reference models describe the components of the communication ar-
chitecture and the interaction principles applied. They further define the
number of layers, their functionality and often, they specify the protocols
used on each layer [5].
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Some examples of common reference models are the OSI reference model
and the model used as base in this work, the IEEE 802, this model will be
explained in the section 1.3.

1.3 The IEEE 802 reference model

The IEEE 802 reference model is based on the mentioned OSI model, this
model is centered on the two lower layers of the OSI model, the physical
layer and the data link layer, a diagram showing the equivalence of these
two reference models can be seen in figure 1.3.

Figure 1.3: IEEE 802 reference model and it’s equivalence with the OSI
model[2]

1.3.1 Logical Link Control (LLC)

The LLC is a sublayer of the data-link layer which manages the logic of the
communication and offers various services, the structure of this sublayer is
in the figure 1.4.

Figure 1.4: Logical Link Control [2]
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The first element of the LLC is known as the Higher Layer Protocol Dis-
crimination entity (HLPDE), this entity discriminates protocols at network
layer with the purpose of delivering the data at the correct LSAP. In general
terms, the LLC is concerned in the multiplexation and demultiplexation of
network protocols, and also the LLC determines the flow control according
to type of service of operation, they are listed next [6].

• Unacknowledged connectionless-mode services: This set of data
transfer services provides the means by which network entities can ex-
change data without the establishment of a data link level connection.
The data transfer can be point-to-point, multicast, or broadcast.

• Connection-mode services: This set of services provides the means
for establishing, using, resetting, and terminating data link layer con-
nections. These connections are point-to-point connections between
LLC SAPs.

– The connection establishment service provides the means by which
a network entity can request, or be notified of, the establishment
of data link layer connections.

– The connection-oriented data transfer service provides the means
by which a network entity can send or receive data over a data
link layer connection. This service also provides data link layer
sequencing, flow control, and error recovery.

– The connection reset service provides the means by which estab-
lished connections can be returned to the initial state.

– The connection termination service provides the means by which
a network entity can request, or be notified of, the termination
of data link layer connections.

– The connection flow control service provides the means to control
the flow of data associated with a specified connection, across the
network layer/data link layer interface.

• Acknowledged connectionless-mode services: The acknowledged
connectionless-mode data unit exchange services provide the means by
which network layer entities can exchange data that are acknowledged
at the LLC sublayer, without the establishment of a data link connec-
tion. The services provide a means by which a network layer entity at
one station can send a data unit to another station, request a previ-
ously prepared data unit from another station, or exchange data units
with another station. The data unit transfer is point-to-point.
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1.3.2 MAC sublayer

The MAC sublayer performs the functions necessary to provide frame-based,
connectionless-mode (datagram style) data transfer between stations in sup-
port of the next higher sublayer[2].

This sublayer provides the following functions:

• Frame delimiting and recognition

• Addressing of destination stations (both as individual stations and as
groups of stations)

• Conveyance of source-station addressing information

• Transparent data transfer of PDUs from the next higher sublayer

• Protection against errors, generally by means of generating and check-
ing frame check sequences

• Control of access to the physical transmission medium

1.3.3 Physical layer

MAC entities use their respective physical layer entities to exchange bits with
their peers. The physical layer entity provides the capability to transmit
and receive modulated signals assigned to specific frequency channels for
broadband or wireless media or to a single baseband-channel [2]. In the
IEEE 802.11 [7] standard two sublayers are defined at physical layer:

• Physical Medium Dependent sublayer (PMD): Defines the char-
acteristics of, and method of transmitting and receiving data through
the physical medium via signals between two or more entities.

• Physical layer convergence procedure sublayer (PLCP): Pro-
vides a convergence mechanism, which adapts the capabilities of the
PMD system to offer the physical layer services. It defines a method
of mapping the IEEE 802.11 MAC PDUs into a framing format suit-
able for sending and receiving user data and management information
between two or more entities using the associated PMD system.

Other functions like interconnection and networking are also specified,
but they are not relevant on our present work since the protocol presented
here is assumed point to point, other functions and parameters which do
not apply to our protocol are explained on next chapters.
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On this chapter the concepts and terminology of the communication
protocols were introduced and the IEEE reference model as well, all these
concepts are used on the research. In the present work due the nature
of the proposed protocol the data-link layer operates in unacknowledged
connectionless-mode, this is due the fact that the proposal is a simplex and
point to point protocol, other modes of operation are impossible consider-
ing the mentioned assumptions. These limitations do not interfere at the
physical layer which is considered fully functional in this work. In the next
chapter we present similar approaches to the present work and a brief com-
parison is given.
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Chapter 2

Alternative communication
channels for the evasion of
controls on Android mobile
devices

Mobile devices are an important part of the common technological ecosys-
tem, these kind of devices are sold on greater numbers than the PCs [8],
and are an ubiquitous part of the life of people in many ways. These mobile
platforms are transforming the way we interact with our environment, for
example IoT, mobile banking, mobile payments and applications in general
which are focused on the broad market that mobile devices have constructed
today.

Mobile devices have particular characteristics that are not common on
the traditional PC paradigm, for example they are equipped with a wide
range of sensors, these sensors are used for data acquisition, geolocalization
and other purposes limited by the creativity and the physical constraints
of them. These devices have also actuators capable of interact with the
environment, for example speakers and vibrators.

This capacity of receiving and sending data across an alternative chan-
nels, makes easier to evade or even avoid the traditional control mechanisms
by simply using another channel which lacks of the proper security controls.
The possibility of exploitation of these alternative channels is empowered
with the plethora of sensors and actuators built on mobile devices, a char-
acteristic often missed in traditional PCs. Many alternative channels are
constructed over the use of subsystems included in mobile devices, i.e. the
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present work which makes use of microphones and speaker to establish com-
munication and effectively evade standard network controls.

2.1 Alternative channels for local communication

On Marforio et al. [9] several alternative channels for local communication
are presented for Android platforms, the first one uses the classical method
for communication between applications on Android OS, the broadcast in-
tents, these kind of intents are used to transmit information to a particular
application using the application ID, on this research, the values that the
broadcast intent hold, could be used to encode information in a covert way,
making possible to transmit secret data to another application.

Another method, is to use the free space on the file system as a medium
for data encoding. The transmitter writes information until certain thresh-
old, the receiver reads how much free space remains on the file system,
different values are used to encode a 1 and a 0. In a similar fashion of en-
coding, the CPU frequency can be modified via intensive computations in
order to communicate information between two applications, one changing
the CPU frequency and another monitoring the change.

Alternative channels for local communication can also be established
with sensors. In Al-Haiqi et al. [10] the vibration is used to cause changes
on the accelerometer. The transmitter uses certain patterns of vibration that
can be sensed on the receiver side via sensor events, both applications could
easily have permissions to perform the task, and additional considerations
should be taken to remain unnoticeable to users, for example, trigger the
communication at night and/or while the user is away.

In Lalande et al. [11] four alternative channels for local communication
on Android are proposed. The first channel uses the time elapsed since
the screen is switched off, which is a state that can be detected by the
applications using the GET TASK permission. The transmitter (A) waits
the screen to turn off x ∗ ∆T seconds where x is the encoded information
while ∆T is a constant known by the transmitter and the receiver (B). B
is capable of check the status of A. When x ∗∆T seconds have passed, the
process A kills itself, B detects that A is no longer running and is capable
of infer x from the point where the screen went off to the moment when A
stopped.

A second variant of the mentioned channel is to change the process pri-
ority p of the process A instead of kill the process A, this procedure has the
advantage of the lack of GET TASK permission. The third variant is pure
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process priority based. The receiver just waits for the appearance of certain
priority p provided by A, and then starts to count the time x ∗∆T to infere
x.

The fourth solution is to use only the state of the screen, the receiver
just counts the time from the point that it went off, to the point that is
turned on by the transmitter.

2.2 Alternative channels with external communi-
cation

On Fernandes et al. [12], an scenario of a channel with external interaction
is presented, an Android device equipped with an FM receiver downloads a
malicious application from the market, this application itself does not con-
tain malicious code in order to avoid security controls, once placed on the
phone, the application starts to sniff information from the FM receiver, the
attackers with special equipment for FM transmission, start to transmit the
malicious payload, in this way several security controls are evaded start-
ing from those which perform analysis at installation time and those who
regulate network communication as well.

2.3 Sound based communication on Android De-
vices

There are some communication channels which make use of sound to trans-
mit data, these covert channels use the microphone and speakers as receiver
and transmitter respectively. Similar works are mentioned in order to es-
tablish a context and contribution of our work.

On Hasan et al. [13], control commands are propagated via external en-
vironmental changes (light, sound, vibration, magnetism), such changes are
sensed on the mobile device who hosts the receiver, and it acts in response.
These environmental stimulus were produced by different devices which can
be used to transmit signals, for example, the light of a TV, a PC screen,
PC speakers, etc. In the case of sound, distances of 55 feet indoors and 45
feet outdoors were obtained with the sound propagated command using a
17 KHz carrier.

Other covert channels which make use of sound as a information signal is
presented by Deshotels [14]. In this research, a proof of concept of feasibility
is shown, a sound file FSK modulated is created on a PC via MATLAB
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software, then, this file is played on one device and received on the other,
this paper only addresses the problem of feasibility. A small resume of these
proposals is in table 2.1.

Proposal Characteristics

Sensing-enabled
Channels for Hard-
to-detect Command
and Control of Mo-
bile Devices [13]

• Transmission with PC speakers

• Communication from a PC to a Mobile device.

• Bitrate: 1 bit/second

• Hardware

– HTC Evo 4g

– Android 2.3.3

– Qualcomm MSM8655 1.2 GHz

– 768 MB RAM

• 17 KHz carrier signal

Inaudible Sound as
a Covert Channel in
Mobile Devices [14]

• Transmission from mobile device to mobile device.

• Communication using wav files created with MAT-
LAB.

• Maximum bitrate: 345 bit/second

• Hardware

– Nexus 7 tablet

– Android 4.3

– Qualcomm Snapdragon S4 Pro 8064 Quad-Core, 1.5
GHz

– 2 GB RAM

• 18khz and 19khz frequencies

Table 2.1: Similar proposals
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In this work we present a data-link and physical layer protocol which are
based on IEEE 802 reference model, the main difference with the mentioned
works in this section is that we define the operation of a real inter-device
communication protocol with a sound carrier on an implemented testbed,
in contrast with the state of the art which only shows proofs of concept
to prove feasibility. In the next chapter we present the structure and the
operation of this sound based protocol called SoundComm-CISEG.
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Chapter 3

SoundComm-CISEG

The possibilities of environmental data acquisition on Android devices en-
able the capacity of receiving information through the sensor devices and the
collected information can be sent to somewhere outside the mobile device
through the built-in actuators (for example sensing light levels and playing
a sound, respectively). These new characteristics make possible the com-
munication on both directions, from an external entity to the mobile device
and from the mobile device to an external entity. This kind of mechanism
may be useful to transmit sensible data in a covert manner.

The advantage of sending sensible data in a sound based channel is the
absence of proper security controls on the channel. This is, there is no way
to detect the transmission with the usual network infrastructure, it could be
even more complicated to try to detect it whether the data is transmitted
on high frequencies, which are less notorious to human ear. However, with
the advantages, there are disadvantages, for example, the distance of trans-
mission: both transmitter and receiver cannot be geographically distant due
the physical limitations of sound propagation. Despite the limitations, this
kind of characteristics may be very useful on specific scenarios, for example
acquiring sensible data for industrial espionage on a targeted attack during a
meeting, or evasion of highly secured (or insecure) communication channels
for data sharing.

As we stated in chapter 2, some alternative channels were designed to
use sensors as a tool for data reception, in the present work sensors and
actuators are used to establish communication, in this case, the speaker
of the android device for transmission, and the microphone for reception.
There is a difference to notice since in previous works only proofs of concept
were presented with this idea, in this work a completely functional data-link
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protocol called SoundComm-CISEG was designed. In the next sections all
the characteristics of operation and design are explained.

3.1 Scenario of application

Due to the physical limitations of sound propagation and hardware capacity,
the distance that can be reached with this method is limited. Despite this
limitation there are some scenarios where this kind of channel can be applied,
specifically those associated with transmission in short distances. Consider
for example an indoors scenario where the environmental sound levels and
frequencies are not too high to interfere with the sound signal, for example
a meeting room. Under these conditions a smartphone could initiate com-
munication with another device using sound. The sound volume will not be
as high to be noticed by the assistants, and additionally, a high frequency
sound will be less perceptible to the human ear. The environmental sound
and the assistant’s speech will help to keep the communication between de-
vices masked and as stealthy as possible. Under these circumstances the
communication can be established in a covert manner for diverse purposes.
A communication on the stated environment could be used for diverse pur-
poses, for example, in a malware scenario of data leakage, a malware with
sound communication capabilities may be listening for a signal from another
device to start sending information through the channel as fast as possible
in order to avoid being noticed by people near the communication location.
Similar characteristics apply to a data sharing scenario, the main difference
lies in the fact that both users are aware of the communication taking place,
on these conditions the stealthiness could be irrelevant. In both scenarios
several network controls are avoided just not using common network infras-
tructures. Transmitting via sound could be useful in order to maintain the
communication unmonitored.

3.2 Design requirements

As we don’t want to adapt special hardware in order to achieve communi-
cation, the design requirements are shaped by hardware limitations. Addi-
tional considerations should be taken for the scenarios of application, the
most important ones are those related with the stealthiness, as much of the
functionality of the covert channel lies in the assumption of the communi-
cation being not detected.
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Two important points about the stealthiness of the channel are the fre-
quency that will be used to transmit the data, and the time needed to send
the information, we want to transmit as fast as possible because we want
to minimize the possibility of being heard and being noticed during data
transmission. The frequency of transmission should be carefully considered
due to the implications of the physical system, for example, the maximum
distance between transmitter and receiver on which the communication is
established will change depending on the operation frequency.

The last point to consider is the organization of the protocol. In order
to achieve communication, modularity and also extensibility, certain func-
tionalities are necessary to be addressed, the architecture and functionalities
are provided by the existing reference models, for example the IEEE 802 [2]
which is a largely used standard for data-link communications.

The characteristics to be considered are:

• Channel capacity depends on the hardware limitations of mobile de-
vices.

• The transmission times should be short in order to maintain the com-
munication as stealthy as possible.

• The frequency of sound used for transmission should be as high as
possible in order to make the transmission more stealthy (higher fre-
quencies are less perceptible to the human ear).

• The need to address channel interferences, for example environmental
noise, in order to make the protocol more resilient.

• The IEEE 802 standard is used as reference for SoundComm-CISEG
which is a simplex and point to point stack of protocols.

All mentioned specifications will give shape to the subsequent character-
istics of the protocol.

3.3 Research methodology

The design process is based on an experimental methodology, since we
wanted to adapt all protocol features to the existing Android hardware.
The research process followed is illustrated in figure 3.1, the first step was
the analysis of the existing solutions which perform communication using a
sound carrier involving Android devices. The second step was the analysis
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of the existing tools to manipulate the hardware in order to construct the
testbed which is used to validate the protocol. The third step is the anal-
ysis of the possible modulation methods at the physical layer since there
are various methods involving different processes at the demodulator, the
simplest method was chosen having in mind the resource constraints of the
platform. Having chosen the method of modulation, the process of design
starts, it is represented as a loop of design, implementation and test at the
physical layer and data-link layer as well. As we mentioned earlier, due to
the practical nature of the present work, several approaches were proposed
and the best was selected, the same process was followed for both layers. At
the end some functionality test were done in order to acknowledge certain
characteristics of the protocol.

Figure 3.1: Design methodology.

3.4 Design scenario

The design process involves the validation of certain characteristics in a
practical way. In order to validate the specifications, an testbed was de-
veloped, this testbed makes use of APIs who control the hardware (in this
case, the microphone and the speakers). The details of the implementation
are described in chapters 4 and 5.
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All the tests were performed with two Android phones, the specifications
for each device are in table 3.1, the two devices have different characteristics
in order to test the protocol on different Android versions and hardware,
since we designed the testbed and the protocol with standardized character-
istics, this is possible.

Sony Xperia LT30p Android 4.3 Jelly Bean
Dual core Qualcomm Krait MSM8260-A de 1.5 GHz processor

1GB of RAM

Sony Xperia M4Aqua Android 5.0 Lollipop
Octa-core Qualcomm MSM8939 a 1.5 GHz processor

2GB of RAM

Table 3.1: Hardware used in the tests.

The testbed was installed in both phones, the testbed can act as a trans-
mitter or receiver, depending on the user input, if there is no message on
the text box when we start the service, the testbed automatically acts as
a receiver, if not, it acts as a transmitter. An example of the operation of
sending a message is shown in figure 3.2, in all the experiments the trans-
mitter speaker is aligned with the receiver microphone. The tests presented
in this chapter aims to validate the protocol parameters, on all the exper-
iments the distance of transmission is 5 cm, and the volume used is set to
the half of the volume capacity being 8 from the 15 standardized possible
values of volume on Android, an example of the device positioning for the
tests is shown in figure 3.3.

3.5 SoundComm-CISEG Architecture

As we mentioned in previous sections, the protocol is based on the IEEE 802
reference model, but specifically it uses the structure of the IEEE 802.11 [7].
The proposed protocols were thought for simplex and point to point commu-
nication, having this considerations in mind, it is possible to propose similar
layers and sublayers as in the IEEE 802.11 standard with one difference,
the data-link layer operates just as unacknowledged connectionless-mode
service. SoundComm-CISEG is comprised by two protocols due their two
layers, physical and data-link, and these layers are also divided on sublayers
that perform different tasks in order to make easier the process of abstraction
and improve the modularity.

The main structure of SoundComm-CISEG is shown in figure 3.4. As
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Figure 3.2: SoundComm-CISEG testbed as a transmitter (left) and as a
receiver (right).

can be seen in the figure 3.4, all the sublayers have their own SAPs to
exchange data between them. There are two SAPs on each sublayer using
one for transmission and other for reception, the data exchanged via the
SAPs has the structure of PDUs which were thought as an implementation
independent data exchange format for standardization purposes, the data
flows are slightly different in the case of transmission and reception, these
flows are illustrated in the figures 3.5 and 3.6. The details of every sublayer
are described in sections 3.6 and 3.7.
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Figure 3.3: Positioning of the devices for the design tests.

Figure 3.4: SoundComm-CISEG architecture.

3.6 Physical layer

3.6.1 Physical Medium Dependent sublayer

The physical medium dependent sublayer (PMD) is a sublayer defined for
the interaction with the transmission medium, the acoustic signals are pro-
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Figure 3.5: Data flow in the case of transmission.

Figure 3.6: Data flow in the case of reception.

cessed in order to perform the modulation and demodulation. This sublayer
has different behaviors for transmission and reception, in Rx mode it receives
the sound signal from the air and delivers physical layer PDUs (PLPDUs) to
the physical layer convergence procedure (PLCP), in TX mode, the PLCP
delivers PLPDUs to the transmitter and it sends the PDU to the transmis-
sion medium.

3.6.1.1 Transmitter

In order to accomplish the design requirements the modulation performed on
the transmitter reflects various aspects of it. In order to achieve high trans-
mission rates with the existent hardware, the highest sample rate available
on all devices was chosen for compatibility purposes [15]. The modulation
chosen for the protocol was a binary FSK, other modulation techniques re-
quire more processing and modules in the receiver side, a characteristic we
want to avoid due the resource constraints of the android platform. The
binary FSK uses the highest frequencies on which the error rate was accept-
able. Using high frequencies has the advantage of more stealthiness since
higher frequencies are less perceptible to the human ear, but they tend to
suffer more attenuation. The frequencies chosen where selected in function
of this trade off having in mind a good transmission range. The parameters
used on the transmitter are shown in table 3.2. The values of samples format
and the sampling frequency are standardized values on the android platform
and since the protocol is designed at API level, they cannot be modified.

The bit period was chosen experimentally and validated through the
testbed. In order to define the appropriate bitrate to establish communi-
cation, several bit periods where chosen, starting from 50 samples to 150,
shorter periods of the bit signal increase the bitrate and longer ones de-
crease the bitrate. Twenty frames where sent with different values for the
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bit period, the results are in figure 3.7. As expected, shorter values do not
provide an accurate identification of modulation symbols, while longer ones
are more effective on this aspect, starting from periods of 90 samples the de-
modulation is accurate, this value of 90 samples was chosen since it provides
the highest bitrate available.

Figure 3.7: Bitrate test: Error rate depending of the size of the modulation
symbol in samples.

Sound samples format 16-bit linear PCM

Sampling frequency 44100 Hz

Frequencies for FSK 18087 Hz and 19035 Hz

Bit period (T) in samples 90

Bit period (T) in seconds 0.002040816 s

Bit rate 490.0000784 bits/s

Table 3.2: Transmitter parameters

3.6.1.2 Acquisition

When a device is operating as receiver it is necessary to process the signal to
get Physical layer PDUs (PLPDUs) from it, the first step in this procedure
is the acquisition of acoustic data, the characteristics of acquisition of the
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data samples are shown in table 3.3. In a similar fashion that the trans-
mitter these values are standardized on the android platform and cannot be
modified.

Sound samples format 16-bit linear PCM

Sampling frequency 44100 Hz

Table 3.3: Acquisition parameters

Both specifications are the best available on all android devices, as stated
in the Android compatibility definition document [15]. In the case of sam-
pling frequency, higher rates are available but they are not standardized.

3.6.1.3 Filter and demodulation of the signal

Once having the sound samples they have to be processed to make sense of
them, the first step is the filter. The filter makes the protocol more resilient
to ambient noise, addressing other design requirement. The characteristics
for the filter are in table 3.4. These values were chosen in order to save
memory, a filter with more taps is possible but it implies more memory
consumption.

Type High-pass

Number of taps 131

Cut frequency 17571 Hz

Table 3.4: Filter parameters

Due the limited resources of Android devices, the demodulation process-
ing is performed only in the presence of carrier. Two parameter thresholds
are used to detect the carrier signal, the amplitude and the energy in a
90-sample window, which is the duration of a symbol, this validation is
performed for each bit demodulation. Having in consideration these two
parameters is possible to detect the carrier and perform the demodulation,
an example of the values taken by the energy and the amplitude is shown
in figure 3.8. Experimentally the thresholds defined in table 3.5 allow the
demodulation of the signal.

The demodulation method was chosen having in mind the limited mem-
ory resources in the Android devices, so a simple method for FSK demodu-
lation is used, it is called frequency tracking. Basically, a FFT is computed
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(a) Energy of the signal in the absence of carrier

(b) Energy of the signal in the presence of carrier

Figure 3.8: Energy behavior of the signal in different cases.
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over the interval of a bit and the components corresponding to the modu-
lated frequencies are compared in order to identify a 0 or a 1. The FFT
size chosen is 512 samples, this value was chosen since it is the smallest
necessary FFT size to demodulate the signal, it is useful for resource saving
purposes, other values were tested but larger FFT sizes consume more mem-
ory and produce larger processing times. The parameters for demodulation
are shown in table 3.5.

Amplitude threshold 90 in format 16-bit PCM

Energy threshold 1× 104

FFT size for frequency tracking 512

Table 3.5: Demodulation parameters

3.6.2 Physical Layer Convergence Procedure sublayer

The physical layer convergence procedure sublayer (PLCP) acts as an in-
terface to the data-link layer. The primitives issued by the MAC sublayer
are executed at the PLCP, it generates and processes the PLPDUs and
also coordinates the actions of the PMD modules. These functionalities are
explained in the next sections.

3.6.2.1 PMD coordination

In the Android platform several functionalities are only accessible via asyn-
chronous APIs, so at user level the initialization and task times are not
directly controllable, a method to address this aspect is the coordination at
PLCP. The PLCP is responsible for coordinating the sequence of activation,
deactivation and the cooperation of the PMD modules (i.e. acquisition, de-
modulator and transmitter). The PLCP offers two modes of operation, Tx
mode for transmission and Rx mode for reception, these modes are implicitly
initiated with the primitives issued at the data-link layer.

3.6.2.2 PLPDU generation and processing

When the MAC PDUs are received by the PLCP, they are processed in
order to create a PLPDU, on the receptor the PLPDUs are received and the
MAC content is delivered to the correspondent sublayer. A value important
to know is the best size of the physical layer MTU where synchronization
at physical layer is achieved, we tested different values from 50 samples to
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150, the error rate is reported in figure 3.9, starting from sizes of 120 bytes
the synchronization is lost and the errors occur, shorter sizes are viable for
reliable communication. We have chosen an MTU of 110 bytes which is the
maximum size where synchronization is achieved in order to maximize the
size of the data in every PLPDU.

The structure of the PLPDU is shown in figure 3.10. The fields are
described next.

• Preamble: 0101010101010101 - is a sequence used for synchronization
at physical layer, the pattern is similar to the used in the IEEE 802.11
standard, in this case instead of 10 octets we only use 2 due the limited
bitrate of the channel.

• Start frame delimiter (SFD): 10111101 - is a sequence used for de-
limitation of the frames to be delivered at the MAC sublayer. Similar
to the used in IEEE 802.11 only one octet is used due to the limited
bitrate of the channel.

• MAC PDU: The content of the PLPDU is the frame to be delivered
at the MAC sublayer. The frames are of variable size addressing other
design requirement, it allows to send exactly the required bytes min-
imizing the transmission time, if the frames had static size, shorter
messages will cause the physical layer to complete their PLPDUs with
padding octets, creating longer PLPDUs to transmit which results in
unnecessary long transmission times. The maximum Possible MAC
size is 106 octets considering the MTU size and the control fields of
the PLPDU.

3.6.3 Physical layer primitives and services specification

The primitives provide an abstraction of the interaction between layers,
the physical layer primitives provide the interfaces to the data-link layer in
the form of functions that abstract the details of the lower layer to upper
layer. In this section we introduce the primitives used to manipulate the
physical layer. The primitives at the PLCP were proposed taking as base
the functionalities available via the APIs in Android since the manipulation
of the hardware is done through them. The primitives and their details are
shown in table 3.6.
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Figure 3.9: Physical layer MTU test: Error rates for every value of MTU
depending of the size in bytes.

Figure 3.10: Physical layer PDU

Primitive Details

PhyTxDataRequest Function: The primitive is generated by the MAC
sublayer in order to transfer data to the Tx SAP at
PLCP.
Semantics of the service primitive: The parame-
ter data contains the MAC PDU to be transmitted.

PhyTxDataRequest (
Data

)

Table 3.6: PLCP primitives
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Primitive Details

When generated: This primitive is generated when
the MAC sublayer wants to allocate a Frame on the
Tx PLCP SAP for transmission.
Effect of receipt: The MAC PDU is allocated on
the TX PLCP SAP.

PhyTxDataIndication Function: The primitive is generated by the MAC
sublayer in order to know the status of the data trans-
ferred with PhyTxDataRequest, the primitive reports
whether the data was allocated for transmission or
not.
Semantics of the service primitive: The primitive
has no parameters.

PhyTxDataIndication ( )

When generated: This primitive is generated when
the MAC sublayer wants to know if the data trans-
ferred to PLCP is already being processed for trans-
mission at PLCP.
Effect of receipt: The PLCP reports the status of
the data transferred with PhyTxDataRequest.

PhyTxStartRequest Function: The primitive is generated by the MAC
sublayer in order activate the transmission service at
the PLCP.
Semantics of the service primitive:
The parameter of data rate is used as option to select
the data rate at physical layer, at this point only one
exists, but is included for extensibility purposes.

PhyTxStartRequest (
DataRate

)

When generated: This primitive is generated when
there is data ready to be transmitted at the Tx PLCP
SAP.

Table 3.6: PLCP primitives
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Primitive Details

Effect of receipt: The PLCP enters in transmis-
sion mode activating the physical layer services re-
lated with transmission and taking the data on the
TX PLCP SAP for transmission.

PhyRxStartRequest Function: The primitive is generated by the MAC
sublayer in order to activate the physical layer services
related with the reception of data.
Semantics of the service primitive:
The parameter of data rate is used as option to select
the data rate at physical layer, at this point only one
exists, but is included for extensibility purposes.

PhyRxStartRequest (
DataRate

)

When generated: This primitive is generated when
the MAC sublayer is prepared to receive frames. SAP.
Effect of receipt: The PLCP activates all the mod-
ules related with reception in the physical layer.

PhyRxDataIndication Function: The primitive is generated when the MAC
sublayer wants to know if there is data ready to be read
from the Rx PLCP SAP.
Semantics of the service primitive:
The primitive has no parameters.

PhyRxDataIndication ( )

When generated: When the MAC sublayer is ready
to read data from the Rx PLCP SAP.
Effect of receipt: The PLCP acknowledges the MAC
sublayer whether there is data to be processed on the
RX PLCP SAP.

PhyRxDataRequest Function: The primitive is generated when the MAC
sublayer wants to read a byte from the Rx PLCP SAP.
Semantics of the service primitive:
The primitive has no parameters.

Table 3.6: PLCP primitives
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Primitive Details

PhyRxDataRequest ( )

When generated: When the MAC sublayer wants
to read data from the Rx PLCP SAP.
Effect of receipt: The PLCP allows read data from
its buffer.

PhyRxEnd Function: The primitive is generated when the MAC
sublayer wants to stop the reception of data from the
physical layer
Semantics of the service primitive:
The primitive has no parameters.

PhyRxEnd( )

When generated: When the MAC sublayer has
already received all the frames, or the timeout is
reached.
Effect of receipt: The PLCP stops the modules re-
lated with reception.

Table 3.6: PLCP primitives

3.7 Data-link layer

The data-link layer comprises two sublayers the MAC sublayer and the LLC
sublayer, both parts are considered but due the reach of our protocol (the
condition of being simplex and point to point) several functionalities on
these sublayers are trivial, despite this fact, all sublayers are designed to be
extensible allowing the implementation of more complex behaviors. In this
section an explanation of the data-link layer is given, in a similar fashion as
given in the physical layer section.
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Figure 3.11: MAC Frame

3.7.1 MAC sublayer

As stated in chapter 1, the MAC sublayer provides frame-based and connectionless-
mode data transfer, plus mechanisms for medium access, this last task is very
simple in the scenario since is considered only point to point communica-
tion in simplex mode. The MAC sublayer also issues the primitives to the
physical layer in order to achieve transmission and reception, this commu-
nication is frame based, so this layer is responsible to create the frames for
transmission and to parse them for reception, also it is capable of segmen-
tation if the message is larger than the maximum frame size. The frame
format is shown in figure 3.11. All specified parameters were considered
having in mind the limited bitrate of the physical layer specifications, but
also the frame contains all the basic data to establish communication and
other parameters that could be used to enable the protocol to perform more
complex operations, for example half-duplex communication.

• Duration: Indicates the longitude of the frame in octets, having a
frame of variable length, the transmission only implies to send exactly
the required octets, addressing the requirement of minimizing trans-
mission times.

• SeqNumber: Sequence number, indicates the number of frame, the
sequence control uses this parameter to reassemble the entire message.

• SrcAddr: Source Address, on a point to point protocol does not
make sense to use addresses since just two entities are involved, but
the source address is specified due extensibility purposes.

• DstAddr: Destination Address. Similar to source address.

• MoreData: If is set to 1, indicates that there are more frames to send
after this one.

• Retry: If set to 1, indicates that the current frame is a retransmission.

• Type: On this version of the protocol only one type exists, the data
type, but for extensibility purposes, the type field could be used to
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enable the protocol to have more complex behaviors, as in IEEE 802.11
[?], this field has 6 bits.

• ReservedByte1 and ReservedByte2: Reserved bytes for extensi-
bility purposes, considering that this protocol supports short distances,
the bytes reserved are only two in order to maintain the control data
small compared with the frame body size. These octets could be used
by characteristics like quality of service or flow control, etc.

• Frame body: The effective payload of the frame, the maximum size
is 99 octet and the minimum is 1 octet, the maximum transmission
time with a frame of full length is 1.763265306s.

• FCS: Frame check sequence, a sequence to detect errors on the frame,
for this protocol is CRC-8-CCITT

All mentioned parameters try to minimize the control information in
order to transmit more effective data considering the limited capacity of the
channel. For example, the addresses just use 4 bits for each one, considering
that the protocol is meant to be used in short distances so, in case of further
multi-point communication there will be no more than 16 entities performing
communication at the same time.

3.7.2 LLC sublayer

The LLC sublayer is responsible for the interaction of the data-link layer with
the higher layer in a similar fashion that the PLCP, this sublayer implements
the primitives to manipulate the data-link layer, also controls the logic of
the communication, in this case is fairly obvious considering a simplex and
point to point protocol. Other function of the LLC is to multiplex network
protocols, in our case it is considered that only one protocol exists at network
layer so the multiplexation is non existent and just one pair of SAPs exist
between data-link and network layer. In resume the LLC is operating as a
unacknowledged connectionless-mode service.

The LLC sublayer controls the logic of communication, in the scenario
of a simplex and point to point protocol, we have just two peer entities
interacting in a simplex communication, the flow of frames only comprises
three cases:

• The frame arrives in time without errors

• The frame arrives after the timeout or never arrives
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• The frame arrives with errors

These flows and their respective times are illustrated in figures 3.13a,
3.13b and 3.13c. The first flow example in figure 3.13a, shows the correct
communication of two frames, the sequence numbers are designated incre-
mentally starting with one with each new transmission flow. Since we have
a simplex transmission, we are no capable of receiving ACKs in order to
continue sending frames, so the time to wait Twait between transmissions
is calculated by the following expression:

Twait = Tprop + Tproc (3.1)

Where Tprop = distance/(340.29m/s), taking the speed of sound as
propagation speed, to calculate the time Tprop we consider different trans-
mission distances for the protocol in table 3.7.

Distance Tprop

2.5 cm 0.000073467 s

5 cm 0.000146933 s

10 cm 0.000293867 s

15 cm 0.0004408 s

Table 3.7: Propagation times depending on the distance

Tproc is the processing time at the receiver, this time is implementation
dependent, in this case Twait should be calculated experimentally for the
testbed in specific. In order to test this characteristic, a message long enough
to generate 10 frames was sent, the variable Twait is varied in the range of 3
to 8 seconds to measure if the link is maintained during all the transmission,
for each value of Twait the process was repeated 10 times, the average of
the maximum frame where the link remained established is shown in figure
3.12, any Twait value above 5 seconds can be used for transmission. De-
pending on the application, it could be useful to transmit in longer periods
or shorter periods but not less than periods of one frame every 5 seconds. In
this protocol we use Twait as 5 seconds in order to transmit as fast as pos-
sible. Twait could be reduced using devices with more powerful capabilities
but the protocol aims to be usable for the majority of the Android mobile
devices. With these considerations, our protocol is capable of deliver in a
reliable way 99 bytes of effective payload in Ttrans+Twait = 6.763706106s
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Figure 3.12: MAC frames and logical link control test: Average of the max-
imum number of frames on which the link is maintained.

seconds. It is important to emphasize that Twait remains static due the
fact that this time is only used when a client message is segmented on two
or more frames, implying the transmission of frames with the maximum
length, and the last frame does not require Twait.

In figure 3.13b, one fault condition is stated, this condition is easily ac-
knowledged by the receiver using the sequence numbers searching for one
missing or reaching a defined timeout for reception, this timeout of 15 sec-
onds was defined in order to take into account the miss of a frame due to
excessive Tproc at the receiver, in this case, the timeout allows to receive
the next frames if they exist considering that the transmissions are done
each 5 seconds which correspond to Twait. If the receiver does not receive
information on this time lapse, the condition is reported to the upper layer
via the primitive LLCRxDataStatusIndication.

The third fault condition is represented in figure 3.13c, the figure shows
a delivered frame with errors, it is easily addressable due the frame check
sequence, the CRC, which allow the receiver to know if the frame has no
errors, in the contrary case, the errors are notified to the upper layer via the
primitive LLCRxDataStatusIndication.

All these flow exemplify the operation of the protocol and the logic be-
hind each transmission, as a manner of resume, all LLC parameters are
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(a) Transmission of two
frames without errors

(b) Transmission of one
frame with a missing
frame

(c) Transmission of two
frames with an error in
the second frame

Figure 3.13: Different flow control conditions
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Timeout 15 s

Time wait between transmission of frames (Twait) 5 s

Effective bitrate 130.106185309 bits/s

Table 3.8: LLC sublayer parameters

shown in table 3.8.

3.7.3 Data-link layer primitives and services specification

In a similar fashion that the physical layer, the data-link layer also imple-
ments primitives to be manipulated, in this case by a potential network
layer or an application using the data-link protocol SoundComm-CISEG,
the data-link primitives are presented in this section.

Primitive Details

LLCTxDatarequest Function: The primitive is generated by the network
layer in order to transfer data to the Tx SAP at LLC.
Semantics of the service primitive: The param-
eter data contains the network layer PDU (NLPDU)
to be transmitted, SrcAddr contains the MAC source
address and DstAddr contains the MAC destination
Address.

LLCTxDatarequest (
msgFromNL ,
SrcAddr ,
DstAddr

)

When generated: This primitive is generated when
the Network layer wants to allocate a NLPDU on the
Tx LLC SAP for transmission.
Effect of receipt: The PDU is allocated on the TX
LLC SAP.

Table 3.9: LLC primitives
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Primitive Details

LLCTxDataIndication Function: The primitive is generated by the network
layer in order to know the status of the data trans-
ferred with LLCTxDatarequest, the primitive reports
whether the data was allocated for transmission or
not.
Semantics of the service primitive:
The primitive has no parameters.

LLCTxDataIndication ( )

When generated: This primitive is generated when
the network layer wants to know if the data transferred
to LLC is already being processed for transmission at
LLC.
Effect of receipt: The LLC reports the status of the
data transferred with LLCTxDatarequest.

LLCRxDataIndication Function: The primitive is generated when the net-
work layer wants to know if there is data ready to be
read from the Rx LLC SAP.
Semantics of the service primitive:
The primitive has no parameters.

LLCRxDataIndication ( )

When generated: When the network layer is ready
to read data from the Rx LLC SAP.
Effect of receipt: The LLC acknowledges the net-
work layer whether there is data to be processed on
the RX LLC SAP.

LLCRxDatarequest Function: The primitive is generated when the net-
work layer wants to read a NLPDU from the Rx LLC
SAP.
Semantics of the service primitive:
The primitive has no parameters.

Table 3.9: LLC primitives
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Primitive Details

LLCRxDatarequest ( )

When generated: When the network layer wants to
read data from the Rx LLC SAP.
Effect of receipt: The LLC allows read data from
its buffer.

LLCRxDataStatusIndication Function: The primitive is generated when the net-
work layer wants to know whether there are errors on
the received NLPDUs.
Semantics of the service primitive:
The primitive has no parameters.

LLCRxDataStatusIndication ( )

When generated: When the network layer wants
to know whether there are errors on the received
NLPDU.
Effect of receipt: The LLC reports to the network
layer the status of the received NLPDUs.

Table 3.9: LLC primitives

With these primitives the data-link layer is complete and fully opera-
tional, as we mentioned during this chapter, the specifications are provided
in order to achieve all design requirements with the existing hardware in
Android devices, making this protocol as standardized as possible and ca-
pable of running in the majority of devices. All these values were validated
in an experimental way, in the next chapters we present the design of our
testbed who validated our protocol specifications.

38



Chapter 4

Testbed: Physical layer

In order to validate the specifications of the SoundComm-CISEG protocols,
a testbed was implemented, the presentation of the testbed is divided in two
layers, the physical and the data-link; first, is presented how the physical
layer performs its functionalities. As stated in chapter 1, the work takes
as reference the IEEE 802 model. The implementation on Android mobile
devices is largely dependent of how the APIs and hardware functionalities
are provided, this is particularly important since the physical layer controls
and coordinates the interactions with the microphone and the speaker, which
at the user level, can be utilized only via APIs provided by the platform
itself.

Several considerations have been taken in terms of a realistic implementa-
tion, Android devices are usually resource constrained so, complex modula-
tions and demodulations procedures were avoided, in this case a binary FSK
was chosen for modulation and the method for demodulation is frequency
tracking. Other aspect is the memory management, all variables were pre-
allocated and configured as static i.e. the use of memory remains constant
and it does not grow, additionally all computations were performed on ar-
rays of 512 double values in size, other values were tested but larger arrays
occupied all the memory and showed worst performance; in contrast smaller
arrays provided not enough resolution on the FFT computation (which is
used in frequency tracking) in order to achieve a correct demodulation.

The testbed implements the protocol structure, so the architectural el-
ements are the same as in the figures 3.4, 3.5 and 3.6, each architectural
element is implemented in the form of an asynchronous thread at user level
programed in java, every thread except for the acquisition is provided by
one or more SAPs in the form of arrays or lists, working at the API level has
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certain constraints addressed by this testbed, for example, at the user level
all applications are isolated inside a container which has limited memory
(approximately 10 Mb in the tested phones), additionally the access to the
hardware is restricted and is only accessible via APIs. All these facts impacts
on the protocol performance since it could be faster to operate the hardware
at lower level without programming abstractions, as matter of resume the
presented testbed works with the capabilities of every Android application
at the user level without using any special privilege but the permissions for
access to the speaker and the microphone.

4.1 PMD sublayer

The PMD is a sublayer which is concerned with how the signals are pro-
cessed in order to deliver a service, on this testbed, three threads were used
to implement the PMD, the implementation of these three procedures is
explained in next subsections.

4.1.1 Acquisition

The module of acquisition has the task of getting the audio samples from
the microphone and put them on a buffer that can be read by the demod-
ulator block. The acquisition in Android is performed via an API called
AudioRecord. This API allows to retrieve the sound samples directly in-
stead of recording the data to a file, like in the case of other API called
MediaRecorder, the object used to record data was instantiated as shown in
listing 4.1

Acqminbu f f e r s i z e=AudioRecord . getMinBuf fe rS ize (
44100 ,
AudioFormat .CHANNEL IN MONO,
AudioFormat .ENCODING PCM 16BIT
) ;

AudioRecord obj=new AudioRecord (
MediaRecorder . AudioSource .MIC,
44100 ,
AudioFormat .CHANNEL IN MONO,
AudioFormat .ENCODING PCM 16BIT,
Acqminbu f f e r s i z e
) ;

Listing 4.1: AudioRecord object instantiation
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The first function is used to determine the size of the recording buffer,
this size cannot be fixed since its a different value for each device, and should
be determined via this function, additional parameters are the sampling
frequency, in this case 44100Hz, several sampling frequencies are supported
by android, but 44100Hz is the higher guaranteed to work on every device
according to the Android standards [15]. It is important to choose a high
sampling frequency because it allows higher transmission rates.

The next parameter is the configuration of channels, for the detection
and processing only one channel is required. The enconding defines the
resolution of the samples retrieved and how the levels of quantification are
distributed on the analog to digital converters, in the case of 16 bit PCM,
the quantization levels are distributed uniformly and the values correspond
to the range of a type short variable in java, which is the data type used in
the code.

Once initialized the object it starts to retrieve samples on demand in an
array of size Acqminbuffer size/2. Since the buffer size is different from
device to device, one way to manipulate this data in a device-independent
way is to allocate the samples in a different buffer of a fixed size, and then
the next block, the filter, reads the data from this buffer of fixed size [16].

4.1.2 Filter and demodulation

4.1.2.1 Filter

Having allocated the received sound samples in the buffer of fixed length, the
second block starts to process the data in a window of 382 samples at a time.
The process of filtering involves the process of convolution between the input
signal and the filter coefficients. The filter used is a Finite impulse response
(FIR filter) with 131 taps, this filter is a high-pass with a cut frequency of
17518Hz. The convolution is defined for a Q-tap FIR filter by the following
equation:

y(n) =
Q−1∑
k=0

h(k)x(n− k) = h(k) ∗ x(n) (4.1)

Where h(k) are the filter samples, and x(n) the input data, an opti-
mization can be done using the following property of convolution, called
convolution theorem:

h(k) ∗ x(k) = IDFT (H(m) ·X(m)) (4.2)
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similarly

DFT (h(k) ∗ x(k)) = H(m) ·X(m) (4.3)

Where IDFT denotes the inverse discrete Fourier transform, and DFT
the discrete Fourier transform, being H(m) the DFT of h(k) and X(m) the
DFT of x(k) respectively. Having this property in consideration, we could
compute the convolution using the fast Fourier transform (FFT) of both
input sequences, multiplying between them, and compute the inverse FFT,
this method is used on the testbed.

As we mentioned at the beginning of this section, the filtering is done
over a window of 382 samples in real time, to accomplish this, the filtering
is performed by parts in the form of small arrays which are manipulated
with the method of overlap and add. Computing the filter in real time has
advantages compared with a one-time filtering. First, the input signal is
filtered as soon as it arrives and only the part that is needed is processed,
otherwise it would be necessary to wait for the entire signal to process it,
even if the usable data is contained in the first 10% of the recording, causing
a considerable delay by computing the following 90% of irrelevant data.
Second, the one-time filtering needs bigger arrays to be computed, which
implies more memory consumption, a non-desirable characteristic on our
scenario.

The overlap and add method, as showed in figure 4.1, is designed to
provide a way for filtering in smaller arrays, decomposing a large sequence
into parts which are filtered one by one, and the result of each part is
added to the last result, at the end, the complete filtered signal is obtained.
Implementing this method requires to fulfill the following property, if h(k)
is of length Q and x(n) is of length P , the length L of the final sequence
y(n) will be:

L = Q + P − 1 (4.4)

In this work Q and P were selected having as reference the performance
with values which make L power of two in order to use the FFT algorithm.
As a consequence it is possible to implement a fast convolution using FFTs.
In this implementation the following values were selected: Q = 131 and
P = 382, then the integer M is calculated, M = L − (Q − 1), this value of
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M indicates how many samples of the array will be concatenated in order
to get the entire filtered signal.

Having selected the values for Q and P , in order to start the processing of
the first part of input data, both sequences, filter samples and the input data
are completed with zeros until both have L samples, the filtering procedure
which makes use of FFTs and IFFT is applied, the first M samples of the
result are taken as valid, the remaining samples are added to the first input
samples of the next part of the input data to be computed. At the end,
the result is the concatenation of the first M samples in each iteration, this
process is shown in figure 4.1.

Figure 4.1: Overlap and Add method for filtering [3].

4.1.2.2 Demodulation

The process of filtering and demodulation are done in the same block, and
in terms of implementation, the same thread, as soon as the samples are
filtered, they proceed to be demodulated. After getting every chunk of the
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filtered signal, the process of carrier sensing is applied, the process takes in
consideration two parameters, the amplitude and the energy of the signal in
a window of T = 90 samples, which is the period of a symbol.

The mentioned parameters are used to compute the process of demod-
ulation selectively, having a resource constrained platform, it is important
for the performance. Both parameters worked in function of a threshold
defined experimentally. First, in the case of amplitude, a value of amplitude
A = 90, corresponding to the 16 bit PCM sample is detected in the fil-
tered signal, then a validation through the energy of the signal on the given
window proceeds, the energy is given by the next expression:

Es =
T∑
i=1

|S[n]|2 (4.5)

The requisite of energy of a given chunk of size T to be processed is
Es > 1 × 104. If the conditions of amplitude and energy are fulfilled, the
data is demodulated using frequency tracking, basically a FFT over the data
is computed, and a check for the maximum component on the magnitude
spectrum is performed, with this procedure, the signal can be transformed to
a bit array which is processed in the PLCP for further delivery to data-link
layer via the PMD Rx SAP.

4.1.3 Transmitter

Mobile devices usually are resource limited in terms of memory and process-
ing, due to these limitations the communication parameters were selected, in
this case, a simple modulation scheme was chosen, a binary frequency mod-
ulation. The modulation is performed sending two tones to the speaker,
depending if we want to send a 1 or a 0.

Android provides an API capable of sending raw 16 bit PCM data to
the speaker in order to be played, it is called AudioTrack, the instantiation
of the object is presented in the listing 4.2.

b u f f e r s i z e=AudioTrack . getMinBuf fe rS ize (
44100 ,
AudioFormat .CHANNELOUTMONO,
AudioFormat .ENCODING PCM 16BIT
) ;

AudioTrack obj=new AudioTrack (
AudioManager .STREAMMUSIC,
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44100 ,
AudioFormat .CHANNELOUTMONO,
AudioFormat .ENCODING PCM 16BIT,
b u f f e r s i z e , AudioTrack .MODESTREAM
) ;

Listing 4.2: AudioTrack object instantiation

The parameter for transmission are analogous to acquisition parameters,
in a similar fashion, they define how the object will operate, but, for trans-
mission instead of acquisition. The only different parameter is the operation
mode, static or stream, on static mode the sound samples are allocated in
memory and then played, on stream mode, the samples are directly writ-
ten to the audio buffer saving memory in the process, being the last option
better in this case [17].

The modulation is generated via two arrays containing cosine data for
both frequencies, these arrays are later provided to the AudioTrack object
and it plays the modulated signal in the form of audio. In order to known
which cosine signal send to the air, the physical layer PDU generated by
the PLCP (which is allocated on the PMD Tx SAP) is parsed and the
AudioTrack object acts in response.

4.2 PLCP sublayer

This sublayer is inspired in the IEEE 802.11 specification [?]. The main
purpose of this layer is to generate Physical layer PDUs from the MAC layer
PDUs in the next higher layer, in this protocol, this layer also performs the
work of coordination for the physical layer procedures.

The PLCP is a sublayer of interaction between low level physical layer
functionalities and the data-link layer, the PLCP is responsible for the coor-
dination between them and it performs the invocation of primitives. First we
have to consider that at user level many tasks on physical layer are performed
via APIs (i.e. Acquisition of data from the environment and transmission of
data to the speakers), these APIs are asynchronous procedures not directly
controllable, so the coordination of activation, deactivation, start and stop
of procedures invoked from data-link layer must be regulated, the PLCP
implements these mechanisms with the existent tools at user level (flags and
functions to monitor the tasks on APIs, etc.).

The other purpose is to encapsulate the MACPDU to a PLPDU, the
format of the PDUs transmitted between layers in terms of implementation
is a java type char[].
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Input( data type ) Output( data type )

PLCP MAC PDUs ( binary String) Physical layer PDUs (char array)

Transmitter Physical layer PDUs (char array) 16 bit PCM samples (short array)

Table 4.1: Physical layer inputs and outputs on Tx mode

Input( data type ) Output( data type )

Acquisition 16 bit PCM samples 16 bit PCM samples

(short array of a device (short array of a

dependent length) fixed length)

Filter and demodulation 16 bit PCM samples Physical layer PDUs

(short array of a fixed length) (char array)

PLCP Physical layer PDUs (char array) MAC PDUs (binary string)

Table 4.2: Physical layer inputs and outputs on Rx mode

A resume of the input and output data formats in each block on physical
layer on both modes, transmission and reception, can be seen in the tables
4.1 and 4.2.

In this chapter the explanation of how the physical layer operates in
the testbed is given, the implementation of the testbed aims to be resource
saving in order to be executed in the majority of android devices. In the
next chapter an explanation of the data-link testbed is given to understand
the complete functionality of the testbed.
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Chapter 5

Testbed: Data-link layer

The data-link layer is composed by two sublayers, the MAC sublayer and
the LLC sublayer. The MAC sublayer receives and sends MAC PDUs from
and to the physical layer, and the LLC primarily provides the multiplexation
of protocols at the data-link layer and the logic of the communication with
peer entities, in this testbed, the MAC sublayer is fully implemented for
the case of a simplex and point to point protocol while the LLC has certain
differences, as we mentioned in chapter 3, working on a mobile device, and
specifically with hardware not designed for communication establishment,
has certain limitations, due to this reason some security functionalities of
the LLC sublayer are not implemented on the testbed, the multiplexing at
LLC is trivial due the characteristics of our protocol, and the link control is
delimited by the same characteristics of the protocol proposed, it is simplex
and point to point.

5.1 Input data manipulation

All the testbed works with binary data internally, but for demonstration
purposes the data to be sent is introduced via a graphical interface with a
textbox, this data is transformed into binary strings to be threated as bits
for the functions at data-link layer, this transformation is done with the
instruction in the listing 5.1.

byteToSend=In t eg e r . toBinaryStr ing ( data . charAt ( i ) ) ;

Listing 5.1: Text to binary string conversion.

47



The given instruction can transform every char at the input string, to
a string composed by ones and zeros which are the binary representation
of every character. Similar strings are used for data transfer at SAPs. On
reception the inverse transformation is performed in order to make sense of
the parameters parsed as shown in the listing 5.2.

rxFrameSeqNumber = In t eg e r . pa r s e In t ( byte2parse , 2) ;

Listing 5.2: Binary string to text conversion.

5.2 MAC sublayer

The MAC sublayer performs the interaction with the physical layer, on
the testbed, the data-link thread issues the primitives to control the PLCP
thread. On Tx mode, this sublayer fills the PLCP Tx SAP and then it uses
the primitives to start transmission, in a similar fashion on Rx mode, the
MAC sublayer waits for the notification of data to read at the PLCP Rx
SAP, then issues the primitives to transfer data from the PLCP to the MAC
sublayer.

This sublayer performs the segmentation of the LLC PDU in function of
the content, the LLC sends the message in the form of a string, this string is
parsed, the escape bytes are added if needed, then the MAC sublayer divides
the message, creates the frames, and then they are sent to the Tx SAP at
PLCP. On reception when the data from the PLCP is received, the values
of the header are parsed and the incoming bytes are processed accordingly.
These frames at this level are in the form of binary strings, so it makes easier
to compare and convert values in order to process them, in Java, all these
functions already exist.

5.2.1 Frame transmission

The MAC frames are created as binary strings, as we already have explained,
this process is invoked via a function called frameConstructor as shown in
the listing 5.3:

s t a t i c void frameConstructor (
S t r ing data ,
i n t seqNumber ,
i n t srcAddr ,
i n t dstAddr ,
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boolean moreData ,
boolean ret ry ,
i n t type
) ;

Listing 5.3: Java function to generate frames.

This function takes as parameters all pertinent data in their native types,
it can be noticed that certain parameters are not included as parameters of
the function, e.g., the duration and the CRC, these values can be inferred
or computed from the other parameters so they are not included on the
invocation but the processing is done in the function.

Having passed the parameters to the function, all parameters of the
frame are transformed in a binary string form, and finally it can be send
through the primitives shown in the listing 5.4.

PhyTxDataRequest ( frameToSend ) ;
PhyTxStartRequest ( ) ;

Listing 5.4: Primitives used for transmission in the java code.

5.2.2 Frame reception

The process of reception can be seen as the inverse of transmission, the
reception of data at MAC sublayer is invoked by the primitive shown in the
listing 5.5.

PhyRxStartRequest ( ) ;

Listing 5.5: Primitive used for reception in java code.

Once initialized the process of reception, the PLCP is responsible to
notify the MAC sublayer the existence of data to be read, the MAC sub-
layer reads the data in octets from the PLCP Rx SAP, and performs the
transformation from binary strings to integers or characters depending of
the content, this process is automated within the function in the listing 5.6

processFrame ( ) ;

Listing 5.6: Java function for frame processing.
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5.3 LLC sublayer

The LLC sublayer is responsible for network protocol multiplexation/de-
multiplexation and the logic of communication, in this case for future com-
patibility purposes, we consider only the existence of our protocol and one
network protocol, so the multiplexation is inexistent. As we mentioned in
chapter 1, the modes of operation of the LLC offer different functionalities,
in the testbed only the unacknowledged connectionless-mode is implemented
considering the characteristics of the protocol of being simplex and point to
point.

Considering the hardware limitations of the platform, the LLC and the
MAC sublayers are implemented on the same thread, with a division in
logic in order to maintain the coherence with our reference model. The
LLC interacts directly with the next higher layer client, so it handles the
primitives issued for an application or a network protocol.

In the MAC sublayer the primitives are concerned in activation and
deactivation of certain services, on the LLC the process is more abstracted
reducing them to primitives for data transfer, notification and status of the
data received, the declaration of the primitives in code is shown in the listing
5.7

LLCRxDataIndication ( ) ;
LLCRxDataStatusIndication ( ) ;
LLCRxDatarequest ( ) ;
LLCTxDatarequest ( ) ;
LLCTxDataIndication ( ) ;

Listing 5.7: Declaration of the primitives in code.

The LLC controls how and when the actions of the MAC sublayer hap-
pen, for example, the primitive LLCRxDatarequest, triggers the process
reading the MAC Rx SAP, and controls the temporal events in order to re-
trieve the complete message in an automated way. A resume of the format
of inputs and outputs is shown in tables 5.1 and 5.2.

In this chapter the explanation of the implementation of the data-link
layer is given, all the primitives were implemented in the form of java func-
tions. In the next chapter the tests used to acknowledge certain character-
istics of operation of the soundComm-CISEG protocol are presented.
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Input( data type ) Output( data type )

LLC network layer PDUs (String) LLC PDUs (binary string)

MAC LLC PDUs (binary string) MAC PDUs (binary string)

Table 5.1: Data-link layer inputs and outputs on Tx mode

Input( data type ) Output( data type )

MAC MAC PDUs LLC PDUs

(binary string) (binary string)

LLC LLC PDUs network layer PDUs

(binary string) (String)

Table 5.2: Data-link layer inputs and outputs on Rx mode
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Chapter 6

Functional tests

In previous chapters the protocol specifications and the testbed were pre-
sented. The feasibility of establish communication via a data-link protocol
was proved with the design tests, in this chapter, other characteristics of the
protocol are tested in order to acknowledge the behavior of the protocol in
different environmental conditions. This tests aim to show how the protocol
parameters can be modified in order to be adapted for different usages as
stated in chapter 3, in these scenarios different specifications could be pos-
sible. In resume this section shows the behavior of the protocol in different
conditions in order to provide a guide of the general performance considering
different values in each modifiable characteristic of the protocol.

6.1 Transmission power test

The maximum transmission distance depends on the transmission power,
this parameter is controlled by the volume levels, on Android 15 volume
levels are available. The 15 levels where tested and the error rates were
reported, an individual frame of 110 bytes is sent, this is repeated twenty
times for each sound level and for distances of 2.5 cm, 5 cm, 10 cm and 15
cm. Two variations of this experiment were done, one holding the devices on
the air and the other placing the phones on a table, these two scenarios were
though as possible conditions of operation. The results of these experiments
are presented in figures 6.1 and 6.2 which are significantly different.

On first place, the experiments with the devices on the table can reach
further distances due to the effect of the solid medium, this is particularly
true on the case of 15 cm where the experiment holding the devices on the
air shows that the communication is impossible, in contrast the other ex-
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periment on the table can perfectly establish communication. In shorter
distances the behavior between the two scenarios is similar. These charac-
teristics will model the transmission power on every application, different
sound levels can be set depending on the intended communication distance.
In further experiments we took just one distance and volume level as refer-
ence, 5 cm and volume level 8 respectively, which are the optimal parameters
for a communication on the range of 5 cm on both scenarios, additionally
both devices are hold in the air.

Figure 6.1: Transmission power test: Error rate for communication devices
being hold in the air depending on the volume level.

6.2 Filter performance on different environments

The protocol must have certain level of resilience to ambient noise, to test
that conditions twenty PLPDUs of the maximum size where sent in a room
with twenty people talking and with some ambient music. The other sce-
nario is a jammer generated with a wav file and the Scilab function noisegen
[18] using the parameter of standard deviation as 1. This jammer was placed
at 5.5 cm from each communication device, the results are interesting, the
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Figure 6.2: Transmission power test: Error rate for communication devices
being placed on a table depending on the volume level.

Environmental conditions Errors (%)
Crowded room 0
Jammer 100

Table 6.1: Performance of the protocol on different environmental conditions

statistics are in table 6.1. The results shown that the frequencies on modu-
lation and the cut frequency of the filter are enough to give resilience to the
protocol but, in the case of a jammer, the filter is useless, but it is true for
all RF communication systems in the presence of the proper jammer.

6.3 Stealthiness experiments

The stealthiness is another characteristic useful on particular scenarios, for
example those which can be applied on malware, the stealthiness is a char-
acteristic associated with the volume level, as we presented in previous sec-
tions, different volume levels enable the communication at different distances
but with larger distances the communication is more noticeable, in order to

54



Age range (years) Number of people

20-30 3

31-40 3

41-50 2

61-71 2

Table 6.2: Age ranges for the stealthiness experiment

Volume level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

People hearing something 0 0 0 3 8 10 10 10 10 10 10 10 10 10 10
with ambient noise

People hearing something 0 3 5 8 10 10 10 10 10 10 10 10 10 10 10
in complete silence

Table 6.3: Results of the stealthiness experiment

identify which volume can be used in scenarios where the stealthiness is
important, the following experiment is proposed. We asked 10 people of
different ages (ranged from 23 to 71 years old, the details are in figure 6.2)
to say if they hear something when a frame is transmitted, the subjects were
located at 0.5 m of distance, then the volume level is varied from 1 to 15
in each frame transmission and the experiment is repeated in two different
conditions, in the presence of ambient noise (background music and others
people speech in a crowded room) and in complete silence, these two ap-
proaches will give us an idea of the volume we can use to remain stealthy
on transmission. The results are shown in table 6.3. From the results, we
can see that levels under 4 can be used for stealthy communication, a very
noisy environment could make possible the use of higher levels masking the
communication taking as base the fact that the filter gives resilience to the
ambient noise. Scenarios of complete silence should be avoided because even
at lower levels the communication can be noticed despite their volume.

6.4 Comparison with the state of the art

As we saw in the previous experiments the proposed protocol has certain
flexibility, it could be adapted for many purposes, we can vary all involved
parameters to achieve the final goal of the client application who will make
use of it. Similar works are focused on the feasibility of sound communi-
cation, in Hasan et al. [13] a communication with a PC is proposed. The
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Bitrate Type of Type of

communication proposal

SoundComm-CISEG 490 bits/second Mobile device to Layer 1 and 2

mobile device protocols

Sensing-enabled Channels 1 bit/second PC to mobile device Proof of concept

for Hard-to-detect

Command and Control

of Mobile Devices [13] (Direct channel)

Inaudible Sound as 345 bits/second Mobile device to

a Covert Channel mobile device Proof of concept

in Mobile Devices [14]

Table 6.4: Comparison of the present work with the state of the art

PC sends an acoustic signal to the phone at a rate of 1 bit/second, this is
not directly comparable with our work, but it can be taken as reference.
In Deshotels [14], a communication mobile to mobile device is proposed.
This work has noticeable differences with the Deshotel’s. The SoundComm-
CISEG protocol has achieved a higher bit rate and it forms an entire stack
of protocols who use the sound as a carrier signal while on Deshotels only
a proof of concept is shown. The details of this comparison are shown in
table 6.4.

In general, the present work proposes a functional stack of protocols that
can be used by different applications which want to evade standard network
controls using an alternative channel of transmission. Additionally, our tests
show the flexibility of the protocol stack, and the capacity of adaptability
for different usages.

6.5 Conclusions

In this work two protocols were presented for the physical and the data-
link layer respectively, all the validation of the parameters was done in a
testbed, this testbed was programmed at API level so the constraints of
working inside a container are present, i.e., the access to the hardware and
the memory are limited. Despite these constraints the proposal is capable
to achieve higher bitrates than the state of the art and the communication
can be unnoticed depending on the scenario and the environmental noise.

The chosen methodology was useful since the nature of the work is en-
tirely practical. At the end of the research, the main contribution is a
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data-link protocol which uses the sound as a carrier signal for the communi-
cation between android devices which is capable of out-of-band transmission
for evasion of network controls. The protocol has the desired characteristics,
it operates in simplex mode, it is point to point,is based in the IEEE 802
standard and uses an alternative channel in order to avoid radio frequency
transmissions consequently evading network controls, in this aspect, this
work is effectively achieving the purpose of the research.

6.6 Further research

The present work can be improved in many aspects, first to improve the per-
formance of the protocol, we can adapt the protocol to work at kernel level,
since we have worked inside a dalvik virtual machine, several limitations
are imposed, for example, the priority of the threads cannot be modified
to fasten the process of demodulation, also the memory constraints inside
the container of an Android application could be avoided working at lower
levels.

The stealthiness can be also improved with a more complex modulation
scheme , for example, a continuous phase modulation. As stated on Desho-
tels [14] the abrupt transition between modulation symbol’s phase can pro-
duce audible clicks, and this can be avoided for example with continuous
phase FSK (CPFSK).

Finally, the architecture of the protocol makes the system modular and
capable of extension, for example to implement more complex flow controls,
and enable half-duplex communication, and other communication system
functionalities.
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