Instituto Politécnico Nacional

Centro de Investigacion en Computacion

Laboratorio de Microtecnologia y Sistemas Embebidos

Design of a Load/Store Queue with Out-of-Order
Execution

TESIS

Que para obtener el grado de:

Maestria en Ciencias en Ingenieria de COmputo con opciOn en
Sistemas Digitales

PRESENTA:

Ing. Abraham Josafat Ruiz Ramirez

Directores de Tesis:

Dr. Marco Antonio Ramirez Salinas

Dr. Adrian Cristal Kestelman

Centro de Investigacion
en Computacién Enero 2016

SIP-14 bis
INSTITUTO POLITECNICO NACIONAL
SECRETARIA DE INVESTIGACION Y POSGRADO

ACTA DE REVISION DE TESIS

En la Ciudad de México, D.F. siendo las 14:00 horas del dia 8 delmesde
enero de 2016 se reunieron los miembros de la Comisién Revisora de la Tesis, designada

por el Colegio de Profesores de Estudios de Posgrado e Investigacion del:
"~ Centro de Investigacion en Computacion
para examinar la tesis titulada:

“Design of a Load/Store Queue with Out-of-Order Execution”

Presentada por el alumno(a):

Ruiz Ramirez Abraham Josafat

Apellido paterno Apellido materno Nombre(s)
Con registro: ‘ B I i ‘ 3 ’ 0 | 0 I 9 | 1 J
aspirante de: MAESTRIA EN CIENCIAS EN INGENIERIA DE COMPUTO CON OPCION EN SISTEMAS DIGITALES

Después de intercambiar opiniones los miembros de la Comisién manifestaron APROBAR LA
TESIS, en virtud de que satisface los requisitos sefalados por las disposiciones reglamentarias
vigentes.

LA COMISION REVISORA

Directores de Tesis

%
. A7
Dr. Marco Antonio Ramirez Salinas Dr. Adrian Cristal Kestelman

Dr. Herén Molina Lozano

INSTITUTO POLITECNICO NACIONAL
SECRETARIA DE INVESTIGACION Y POSGRADO

CARTA CESION DE DERECHOS

En la Ciudad de México, D.F. el dia 8 del mes Enero del afio 2016, el (la) que suscribe

Abraham Josafat Ruiz Ramirez alumno (a) del Programa de Maestria en Ciencias en

Ingenieria de Computo con opcidn en Sistemas Digitales con nimero de registro B130091,

adscrito a Centro de Investigacién en Computacion, manifiesta que es autor (a) intelectual del

presente trabajo de Tesis bajo la direccion de Marco Antonio Ramirez Salinas y Adrian Cristal

Kestelman y cede los derechos del trabajo intitulado Design of a Load/Store Queue with Out-

of-Order Execution, al Instituto Politécnico Nacional para su difusion, con fines académicos y

de investigacion.

Los usuarios de la informacion no deben reproducir el contenido textual, graficas o datos del
trabajo sin el permiso expreso del autor y/o director del trabajo. Este puede ser obtenido

escribiendo a la siguiente direccion abraham.ruiz1990@yahoo.com. Si el permiso se otorga, el

usuario debera dar el agradecimiento correspondiente y citar la fuente del mismo.

/// Afa /7a 'W, j\s a%% %g%: n?j

Nombre y firma

Resumen

El procesador super-escalar trata de explotar el paralelismo a nivel de instruccion (ILP)
presente en el codigo, la clave es ejecutar la mayor cantidad de instrucciones por cada ciclo de
reloj (IPC). Para alcanzar esta meta es necesario implementar algunas técnicas de planificacion
dinamica para identificar instrucciones en vuelo que no tengan dependencia de datos entre ellas y
que puedan ser ejecutadas en paralelo, técnicas como Prediccion de Saltos, Renombrado de
registros, Ejecucion fuera de orden, asi como la implementacion de colas de instrucciones
clasificadas por tipo de instruccion (enteros, punto flotante, acceso a memoria, vectoriales, etc.).
Las instrucciones de acceso a memoria estan dividas en dos categorias, “Load” y “Store”, y tienen
acceso directo a la memoria cache de datos de nivel uno; a causa de que las direcciones de memoria
son calculadas hasta la etapa de ejecucion (una vez emitida la instruccion a la unidad de generacion
de direcciones), es necesario tener un mayor control sobre las dependencias entre las instrucciones
de acceso a memoria en vuelo, de otra forma la ejecucion del programa producira errores.

El objetivo de esta tesis es el diserio e implementacion de la Cola de instrucciones de acceso a
memoria para un procesador RISC super-escalar con ejecucion fuera de orden, asi como
implementar un disefio eficiente para la técnica de desambiguacion de direcciones de memoria.

Abstract

Superscalar processors exploit the instruction level parallelism (ILP) present in the code, the
key is to execute the maximum amount of instructions per clock cycle (IPC). In order to reach this
goal are needed to implement several schedule techniques to discover in-Flight instructions without
data dependencies that can be executed in parallel inside of the execution window, techniques such
as Branch prediction, Register rename, and out-of-order execution as well as to implement special
execution engines classified by their kind of instruction (integer, floating point, memory access,
vector, etc.). Memory access instructions are split into two categories, Load, and Store instructions
and they have direct access with the L1 Cache Memory, because the memory addresses are
computed in the execution stage, it is needed to have a greater control with the dependencies
between the In-Flight instructions, otherwise the executed program will have failures.

The objective of this thesis is the design and implementation of the Load Store Queue for a
Superscalar RISC processor with an out-of-order execution and to design an efficient memory
addresses disambiguation technique.

Acknowledgments

I'm glad to say that this thesis wouldn’t be achieved without the help and motivation of
several people, friends and family. First of all, I'd like to thank my advisors Marco Antonio
Ramirez Salinas and Adrian Cristal Kestelman, who guided me through the achievement

of this thesis project, also thanking their motivation and patience.

For all my friends that provided me so much support in this stage of my life, I'm really
happy to have you in my life--- Cesar Cervantes Cazales, you're like that brother who I
can always rely on, thank you for all your faith in me, for always telling me that I'm able
to do whatever I aim to do in my life, I really hope you stay as my best friend for a really
long time. Elsa Dorantes Metino, thank you for all those nights which I needed to have
an ear for my heart and concerns, as one of my best friends I'm glad to have you by my
side whenever something shows up. Lidia Rico Garcia, although we don’t have too much
time since we know each other, I'm so glad that our life-paths crossed each other, you
have made me to trust in myself again, something that [lost a few years ago, and that has
helped me in such a grateful way with the realization of my thesis, thank you so much for
entering my life, you're amazing. Laura Fabila, you’re one of that friends who tells the
very truth of things, even though it hurts sometimes, it is so helpful and meaningful,
everytime I talk with you, I discover something else of myself, please don’t leave. Shadia

Hernandez Andrade, you moved so much things in my life that I'm so thankful of, even

though we have moved apart from each othet’s life, you’ll always be part of this life event
of mine, I'll always remind you with dearness. I want to say thank you to all my partners
who made of this life-stage of mine easier to handle, Cristobal Ramirez Lazo, thank you
for your company it that year in Barcelona. Cesar Hernandez, you have been my teacher,
my friend and now my brother, thank you for all you advise and friendship through the
years, I’'m happy to think that we’ll be working as teammates for a long time. Also, I'd like
to say sorry for my friends that I forgot to name in this Acknowledgments page, but that
doesn’t mean that I'm not thankful with all of you, without you I may be lost sleeping

beneath a bridge by now, thank you so much.

To my confident, my best friend, my life partner and sister Cintia Elisa Ruiz Ramirez, you
’re my favourite person in the world, thank you for your company and love, I'm really
proud of you and so happy that I have been a good brother/father/friend for you, I really
love you. To my precious mom, Maria de Jests Ramirez Huerta, thank you so so much for
your patience and love, I'm the product of your hardworking as an excellent mother, you
really inspired me in so many levels that I can’t imagine what I should be without you,
thank you for always taking care of us, you’re a beautiful person-model to follow, I love

you. To my dad--- You made of me a good person, my whole will is dedicated to you---

Contents

LISt OFf FISUIES 1iiireeuneiiiiiiiiiiinnniiieiiiiiitennssssieetiitessansssssesssssesssssssssssssseeessssssssssssssssssanssssssssssssssnnns vii
LiSt Of TABIES ..euuee e X
Chapter 1 — INErodUCtiONcciiiiiiiieeiiiiiiiiiinieeiieinrtreeesssesssssssttsssssssssssssssssssssssssssssssssssssnnnsses 1
1.1 Problematic APProacCh ... e e e e e e r e e e e e e e e e eanes 2
1.2 JUSTIFICATION Leeiineiiieie et st e s bb e s e e e sbteesneeas 3
1.3 CONSIAEIATIONS . . eeteieiie ettt ettt ettt et e e e e eab e e e bte e s bbeeesbbeesbeeeesabeesbbeesanbeeennes 4
1.4 (0] T =Tt 41T PUUUPR 4
1.4.1 Y =TT e o] oY= 1 Y/ EUPUR 4
1.4.2 SPECITIC ODJECTIVES coveiiiiie ettt e e e e e e e e e e s et b rreeeeaaaeeeeeeanns 4

1.5 Scope of this thesis project and contributions...........ccccvviiiieiiii e, 5
1.6 Organization Of this theSiS ... e e e e e e 5
Chapter 2 = BacK8roUNdccciiiiiiieemeiiiiiiiiiiieenmeiiiiiiiiiesssesiiiiiiimessssssssissssmssssssssssssssssssssnssssss 6
2.1 RISC and CISC arChit@CtUIES. ..ccuvieeiiiie ettt sttt s s e b e e sneeeeneeas 7
2.2 General concepts of a memory access iINSTrUCTION..........uvvviieeeeeeiieccceee e, 9
2.3 Y0 oY= gYor=1 =1 g o o ol =YY o (P EUPUR 11
2.3.1 B T=T oT<] g o [=T o ol <1 S UUUUR 13
2.3.2 Main pipeline stages of a superscalar ProCessor......ccccveeeieeiccciiiiieeeeee e ee e 14
2.3.3 Address, Load and StOre QUEUES........coeuuueiieeeiiieee ettt e e ettt e e e et e e e e eeaaa s 26

2.4 Cache Memory and Memory HIerarchyceccoooeeccciiiiiiieee e 28
24.1 Cache MemOrY ParametersS. ... ettt e e e e e e e cctrrre e e e e e e e e e e e e sbeeraaaeeeaaaaeeas 31

2.5 TAg ANd Data ArTaY ACCESSES ..uuuiiriiiiieeeeeiiieiiirrrrereeeeeeeeeessiitsrasseeeeaseseesaassssrsssssesasaessssasnns 36
2.5.1 Parallel Tag and Data Array ACCESS....uuuuiiiieeeeeeceiiiiiieeeeeeeeeeeeeseirrrareeeeeeeeeeeessnnsresseees 37
2.5.2 Serial Tag and Data ArTay ACCESS...cciiiiiiiieciiiiiieeeeeeeeeeeeescitrrreeeeeeaeeeeessssesraaaeeaaaaaeens 38
Chapter 3 — State Of the Art........ccciiiiiiiiiiiiiiiererrrse s rsesreassss s s s s sessssssssssssssssssnansssnns 39

3.1 Research Proposals for LSQ & Memory Disambiguationcccccceeeeeeiiiieiicciiiiiieeeeeeenn, 41

Vi

3.11 TRIPS ettt ettt ettt e bt e e bt e e s bt e e e b bt e e bt e e s abbee s bae e s bteeebeeesbaeesnreena 41
3.1.2 TRIPS (Unordered, Late-Binding LSQ DESIZN)vvviiiieeieeeeeeiiiiiiiiieeeee e e e 44
3.13 SEOME SOES ..t 46
3.14 SEOFE VECEOIS ..ttt 47
3.1.5 Store-to-Load Forwarding via Store Queue index Prediction..........ccccccvvvviveeeneennn. 49
3.1.6 Address Indexed Memory Disambiguation and Store-to-Load Forwarding............. 50
Chapter 4 — Proposed Load/Store QUeuUe DESIgNcccccveereeerreicersieneeeenneeessssnneeeesssessssssnneseeens 52
4.1 Load/Store Unit With IN-Order EXECUTIONvvvvieveeeeiieeeeeeeeeeeeeeeeseeeeeeeeeeeeeeeseseeseeseseanes 52
4.1.1 In-Order Address Computation Pipelingccccouviiiieeeiiiiic i, 53
4.1.2 In-Order Memory AcCess PIPeIINEuviiiiiii et 55
4.2 Load/Store Unit with Out-0f-Order EXECUTIONueveuerereeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeesenens 58

4.2.1 Unknown/Known Memory Address, Block Mapping Table & Address Generation . 59

4.2.2 OUt-Of-Order SEIECT LOZIC ... uuuuiiiiiiiiiee ettt e ettt e e e e e e e aaararaeeeeaaa e 63
4.2.3 Memory Disambiguation & Store-to-Load Data Forwarding Mechanism................ 65
4.2.5 Store-to-Load Forwarding Mechanism and Delayed Source Data Forwarding 70
Chapter 5 = RESUILS....ciiiiiuuiiiiiiiiiiiiiiiieeetieeeiasassseessaeesnansssssssssssssnsssssssssssssssssnsssssssssssssnnnssssnns 72
Chapter 6 — Conclusions and FUtUre WOrKcceeiiiiiiiiimmmniiiiniiineimeniiieesmssssssssssas 82
6.1 CONCIUSIONS. ...ttt ettt et e ettt e s be e e sbbeesbeeesbbeesbneesabeeesanneaas 82
6.2 FUBUPE WOTK ettt ettt ettt st sb e e st e e sabe e e sabe e e sabeeesabeeesaneeesanes 83

F N T o1 e [TR 84
APPENAIX-B .ceuriiiiiiiiiiiiiieiiiiiiiiiieeeneiiiiriittesnssssiestiittsessssssssssssttssssssssssssssssssssssssssssssssssssnsssssssns 20

=Y =T =] 4 ol =K a

vii

List of Figures

Figure 2-1. Core and its iNterfaces With CACREScoccuuueeeieeeeeeeeeieeee e e eecsteee e e e e e e sttt a e e e e s ssssssanaaaeeeenans 7
Figure 2-2. X86 INSTIUCEION fICIUSvveeeeeieeeeeeeeee et e ettt e e e e e e ettt a e e e e e ettt saaaaeeesssasssanaaaeeaeaans 8
FIiQUI@ 2-3. CISC QICRIEECIUIEevveeeeeeeeeee et e ettt e e e e ettt e e e e e e e e e taasaaaeeeasassasasaaeaeasasssssanaaaseaasaes 8
Figure 2-4. RISC INSErUCTION fI@IUSveeeeeeeeeeeeee ettt e e e e e ettt a e e e e e ettt e aaeeessssasssanaaaeeaanans 9
Figure 2-5. General memory access instruction data PALA..............cccceeueeveeieeeeeeciiiieiee e eeescccrteaa e e e e eeseraraaaa s 10
Figure 2-6. Scalar vs Superscalar Execution in Pipeline PrOCESSOISuueieeeeeeeiiuveeieeeeeeiciiieseeeaeeeeessiiseneaaaens 12
Figure 2-7. SUperscalar ProCeSSOr AICRIEECTUIEcceeeeecieeeeeeeeeeeeettteee e e e e e etctaeee e e e e e essessaaaaaaeeessssrasaaaaens 13
Figure 2-8. True and False DAta DEPENUENCIEScceeeeecueeeeieeeeeeeeiiieeeee e e e eeetitteteaaeeeesseasaaaaaaeeessssrasaaaaens 14
o TV =4 (ol o I e [=3O S PU PR 15
Figure 2-10. DECOAET ROMIS........coueeeeeeeieeeeee ettt e e e e ettt e e e e e ettt e e e e e e e e s tsasaaaaeeasasstssaaaaaaeeessssssanaaaaans 16
Figure 2-11. TypicQl RISC dECOAE SEAGEcceeeeeeeeeeeee et e ettt a e e e e ettt aa e e e e st e e aaaaeeessssssasaaaaans 17
Figure 2-12. Register reNAmiNgG @XAMPIEuuueeeeeeeeeeeiiieeiee e eeeseettte e e e e e e ettt aaeeeessstasaaaaaaeeessssraseaaaans 18
Figure 2-13. Register Renaming DUilding BIOCKS.............ccooeuueueeiiieeeeeeeeeeee ettt e et a e e e e e s aaaa e 19
o [V R =T0) o (=T a1V =1 PP PU PR 20
Figure 2-15. Instruction's tracking iNSide the ROB..................uuuueieeeeeeieeeiieee e eeeesecteee e e e e e ettt aa e e e e e ssiararaaaaens 21
Figure 2-16. Recovery Logic in Front-End and BACK-ENdccooeeouueeeieieeeeeesiiieeieeeeeesecivteaa e e e eeesivenaaaa e 21
Figure 2-17. DiSPATCH LOGUCvvvveeeeeeeeeieeee e ettt e e e e ettt e e e e e ettt e e e e e e e ee b e s e aaaeeaaaassssaaaaaaeeesssssranaaaaens 22
Figure 2-18. INT and FP QUEUES With MAPPETueeeeeeeeeeeieeeeee e eeeeecttteaaeeeeettitteaaaaeeeesstasaaaaaaeeessasssasaaaaens 22
Figure 2-19. Organization of the CAM Section in the INStruction QUEUE.................cc.eeeeeeeeeecciirieeaeeeeeisiiireveaaann 23
Figure 2-20. Two-Issue INT Queue's Payload RAM LOGIC...........uuueeeeeeeecieeieeieeeeeesiiieeieeeeeesecasaeaaaaeeessiasenaaaaens 24
Figure 2-21. Timing of the wake-up signal to support back-to-back executionccccccvvvveeeeeeeeecciiivennnannn. 25
Figure 2-22. An execution engine with two functional units, without (left) and with (right) value bypassing. 26
Figure 2-23. Recycling Physical Registers at COMMIt TIME...........ccceeeceeuuveeeeieeeeeeiiiieeeeeeeeessciaseeaaaeeeessiiresaaaaens 26
Figure 2-24. ConventionQl LSQ @SiGNccceeeuuuuueeeeeeeeeeeeiieeee e ee ettt e e e e e e ettt aaaeeessstssaaaaaeeeesssssasaaaaans

FIQUIE 2-25. SRAM COl..eeeeeeeeeeeeeeeee ettt e e ettt e e e e e ettt e e e e e e e e et a e e e e e e e aattssaaaaaeeeeaasssanaaaaans
Figure 2-26. DRAM cell
Figure 2-27. The Cache Memory concept
Figure 2-28. MEMOIY NICIAICAYeeeeeeeeeeeeeeeeeeeee ettt e e ettt a e e e e e ettt e e e e e e se st e e e aeeeessasssanaaaaans
Figure 2-29. Fully-Associative Cache Organization....
Figure 2-30. Direct-Mapped CAChe OrGQNIZATIONccceecuuueeeieeeeeesecieeteee e e e eeesctttee e e e e e e sssasaaaaaaeeessssraseaaaens
Figure 2-31. Two-Way Set-Associative Cache Organization
Figure 2-32. Parallel Tag and Data Array Access...
Figure 2-33. Serial TAG aNd DAEA AITAY ACCESS.......uuueeeeeeeeeeeiieeeeeeeeeeseettttaeaaeeeessitseaeaaaeeessstssaaaaaaeeesssssaseaaaans
Figure 3-1. TRIPS prototype MiCroQrCRItECTUIEcoeeeeeeeeieeeeeeeeeeeeetee e e e e e ettt e e e e e e ssea st e e e e e e e ssssrasaaaaans
Figure 3-2. TRIPS Processor's Data Tile
Figure 3-3. The AGe-INAEXEA LSQu..........uuueeeeeeeeeeeeeeeeeeee ettt e e e e ettt e e e e e e e ettt e e e e e e ssttssaaaaaeeeessasssasaaaaans

viii

Figure 3-4. The ULB-LSQ Microarchitecture
Figure 3-5. BFP SEAICH Filt@IiNG..............uuueeeeeeeeeeeeeeieeeee ettt e e e e e ettt a e e e e e ettt e e e e e e e e ssstssaaaaaaeeessasssanaaaaans

Figure 3-6. Implementation of Store Sets Memory Dependence PrediCtion.............ccccccoeeccevvveeeeeeeeeesiivennnnnn. 47
Figure 3-7. (a) Store-address tracking of dependencies, and (b) Age-tracking of dependencies 48
Figure 3-8. Store vectors data structures and interaction with a conventional load queue............................. 48
Figure 3-9. EXample StOre VECLOrs OPEIALION.............eueeeeeeeeciieeeeeeeeeesecteteaaaeeeessctseaeaaeeeessstssaeaaaeeeesssssasaaaaans

Figure 3-10. Store queues: (a) associative, (b) indexed
Figure 3-11. Processor pipeline, store forwarding cache (SFC), memory disambiguation table (MDT) and Store

Figure 4-1. Lagarto Il Microarchitecture
Figure 4-2. Ready Bit Assignment Example
Figure 4-3. Head Pointer and TQil POINTEuuuveeeieeeeeeieeeeee e eeeteettt e e e e e e e ettt e e e e eeesstasaaaaaaeeessasssaseaaaans
Figure 4-4. Select Logic and Address Generation Unit
Figure 4-5. FOrward LOGIC EXQIMPIEooeeeeeeeeeeeee ettt e e e e e ettt e e e e e e s et aaaaaeeessasssanaaaaens
Figure 4-6. Memory Access (Load)
Figure 4-7. Memory Access (Store)
Figure 4-8. Proposed LSQ General Pipeline
Figure 4-9. Block Mapping Table FUnNctionality EXAMPIE...............ccceeceeueeeeeieeeeeeiiiieeeeeeeeesecaseeaaaeeeeesiisenaaaaens
Figure 4-10. Address Queue (inside the L/S Unit) & the Block Mapping Table
Figure 4-11. QUEUE'S REAAY Bilt LOGUCuveeeeeeeeeieeieee ettt e e ettt a e e e e e ettt a e e e e e setssaeaaaaeeessasssaseaaaans
Figure 4-12. Leading Zero Counter as a Priority Selector (oldest-first) — 32bits
Figure 4-13. Non/Possible dependencies vector generation
Figure 4-14. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed

Non/Possible Dependencies Vectors & HASH TABIE (Q)..........oooeeeeeeeoeeeeeeieeeeeeee e eeeteeeeetaeaeeeena e 66
Figure 4-15. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TABIE (D)cceeeeeeeeeeeeeeeeeeeee et eeeeeeeetaeaeeeiena e 66
Figure 4-16. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TABIE (C)ueeeeeeeeeeeeeeeeeee ettt eeiena e 67
Figure 4-17. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASh TADIE (A)..........ocoeueeeeeeueeeeeeeeeeeeee et eeena e 67
Figure 4-18. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TADBIE ()oeoeueeeeeeeeeeeeeeeeeeeee et eeeteeeeetaeaeeeiena e 67
Figure 4-19. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TABIE (f).....ccueee oottt 68
Figure 4-20. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASh TABIE (G)..........oeeeueeeeeeeeeeeeeee et eeeee et eeiena e 68
Figure 4-21. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TABIE (N)............ccceeeeeeeeeeeeeeeeeeeee et eetaea e eeena e 68
Figure 4-22. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TABIE ()eeeeueeeeeeeeeeeeeee et etaeaeeeena e 69
Figure 4-23. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TABIE (J)......ccueeeeeeeeeeeeeeeeeeeeeeeeee et eeeee e eetea e 69
Figure 4-24. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASh TADBIE (K)ccoueeeeeeeeeeeeeeeeeeee ettt 69
Figure 4-25. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed
Non/Possible Dependencies Vectors & HASH TABIE (1)oeeeeeeeeeeeeeeeeeeeeeeee ettt 70
Figure 5-1. Maximum OVErall FTEQUENCYcccuuuuueeeeeeeeeeeiiieeeeee e eeettettteaa e e e e ettt e e e e eeesstssaaaaaaeeessssssasaaaaans 72
o [V R I D Yol Yo =] OO UPUPR 73

Figure 5-3. Integer Ready Bit REGISLEI = TESE Iuuueueeeeeeeeeieieeee e eeeeccttte e e e e e e ettt e e e e e e e sstasaaaaaaeeessassranaaaaans 74

Figure 5-4. Integer Ready Bit Register - Test 2cccceeeeeeecunnnn
Figure 5-5. Floating Point Ready Bit Register - Test
Figure 5-6. POInter CONTrol LOGIC = TEST 1 ...ccccceeeeeieeeeeeeeeeeeeeee e ee ettt e e e e e e ettt aa e e e e seaasaaaaaaeeesasssaneaaaans
Figure 5-7. Recovery Mechanism
Figure 5-8. SEIECION LOGIC = TEST L c......eeeeeeeeeee ettt e ettt e e e e ettt e e e e e e e et e e e e e e e e saattssaaaaaaeeeasasssaneaaaens
Figure 5-9. SEIECHION LOGIC = TEST 2 ...t e ettt e e e ettt a e e e e e ettt b e e e e e e e e saattssaaaaaaesessssssaneaaaans
Figure 5-10. Selection Logic - Test 3
Figure 5-11. Address Queue's Write/Read Test
Figure 5-12. BIOCk MAPPING TADIE TESLoeveeeeeeeeeeeee et ee ettt e e e e e ettt a e e e e e seaa e aaaaeeessasssasaaaaans
Figure 5-13. Possible dependencies vector - Desk evaluation 1
Figure 5-14. Possible Dependencies VECTOr = TEST 1ccccccuuueeeieeeeeececieeeeeaeeeeeccitae e e e eeeseiaaaaaaaaeeeessssaseaaaans
Figure 5-15. Possible dependencies vector - Desk evaluation 2
Figure 5-16. Possible Dependencies Vector - Test 2
Figure 5-17. Store-to-Load Data Forwarding - Test
o TV o B o Y 1 T OO UPUPR
Figure 7-2. Store-to-Load Forwarding Logic including the Delayed Source Data
Figure 7-3. Load/Store Queue With IN-0rder EXECULION.c..ceeeeeeeeeeieeeeeiieeeeeieeeeeeieeeeeeieaaeesaeaeeeienaeens
Figure 7-4. Incorporation of the proposed Load/Store Unit to the processor
Figure 7-5. Select Logic, Address Generation & PDVs pipeline

List of Tables

Table 1. Memory disambiguation schemes

Table 2. Cache memory parameters

Table 3. Memory Address Fields

Table 4. Load Execution Scenarios (X=Don't care)

Table 5. Entries Organization inside the Queue

Table 6. 4 Blocks-RAM/CAM write enables and multiplexers between two input instructions

27
32
37
43
61
61

“Design of a Load/Store Queue with Out-of-Order Execution”
by

Abraham Josafat Ruiz Ramirez

A thesis submitted in partial fulfillment of the requirements for the degree of

Maestria en Ciencias en Ingenieria de Cémputo

and

Master in Innovation and Research in Informatics

at the
“Instituto Politécnico Nacional”

Centro de Investigacién en Computacion — Mexico

and
“Universitat Politecnica de Catalunya”

Facultat d’Informatica de Barcelona — Spain

January 2016

under the supervision of

PhD. Marco Antonio Ramirez Salinas

PhD. Adrian Cristal Kestelman

Chapter 1

Chapter 1

INTRODUCTION

Lagarto Il, is a Processor architecture still in development by some students, researchers,
and lecturers from the Microtechnology and Embedded Systems research group (MICROSE)
which belongs to the Centro de Investigacion en Computacion of the Instituto Politécnico
Nacional of Mexico. The objective of this MICROSE's project is to design a 64-bits Superscalar
RISC processor with a dynamic scheduling and out-of-order execution. The design is modeled
at RTL level in HDL code using some EDA tools, such as Mentor Graphics ModelSim and
Altera Quartus II.

Though most of the Lagarto Il processor’s design is already finished, it still does not have
a working Load Store Queue, so this thesis project will be the first design of its corresponding
memory access building block.

The memory access engine in a superscalar processor is commonly separated into three
functional blocks (address queue, load queue, and store queue), which houses some specific
logic for memory access instructions. The Address Queue: the issuing and computation of
memory addresses, the Load Queue: the logic to read data from the L1 Cache Memory and

Introduction

Chapter 1

to write this data to the Register Files, and finally, the Store Queue: the logic to read from the
Register Files and to write this data to the L1 Cache Memory.

Because a superscalar processor executes the instructions in an out-of-order fashion, the
identification of data hazards created by the dependencies between the in-flight LOAD and
STORE instructions becomes a necessity. So, a memory disambiguation technique is used,
which checks the ordering age and memory address of each of the issued instructions inside
both the Load and Store queues, it also does some data forwarding for those instructions that
have the same memory address (taking care of their age ordering inside the queue).

The out-of-order execution takes advantage of the speculation technique, permitting an
early execution of instructions that do not have a dependency with younger instructions.
Forwarding some data, such as a Load that (speculatively) has the same memory address of
an earlier Store, the data that would be written to the L1 Cache Memory by that Store
instruction can be forwarded to the dependent Load instruction, thus, completing it
beforehand.

In order to do this speculative execution, a predictor must be used. There are two major
kinds of predictors, those that use a “naive” or “blind” prediction which always says that the
Load instructions don't have any dependency with earlier Stores, and those that are “dynamic”
which update their dependencies tables as long as there are wrong speculations, so, later with
these dependencies tables updated a better decision would be made.

1.1 PROBLEMATIC APPROACH

The problematic appointed in this thesis is to design a Load-Store queue able to execute
the memory access instructions in an out-of-order fashion. The design of this complete queue
will be simulated in Mentor Graphics ModelSim software and evaluated in an FPGA board.
For a first approach, the design will be only a simple Load Store Queue, without a predictor
but with an age ordering memory disambiguation, the design will be able to support the store-
to-load data forwarding logic as well as some energy saving techniques.

This store-to-load data forwarding can be done whenever there is a Load instruction with
the same memory address as an earlier Store instruction in the queue (the memory address

Introduction

Chapter 1

isn't known until execution stage) but in order to achieve a high performance IPC, these
memory access instructions must be executed in an out-of-order manner, thus, the memory
disambiguation must be included in the design in order to ensure their correct execution.

1.2 JUSTIFICATION

Nowadays in Mexico there is a huge foreign technological dependence, this dependence
is reflected in obsolete solutions purchased at high costs in areas as health, food, education,
energy and security. But most important is the knowledge dependence, most of the intellectual
property belong to EEUU and this carries big security issues as well as low-end given
technology.

Because of that, some countries such as China have broken this barrier and fabricated
their own trustworthy processors, they also promoted the foreign technology investment in
their country and nowadays they have acquired a great amount of I'T fabs as well as “Research
and Development” (R&D) centres.

The first Chinese processor version was called “Loongson 1", a 32bit MIPS compatible
processor and it was working at 266MHz, later on, they achieved a second processor called
“Loongson 2", it was a 64bit superscalar processor with out-of-order execution working at
1GHz, and it also included a graphic accelerator, after this approach, they continued with
multicore technology achieving in 2009 an 8-core multiprocessor working at 1GHz,
subsequently, and in 2011 they built a 6 and 8-core multiprocessors working at 1.2GHz. With
this effort they created their own low-cost PCs, servers, High-performance PCs, industrial
control equipment, and most important, their national security applications.

Taking into account this important fact, the “Lagarto II" will be the first Mexican
superscalar processor, and it will carry big efforts in the national security area, as well as trying
to diminish this actual technology dependence; it is cleared that the goal for this big project is
inspired by the mentioned Chinese success and the design of this processor’s block, the Load
Store Queue, will enforce the national technological advance.

Introduction

Chapter 1

1.3 CONSIDERATIONS

In a high-performance superscalar processor, the energy consumption is a really important
challenge to solve, thus, there are a lot of energy saving techniques included in vendor's
processors, but these techniques are kept in patents so that they can’t be used by another
processor vendor. A sort of important processor's building blocks that should be using these
power saving techniques are the Register Renaming stage, the Wake-Up logic in the
Instruction Queues (integer, floating point, memory access) and the memory disambiguation
for the memory accesses executed in an out-of-order fashion. As | have already stated, the
energy saving in a high-performance superscalar processor is a very important fact to achieve,
thus, this thesis is also focused in these energy saving techniques, such as disabling some
unnecessary comparisons done by every entry on each of the queues included in the LS Queue
(address queue, load queue, and store queue).

For research and educational purposes, the Lagarto Il architecture uses the MIPS64
Instruction Set Architecture, thus, to evaluate this design the MIPS64 ISA’'s memory access
instructions will be used.

1.4 OBJECTIVES

1.4.1 MAIN OBJECTIVE

To design and implement a Load-Store Queue for a superscalar processor with out-of-
order execution and to design its memory disambiguation method using power saving
techniques.

1.4.2 SPECIFIC OBJECTIVES

[. To define the requirements for the memory access instructions execution.

ll. To identify the differents kinds of memory access instructions, to design a digital
logic to decode those instructions and generate the necessary control signals.

Introduction

Chapter 1

[ll. To design the logic for the different blocks included in the Load Store engine
(Address Queue, Load Queue, and Store Queue) and the selection logic in order
to execute the memory access instructions in an out-of-order fashion.

V. Todesign a memory disambiguation scheme and to do a desk evaluation for every
combination between three consecutive memory access instructions (Load or
Store), results must be presented.

V. To use microarchitectural energy saving techniques, trying not to decrease the
overall performance.

1.5 SCOPE OF THIS THESIS PROJECT AND CONTRIBUTIONS

At the end of this thesis, the Lagarto Il processor will feature a Load-Store queue able to
receive two instructions per cycle and to issue one instruction per cycle in an out-of-order
fashion, this will be approachable with the help of the memory disambiguation scheme
designed, also, it will have a reduced power consumption taking into account a previous
Instruction queue design [1], this novel design will be adapted to the Address queue, and it
motivated the design for both the Load queue and Store queue.

1.6 ORGANIZATION OF THIS THESIS

This thesis is organized as follows, in the second chapter, all the background information
needed to explain this thesis approach is described, as well as how the processor works and
the functionality of its main building blocks, it is also explained some terminology. In the third
chapter, several papers and research proposals in the state of the art for the Load/Store
Queue and Memory Disambiguation are described. Then, the proposed design for the
Load/Store Queue is explained in the fourth chapter presenting some results in the fifth
chapter. Conclusions are stated in the last chapter.

Introduction

Chapter 2

Chapter 2

BACKGROUND

Programs are normally written in a high-level programming language, such as C and C++,
so these programs need to be transferred to a specific machine language using their
corresponding compiler tool (such as ICC or GCC) configured for that specific
microarchitecture. This code that is already in machine language represents the instructions
that the processor can understand [2] [3], these instructions are read from instruction cache
memory (via the Fetch mechanism) [4] and executed by that processor (making use of the
data cache memory) (Figure 2-1). It is clear that every architecture (such as x86, MIPS, Alpha,
etc.) has its own Instruction Set Architecture (ISA) which represents the way that the
instructions are decoded and executed by that processor, but there are two major kinds of
ISA, the Complex Instruction Set Computing (CISC) and the Reduced Instruction Set
Computing (RISC), both of them with their own advantages and disadvantages.

Background

Chapter 2

Core

Load / Store

Data Cache

Instruction Cache

Figure 2-1. Core and its interfaces with caches

2.1 RISC AND CISC ARCHITECTURES

Instructions of RISC ISA are smaller and simpler than CISC ISA as well as easier to decode
because the length of their instructions is the same, this feature also require a bigger amount
of instructions in order to do the same job as a fewer CISC instructions, this is because the
complex instructions do not have the same length for every instruction (normally vary from 1
byte to 15 bytes) nor have the same structure. The CISC ISA instructions are more specialized
(Figure 2-2) [5]. Normally, the CISC processors have a specialized Decoder which transforms
each instruction into several simpler RISC instructions with the help of a *Micro-Code ROM”
(Figure 2-3) [6].

Background

Chapter 2

'"Fi_ggcxg‘s’” Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte Address Immediate
prefixes of opcode (if required) (If requnred) displacement data of
1 byte each of 1.2, 0r4 1.2,0r4
(optional) / \ bytes or none bytes or none

7 7 32 0
Mod Opcode R/M Scale | Index Base

Figure 2-2. x86 Instruction fields

| Instruction Fetch and PreDecode I(

| Instruction Queue |
Micro- *
code —>| Decode |
ROM
| 4
Shared L2 Cache
I Rename/Alloc I Upto 10.7 GBIs
FSB
1
Retirement Unit
(Re-Order Buffer)
I Scheduler |
ALU ALU ALU
Branch FAdd FMul Load Store
MMXI/SSEIFP MMX/SSE MMXISSE
Move l l
L1D Cache and DTLB | e

Figure 2-3. CISC architecture

In another hand, the RISC architectures have a few instruction formats, support a few
addressing memory modes, and lack of instructions that operate directly on memory operands.
The most common fields in the RISC architectures instructions are the “base register”,
“destination register”, “source register”, “immediate value”, “function”, “opcode” and “index (in
some architectures)”. The three main instruction encodings in the RISC ISA are: The “Register
Encoding (R-Instruction)”, the “Immediate Encoding (I-Instruction)” which has a 16-bit (18-bit
with 2-bit left shift) immediate signed value, and the “Jump Encoding (J-Instruction)” which
has a 26-bit immediate value used to calculate the branch target address in order to jump
unconditionally. In Figure 2-4 there are shown these RISC instruction encodings.

Background

Chapter 2

R-Instruction

BASE SOURCE DESTINATION SHIFT
OPCODE REGISTER REGISTER REGISTER AMOUNT FUNCTION
31-26 25-21 20-16 15-11 10-6 5-0

I-Instruction

BASE DESTINATION
OPCODE REGISTER REGISTER IMMEDIATE VALUE
31-26 25-21 20-16 15-0

OPCODE

J-Instruction

OFFSET

31-26

25-0

Figure 2-4. RISC Instruction fields

Memory access instructions (Load or Store) use the I-Instruction encoding, [20:26] bits
encode the destination register for Load Instructions or the source register for Store
Instructions, [25:21] bits encode the base register, and [15:0] encode a 16-bit offset.

LW $t0, 0x0200($gp) # Load Word Instruction
- Load word from $gp + 0x0200 to $t0

SW $t1, 0x0204($gp) # Store Word Instruction

- Store word from $t1 to $gp + 0x0204

2.2 GENERAL CONCEPTS OF A MEMORY ACCESS INSTRUCTION

This subsection describes a general execution process of a memory access instruction in
a scalar processor in order to understand how the memory address is generated and either a
read or write operation to the L1 Data Cache Memory is accomplished. Then, next subsection
describes same instruction execution in a superscalar processor model and the utility of the
Load Store Queue.

Background

Chapter 2 10

Figure 2-5 shows the basic data path of a memory access instruction in a scalar
processor. In the first stage, the Load / Store instruction is read from the Instruction Memory
addressed by the Program Counter, later on, this instruction is decoded and identified as either
a Load or a Store so that the control bits can be generated, in each of the memory access
instructions, there are two register tag fields, the Base Register (RS) and the Source or
Destination Register (RT), in both cases (Load and Store) the memory address is generated
by adding the Data from the Base Register and the Immediate value sign extended (this
memory address is either for Reading or Writing the L1 Data Cache Memory) and the RT
register tag is used to read the source data that will be written to the L1 Cache Memory (in a
store instruction) or to write the data read from the L1 Cache Memory to the Register File (in
a load instruction), the second stage is for reading the Register File with these register tags
and for sign extending the immediate value, the third stage is the execution stage, where the
memory address is computed by adding the base register and the immediate value sign
extended, the fourth stage is the Memory Access stage, here the L1 Data Cache Memory is
either read or written, and the last stage, the Write Back stage, is only used where there is a
Load instruction executed, here the Data read from the L1 Data Cache Memory is written to
the Register File addressed by the Destination Register Tag, which had flowed through the
stages as the instruction was being executed.

Write Enable when a Load Instruction

OpCode Control Bits Control Bits Control Bits J

[
BEGR Load / Store I

Write Enable Read / Write Enable

Data RS
[31:0]

DataIn

@RD

a RS (Base) [31:0]

5 72T REGISTER

o

i RT (Source / ADD Address Data Out
INSTRUCTION - = Destination - FILED - [31:0] L1 DATA

MEMORY g poter I—|° o CACHE MEMORY

=1

=

2

r[—* Data RD

lo:sT]
ILVIGINAI

@ RD
[5:0]

ADDRESS COMPUTED, SOURCE DATA AND DEST TAG
DATA READ FROM THE DATA CACHE AND DEST TAG

5}
>
S

| OPERANDS VALUES, IMMEDIATE AND DESTINATION TAG |

|| (s 10

@ RD

Data RD

Figure 2-5. General memory access instruction data path

Background

Chapter 2 11

2.3 SUPERSCALAR PROCESSOR

The main purpose or goal of a superscalar processor is to exploit the parallelism within
the instructions stream, it means that whenever there are independent instructions, they
should be executed in parallel, and of course, there must be extra careful with those
instructions that are dependent.

There exist two implementations of superscalar processors regarding the way they execute
their instructions, the one with an in-order execution and the other one with an out-of-order
execution, due to the scope of this thesis, the in-order scheme won’t be explained but the
Superscalar Processor with out-of-order execution. It is divided into two main blocks, called
the Back-End and the Front-End, the main difference between these blocks is that in the
Front-End the instructions are flowing in order (sequentially) through its stages (Fetch,
Decode, Rename, and Dispatch), whereas in the Back-End, the instructions can flow in an
out-of-order fashion (Issue, Execution, and Write Back), except for the Commit stage, which
is always executed in order ensuring correctness in the program execution. In the Front-End,
the instructions are flowing sequentially through the stages, but after they are dispatched
(entering the Back-End) and sent to its corresponding queue, the execution of each instruction
can be made out-of-order and in parallel whenever there are sufficient structural resources
(adders, bus, register file ports, memory ports, etc.).

There are seven main stages along this superscalar processor, which are:
e Fetch
e Decode
¢ Rename and Dispatch
e Issue
e Execution
* Write Back

e Commit

Also, there are some main structures involved in the superscalar processor core (Reorder
Buffer, Integer Queue, Floating Point Queue, Address Queue, Load Queue, Store Queue,
Branch Predictor, Bypass, Register File, Free Register List, Register Alias Table, etc.). In order
to understand how the parallelism is exploited, in Figure 2-6 [7] is shown the comparison

Background

Chapter 2 12

between the amount of in-flight instructions in a scalar processor and a superscalar processor,
here is shown that the amount of in-flight instructions inside a superscalar processor (for this
example) is doubled as well as its execution is twice the number of executed instructions in
the scalar processor in the same number of clock cycles. A dynamic scheduling [8] must be
integrated along the data path in order to exploit the instruction level parallelism existent in
the code in execution, this dynamic scheduling ensures correctness within the dependencies
and takes advantage of parallel execution technigues.

Scalar Processor

Fetch . n 12 13 14

Decode 11 12 13 14

Execute 11 12 13 14

Write-back Al 12 13 14

Super-Scalar Processor

" 13 15 17
Fetch
12 14 16 18
il 13 15 17
Decode
12 14 16 18
11 13 15 17
Execute
12 14 16 18
11 13 15 17
Write-back
12 14 16 18

Figure 2-6. Scalar vs Superscalar Execution in Pipeline Processors

Figure 2-7 illustrates the building blocks inside a superscalar processor.

Background

Chapter 2 13

*Hmm
S ROB
’“ Tty
‘ | ‘ - Integer
BRANCH o
PREDICTOR E e lnlol _’zg" g Al
' g5 — &
re e EE ommm | B f e
FETCH IFQ S >z s-—» IFQ EE—» —
] & Eou 1] w
0O o
83| I -
’ < — |Lsa@ DATA CACHE
INSTRUCTION CACHE 1 ‘ | ‘
v
’ DATA I
PREFETCHING
T :

UNIFIED CACHE

Figure 2-7. Superscalar Processor Architecture

PC = Program Counter; IFQ = Instruction Fetch Queue; ROB = Reorder Buffer; 11Q = Instruction Integer Queue;
IFQ = Instruction Floating Point Queue; LSQ = Load Store Queue; Int. Reg. File = Integer Register File;
FP Reg. File = Floating Point Register File; Integer FUs = Integer Functional Units; FP FUs = Floating Point Functional
Units

2.3.1 DEPENDENCIES

There are three different categories for dependencies: “Data dependencies”, “Control
dependencies” and “Structural dependencies”. Because the main objective of a superscalar
processor is to exploit the instruction level parallelism and to execute the maximum amount
of instructions in parallel, most of its logic is dedicated in identifying and solving these
dependencies.

Inside the Data Dependencies category, there are two kind of data dependencies and the
dependencies can be either within memory locations or CPU registers, the “True data
dependency’, which can be defined as a RAW (read-after-write) dependency, happens when
the result of one instruction is needed as an input operand in another younger instruction, in
order to do the correct execution for this sequence, the younger instruction must wait to the
first instruction to be executed, after the first instruction has generated the result, the younger
instruction can proceed, otherwise, it will have erroneous values.

The other data dependencies are called the “False data dependencies” (also known as
“artificial dependencies” or “name dependencies”), although these dependencies are cleared

Background

Chapter 2 14

with the Renaming logic, for memory access instructions these dependencies are not resolved
until their memory addresses are known, these are the WAR (write-after-read) and the WAW
(write-after-write) dependencies, the first one happens when an older instruction is trying to
read an operand from the Register file or from data from memory location, and it is going to
be updated by another younger instruction. In order to ensure correctness, the older instruction
must read this location before the younger instruction writes in it. The other dependency,
WAW, happens when two instructions are trying to write to the same register or memory
location, in order to keep the most actual value, they have to update this value in order, it

means that the younger instruction must wait to the older instruction to write in this location
(Figure 2-8).

True Data Dependencies (RAW) False Data Dependencies (WAR) False Data Dependencies (WAW)

(R3):= R3 op RS 1) R3 :=(R3)op RS (1) R3):= R3 op R5 1)
+ 1 (2) R4 £R3)+ 1 2) A4 :=R3+1 @)
= H1 (3) R3):=R5+1 (3) R3):=R5 + 1 3)
R7 ’°) R7 :=R3 op R4 (4) R7 := R3 op R4 @)

Figure 2-8. True and False Data Dependencies

The Control Dependencies are present in conditional branch instructions inside the
program in execution, it is because the conditional value is not known until the execution stage,
then, there must be decided either to take the branch or not, in advance to this stage.

The last dependencies, the Structural Dependencies occur when two or more instructions
are requiring the same architectural resource, it can be an adder, multiplier, register port, etc.,
if there are no available resources, the instructions have to be executed sequentially.

2.3.2 MAIN PIPELINE STAGES OF A SUPERSCALAR PROCESSOR

Fetch is the stage (Figure 2-9) where the instructions are brought from the L1 Instruction
Cache Memory and stored in a structure called Instruction fetch queue, in this structure are
housed the instructions already read in advance from the Instruction Cache (in order to
preserve good performance and low memory access traffic, these instructions have to be read

Background

Chapter 2 15

faster than the time they take to execute). The Instruction Cache is read with the Fetch
address, which can be the Program Counter value (next sequential value), Branch target value,
Return-address value read from the stack, etc., this fetch address is computed every cycle,
and thus, there must be extra considerations with the conditional branches, jumps and any
instruction that goes to a specific instruction memory address. Furthermore, because in
conditional branch the next fetch address isn't known until the execution stage, A Branch
Predictor is needed working in parallel with the fetch engine.

This Branch Predictor is often build of two primary blocks, the Branch Target Buffer (BTB)
which gives the last address where the branch has jumped, and the Branch History Table
(BHT) where the branch condition is predicted with the help of its “taken” or “not taken” history
records, owing to the fact that branch mispredictions can occur, this branch predictor is
updated with any wrong or correct prediction. A mechanism for recovery must be launched
whenever this happens, instructions-stream of the wrong path needs to be flushed of the
pipeline and the correct path has to be re-established by fetching the correct execution path.
There must be a recovery logic inside the processor for this correction.

Data 4 Instructions
CLK

BRANCH PREDICTOR
w
=
+4 — g

O S c
INSTRUCTION - S g 9
g 23 S
CACHE next-PC % S5 o &
2 = =
*“ g
IL1 G
0—b| PC REGISTERS | 2
S =
(%]
-

—>| EPC REGISTER I
Address

Figure 2-9. Fetch stage

EPC Registers = Exception Program Counter Registers; ACU = Address Computation Unit; Spec-PC: Speculative PC

Background

Chapter 2 16

Decode is the stage where instructions are read from the Instruction fetch queue and are
identified by their instruction opcode and function field, both opcode and function address the
ROMs (Figure 2-10) which bring the operation control bits as well as flags indicating if it is a
branch instruction, a jump, and link instruction, etc., this control bit packet is called “resource
vectors”. The register tags and immediate value for every instruction are read in this stage.

CONTROL

ROM1 —

ROB

@EITED — ROM2 —

CONTROL

LsQ FPQ Q

Figure 2-10. Decoder ROMs

It is needed a decoder for each instruction read from the Instruction Fetch Queue in the
same clock cycle (Figure 2-11).

Background

Chapter 2 17

fetch

l

l ‘l l l

decoder decoder decoder decoder

J] l l

l

register rename

Figure 2-11. Typical RISC decode stage

Rename is the stage where the logic registers are linked to physical registers in order to
solve false dependencies (also known as “artificial dependencies” or “name dependencies”),
this allows the instructions (not memory access instructions) to be executed freely without any
data hazards whenever they have their source operands ready to be read from the register
files. If two or more instructions do not have dependencies, then the ILP can be exploited by
executing them in parallel and out-of-order.

In order to illustrate how the renaming process takes place, a simple renaming operation
is shown in Figure 2-12 [7] (L=Logical Registers, P=Physical Registers), here the L3 is
renamed to P6 and in the second version of L3 is renamed to P9, because it was sharing the
same location with another instruction that should not be dependent (name dependency), it
has to be renamed in both the first and second instructions in order to have the last updated
value for this register. In this same cycle, the first version of L3(P6) becomes old with the
second version of L3(P9), then the value of P6 isn't needed anymore in the program execution,
thus, it can be freed. Instructions 3 and 4 must preserve the true dependencies with the last
version link of the register L3(P9). It has to be considered that the logical registers L3, L4, and
L5 were previously renamed to the physical register P3, P4 and P5 respectively, and that the
new physical registers P6, P7, P8 and P9 are available for renaming the logical destination
registers tags.

Background

Chapter 2 18

UN-RENAMED REGISTER TAGS RENAMED REGISTER TAGS

L3:=L3o0plL5 (1) P8 :=P3 op P5 (1)
L4:=13+1 (2) P4:=P8+1 (2)
L3:=1L5+1 (3) -P9 =P5+1 (3)
L7 :=L3 op L4 (4) P7 :=P9 op P4 (4)

Figure 2-12. Register renaming example

Regardless of register renaming, the true dependencies must be kept, for example, within
instructions 2 and 4, P7 must be kept with its true dependency. The same happens between
the instructions 1 and 2 with L3 (renamed to P6). This is accomplished by the dependency
check logic.

This register renaming algorithm can be stated with these steps:

—

Look for all instruction inputs (Src) and outputs (Dest).

N

Check for true dependencies (Dest; N Src).
Detect early old destinations (Dest, N Dest,).

&~ W
o T o —

Rename new destination (PDest).

o1

Save the actual registers assignation (Context saving).

Four structures are necessary to implement this register renaming logic (Figure 2-13):

1) Register Alias Table (RAT): It has the record of all the renamed registers assignation.

2) Dependency Check Logic (DCL): Identifies all the dependencies inside a group of
instructions being renamed.

3) Free List Register (FLR): It has the record of all the unassigned physical registers.

4) Shadow Register Map (SRM): It saves the state of all the assignations in order to

perform a precise context recovery whenever it is necessary.

Background

Chapter 2 19

FLR Physical Registers to free

Unrenamed N-Instructions RAT \
oo
£ 4
% § Renamed N-Instructions
S &
. o
ES SRM
 —
H—
|
DCL

Figure 2-13. Register Renaming building blocks

There are three main renaming schemes used in contemporary processors [9], the first
one is the “Renaming through the Reorder Buffer', where the non-committed instructions
results are stored in a Reorder Buffer, and only when the instruction is committed this result
is written to the Register File changing the architectural state of the processor. The second
one is the “Renaming through a Rename Buffer’, it is very similar to the first scheme, but it
has a separate buffer for only those in-flight instructions that generates a result value, it saves
storage and energy in comparison with the first scheme. And the third scheme is the “Merged
Register File” scheme, here, the Register File stores both speculative and committed values,
its main advantage is that there is no data transfer from the Reorder Buffer to the Register
File.

Also in this stage, each instruction is assigned to an entry in the Reorder Buffer (ROB), if
there isn't any empty entry in the ROB, the instruction fetch has to be stalled and wait for an
empty entry. In order to identify which physical register can be freed (it means that its stored
value isn't needed anymore and can be reused by another un-renamed register), the Reorder
Buffer has two special entries for that purpose, the current destination register tag and the old
destination register tag, so that, when the instruction in that ROB entry is committed, its old
destination register is freed to the free register list (at this point) and the most actual value for
that logical destination is the current destination register. The ROB (also known as the “active

Background

Chapter 2 20

list”) keeps track of every dispatched instruction inside the Back-End block of the processor,
it is used to save the ordering of the instructions, even if they are executed out-of-order, at
commit time, every instruction must be resolved in order (Figure 2-14). Whenever there is an
exception or branch misprediction, the recovery logic read the modified variables using the In-
Flight Tag given by the ROB and bring these variables back, then the execution of the program
can continue. Figure 2-15 shows the organization of the ROB (as a circular FIFO buffer) [10].

The Context Recovery is different between the Front-End and the Back-End blocks of the
processor, for the Front-End, all the in-flight instructions have to be flushed and the fetch
mechanism must take the right path immediately (the flush logic is simpler), whether in the
Back-End (taking more clock cycles than in the Front-End), only the in-flight instructions that
were dispatched after that recovery point have to be flushed, also, the renaming tables have
to be modified with the correct entries stored at that recovery point, and the queues entries
that were modified by the wrong path have to be recovered (Figure 2-16) [9].

1 Read Port

[BTB] Program Counter

Old Destination Register

Current Destination Register'

Valid-bit
Branch-bit
Executed-bit 4 Write Ports [Execution]
Issue-bit ‘ =38 \Write Ports [Issue]
Tall Pointer Register Head Pointer Register |
p—)
4 Write Ports 4 Read Ports
[Dispatch] [Commit]

Figure 2-14. Reorder Buffer

Background

Chapter 2 21

ROB TAIL

FIRST FREE ENTRY

[L1]
[11]

ROB HEAD ROB HEAD

MISPREDICTED
BRANCH
DETECTED

o

TAKE CORRECT

ROB TAIL PATH

—_—>

LAUNCH
RECOVERY MECHANISM

THE RE-ORDER BUFFER
FLUSH
SPECULATIVE
INSTRUCTIONS

CIRCULAR FIFO

\Illllllu

ROB TAIL
—_—>

NEXT TO BF COMMITED
ROB HEAD

LTI

LTI

Figure 2-15. Instruction's tracking inside the ROB

Execution
(Branch Back-End Recovery _l

validation)

Resume
Front-End Back-End
— Resume
Recovery | Ffront-end

uction .
Fetch Instr Decode Allocation
Cache Access

Figure 2-16. Recovery Logic in Front-End and Back-End

Dispatch is the stage where each instruction is sent to its corresponding queue (Integer
Instruction queue, Floating point queue, Load store queue, etc.) (Figure 2-17). The Mapper
is in charge of selecting the instructions by their kind of operation (integer, floating point,
memory access, etc.), the selected instruction information is written in its assigned entry in
the RAM-CAM queue structure, in the payload RAM are written the complete operation bits
of the instruction, its source operands, destination register tags, and its resource vector,
whether in the CAM are written the source operands tag to perform the dependent instructions
wake-up by effectuating comparisons between results tags and source operands tags of
instructions waiting in the queue (stored in the reservation stations) (Figure 2-18).

Background

Chapter 2 22

]
=
o
@

1Q ——

=
g <
2 3
3| a
2| < IFQ .
=} =
= w
S| &
o <
3 =
<
LsQ —

Figure 2-17. Dispatch Logic

MAPPER 0 112z 1B FO F1 F2 F3
T L T Ll
vl v I vl v I
—> —» — —>
M CAM 2E 3 INT Queue e CAM oE & FP Queue
§ . Wake-Up LIS Payload RAM § S Wake-Up Lisg Payload RAM
— — — —

il

TAG BUS from INT, FP and L/S Queues >

Figure 2-18. INT and FP Queues with Mapper

Issue stage is where the instructions that are ready to be selected (that is to say, that
values of their source operands have been generated by older instructions and these values
can be read from the Register Files or bypassed across the value forwarding network), can be
issued in an out-of-order fashion, but there must be extra care with the memory access
instructions (because the memory address is still uncertain). In this logic are involved the
Wake-up logic, Ready logic, Selection logic (with a priority order logic) and Context recovery
logic. The Wake-up logic is in charge of “waking up” these instructions by doing comparisons
between the source operands tags stored in the CAM and the destination registers tags sent
through the tag bus by the functional units, whenever there is a match, the Ready bit of the
source operand is set to “1” because its value has been produced, then, when all the source
operands are ready, the Select logic indicates which instructions can be issued to the next
stage. Figure 2-19 illustrates a CAM organization inside an Instruction queue, with “k”
Destination Tags and “n” entries in the queue [1].

Background

23

Chapter 2
Bw W
ERE EE
38 49
[a) [ala]
=) =)
o ®\J \J® o
R i i R
1 I I Il
Entry a1 ‘Opl ReadyBit| | OplTag I ‘ Op2 Tag | |Op2ReadyBit|
[
))
0 \U\J J@ 0
R F : R
1 1 [L
Entry 2 ‘Opl ReadyBit| | Opl Tag] ‘ Op2 Tag | |Op2ReadyBit|)
I g
|
— ¢
&)
=
=)
[
w
e I
: D) e i
[. I
L | [il
Entry o |Op1 ReadyBitl | Opl Tag ! ’ Op2 Tag | |Op2ReadyBit|
[

Figure 2-19. Organization of the CAM Section in the Instruction Queue

The destination register tags, the source operands register tags and the resource vector
of the selected instruction are read from the payload RAM and sent to the next stage (Figure
2-20). The cycles required by an instruction to do its operation depend on which resource is
requesting (i.e. an adder will take fewer cycles than a multiplier or a divisor), thus, the wake-
up signal for those instructions that take one cycle to complete has to be sent at the same
time it is issued (by the select logic) in order to efficiently do the bypassing with consecutive
consumer instructions, with the instructions that take longer number of cycles to complete,
the wake-up signal needs to be scheduled to be sent a few cycles before the end of the ALU’s

Background

Chapter 2 24

computation. In Figure 2-21 [9] is shown a comparison between two pipelines, one pipeline
with this wake-up signal is sent at the end of Execution stage and another pipeline sends this
signal at Select time, it is illustrated that without sending this signal at Select stage, it
generates (for this example) three bubble cycles for the next consumer instruction, thus, it
decreases the overall IPC, whether in the second pipeline the data bypassing is performed.

]

S INT QUEUE

2 o P RAM

E o AYLOAD

Q o —>

e

w — Src2 Src2

wv —] Srcl Tag/ Dest Srcl Tag/ Dest
> Tag {Imm) Tag Tag (Imm) Tag

CLK2 CLK1 CLK2

TAG Bus FROM INT, FP AnD L/S QUEUES >
Add_A0 Add_Al Add_A2 Add_BO Add_B1 Add_B2
INT PHYSICAL REGISTER FILE
Dat_A0 Dat_Al Dat_A2 Dat_BO Dat_B1 Dat_B2
F F
A4 A4

BYPASS NETWORK

Functional Unit
B

Functional Unit
A

Figure 2-20. Two-Issue INT Queue's Payload RAM Logic

Background

Chapter 2 25

e e 1 e e

o WakeUp signal received when value becomes available

Producer Wake-Up Select Drive Execution |=Write-Back
. (Wakeup signal

Consumer Select Drive Execution

4——3 cycles bubble=——=p

Q WakeUp signal received 3 cycles before becomes available

Producer Wake-Up Select Drive Execution =Write-Back

T T] Data bypass
Consumer Wake-Up Select Drive \v},xecution

Figure 2-21. Timing of the wake-up signal to support back-to-back execution

The Execution stage is where the issued instructions read their source operands from their
corresponding Register Files or get the data bypassed from the Destination Bus and are sent
to their requested ALU resources (adder, multiplier, divider, etc.), here, any arithmetic or logic
operation is computed as well as memory addresses are calculated. The Integer functional
units consist of adders, logical functional units, shift functional units, conditional branch
solvers, multipliers, and dividers. The Floating Point functional units are more complex than
the Integer ones, at first, the values in the FP Register File have to be encoded as the IEEE
754 Standard format for single and double precision, the operands go through a
decompression operation after being read from the FP Register File and get compressed
before writing in it (encoded according to the single or double precision format), except for FP
load/store operations, the FP functional units consist of an adder, a multiplier, and
divider/square root logic unit, the adders can execute several operations such as additions,
subtractions, comparisons and format conversions.

After finishing execution phase, in the Write-Back stage, the result values from the
functional units are written back to the Register files (integer or floating point) as well as sent
to the Bypass Network in order to perform a data bypassing to younger issued instructions
(Figure 2-22) [9], also, the data read from the L1 Data Cache Memory (in a load instruction)
is written to the Register files, the data in store instructions remains in the Store queue until
commit stage (then the Data cache can be updated).

Background

Chapter 2 26

register file register file

RO Rl WO W1 R2 R3 RO Rl WO W1 R2 R3
!

!
\rbo / \mi /&L k.
FUl

Figure 2-22. An execution engine with two functional units, without (left) and with (right) value bypassing

Commit stage, also known as Retire stage or Completion Stage, is in charge to modify the
speculative state of the processor to an architectural state, the structure in charge of
committing the instructions is the ROB (it has the instructions order stored in its entries), in
order for an instruction to commit it must have all its pipeline flags set to “1” (valid-bit, issue-
bit, execution-bit, no-speculative-bit), also, the previous older instructions must have
committed in order to guarantee the ordering correctness of the program. When an instruction
commits, its old destination register is freed so that it can be used again in the register
renaming process (Figure 2-23), the current destination register changes its status to no
speculative value and the Branch predictor tables are updated if it is the case.

@ - -

v [— —
g @

- 1%} o) 7]
'S Q

4 o = — —

— o e I —
o =03

B-2]] v T w1

2 g 2 21 £

RENAME | & s = REGISTER |2

= < — -

UNnIT | S q E 51— FiLe |31

2 = 2 > ||
& S 7

- (0] —— —

8 [| -

- [a)] € | |
= @ ¢

o 3 — -

Setto "1”
Tag Set to "0"

Figure 2-23. Recycling Physical Registers at Commit Time

2.3.3 ADDRESS, LOAD AND STORE QUEUES

Conventionally, the Load/Store queue is divided into three different building blocks, the
Address queue (AQ), Load queue (LQ) and the Store queue (SQ). The LQ houses load
instructions with their memory address computed and ready to read the Data Cache, similarly

Background

Chapter 2 27

the SQ houses store instructions that have already computed their memory address but
waiting to commit in order to update the Data cache with the source data read from the
Register file, whether the AQ has the memory access instructions mixed (loads and stores)
and without their memory address computed, here the memory access instructions are waiting
for their source operand to be ready in order to be sent to Execution stage in order to compute
their memory address (Address = Base register + Offset).

Because the memory addresses aren't known until execution stage, the issuing logic for
memory access instructions is a little more complex, this AQ remains organized as a FIFO
buffer in order to maintain the program order so that the dependencies can be computed
easily, also, these instructions are kept in the queues until they commit. Due to the fact that
the rename mechanism used for integer and floating point instruction is not feasible for
memory addresses (there are a lot more memory locations than physical registers) [11], there
must be a mechanism in charge of ensuring that the data hazards are properly resolved in
order to permit an out-of-order execution, this mechanism in charge of detecting all
dependence violations is called the “Memory Disambiguation Policy”. There are two kinds of
memory disambiguation schemes, the non-speculative scheme, and the speculative scheme,
the non-speculative scheme practically issues the memory access instructions in order,
whether the speculative uses a dependency predictor to issue those instructions that are
predicted as co-dependent of an older memory access instruction.

Although the non-speculative issues in order, there are three kinds of non-speculative
issuing, some with an out-of-order execution, in Table 1 [9] are shown these different kinds
of memory disambiguation schemes.

Table 1. Memory disambiguation schemes

Name Speculative Description
Total Ordering No All memory accesses are processed in order.
Partial All stores are processed in order, but loads execute
: No out-of-order as long as all previous stores have
Ordering

computed their addresses.

Execution between loads and stores is out of order,
No but all loads execute in-order among them, and all
stores execute in-order among them.
Stores execute in-order, but loads execute
completely out-of-order

Load Ordering
Store Ordering

Store Ordering Yes

Background

Chapter 2

28

Figure 2-24 [11] shows a conventional Load Store queue design separated for loads and
stores in two different queues, in this scheme, a load associatively searches the Store queue
in order to forward the data from an older in-flight store, whether a store searches for loads
that have executed speculatively (wrong) in order to squash them by its re-execution.

Associative
LoAD QUEUE Logic
——»
Data | Address Squash?
——
—

STORE QUEUE

Data

Address

Associative
Logic

Figure 2-24. Conventional LSQ design

Forwarding?

2.4 CACHE MEMORY AND MEMORY HIERARCHY

Due to the variation with the memory access latency depending on the capacity of the
memory, the cache memory subsystem is hierarchically divided into cache levels (normally up
to three levels), being the L1 the closer one to the processor and with the smaller access
latency. Also, there are two kinds of cache organizations, the inclusive caches, and the
exclusive caches, in the inclusive caches the lower level caches have portion of data (trying to
be the portions currently in use) copied from the upper level caches, whether in the exclusive
caches it is to say that there is only one copy of that portion of data within all the cache levels
(is more complex to handle). The cache hierarchical levels use different memory technologies,
for the internal cache memory L1, L2, and L3 are always implemented using an SRAM (Static
Random Access Memory) because of its small access latency, whether for the rest of the
memory subsystem levels are normally implemented with DRAMs (Dynamic Random Access

Memory).

Background

Chapter 2 29

An SRAM cell (it stores one bit) is normally made of six CMOS transistors (6T SRAM cell),
these transistors are composed of two access transistors and a pair of inverters (using two
transistors each), whether the DRAM cell is a lot simpler within its structure, it is made of one
or three transistors and a capacitor (needing to be refreshed every certain period of time in
order to maintain its stored value). In Figure 2-25 and Figure 2-26 are shown these different
memory technologies.

SRAM cell

ez || i

Figure 2-25. SRAM cell

[~ DRAMcell \

Figure 2-26. DRAM cell

Though the SRAM access is a lot faster than the DRAM, using only SRAMs for the whole
memory is unfeasible because of cost, also, this memory technology wastes more energy,
occupies more hardware space and its latency is long. In order to concealment the overall
memory access latency, the data that is being accessed constantly is stored in the high-speed
L1, L2, and L3 cache memory and whenever there is a cache miss (the requested data is not
found in the L1 cache memory), there is an exchange of data within upper cache levels. It is
normally for the L1 caches to be separated into Instruction Cache and Data Cache, whether,
for the upper cache levels, they are usually composed of mixed instruction and data
information (unified cache).

Background

Chapter 2 30

The cache memory controller [4] is in charge of the tracking of all this stored information
in the different cache levels, whenever there is a request from the processor, this cache
memory controller checks if the data is stored in the high-speed cache, if effectively it is in L1,
this location can be accessed immediately and there won't be any waiting cycles, but, if it is
not, it results in a miss cache and the requested data is taken from upper memory levels L2,
L3 or Main Memory (DRAMs) leading to wait cycles (Figure 2-27) [4].

MICROPROCESSOR

Address Bus

sng eleq

CACHE CACHE
CONTROLLER a MEMORY

pd
o
o
=]
o
7]
»
w
c
7

MAIN SYSTEM MEMORY

Figure 2-27. The Cache Memory concept

Memory hierarchies only work if the levels closer to the processor have stored data that
the program will be reusing, if not, there will be a lot of wait cycles provoked by the long latency
memories. Memory hierarchies work by taking into account the two aspects of the locality
property inside an address space, the first aspect is the Temporal Locality which says that
“The information that is already in use is likely to be used in the near future”, and the second
aspect is the Spatial Locality, it says that “ The portions of the address space which are in use,
generally consist of a fairly small number of individually contiguous segments of that address
space” [12].

Background

Chapter 2 31

Normally, the instruction cache memory addresses as well as the data cache memory
addresses, are virtual addresses, there must be performed a prior translation in order to obtain
the physical addresses. This physical address is the range of memory locations that can be
generated and driven by the address bus, whether the virtual memory address is the range of
memory locations that a program can make use of. The whole address space is divided into
pages, and the operating system is in charge of mapping them with the help of its page table
data structure stored in main memory (Figure 2-28).

VIRTUAL MEMORY

MAIN MEMORY

Pl
|

I g

/" \
|

NN

...

licitl : cally : ally -
Explicitly Automatically : : Automatically :

¢ transferred via transferred upon - ransforred ubon
: the Load/Store : : pon: : pon:

Queue cache miss * ¢ page fault

Figure 2-28. Memory hierarchy

2.4.1 CACHE MEMORY PARAMETERS

The cache memory can be classified by some parameters within its architecture and by
its write policy, these parameters are noted in Table 2.

Background

Chapter 2 32

Table 2. Cache memory parameters

ASSOCIATIVITY LINE SIZE CACHE SIZE WRITE PoOLICY

UTILIZATION

Look-through Fully-associative Write-through

(Also known as
Look-aside Direct-mapped block size), these | KB of data in the Buffered write-through
are the number | Memory, normally .

Write-back

N-Way set-associative of bytes per line, | these are 32KB for

normally L1 cache and
32bytes or 512KB for L2 cache
64bytes

Bus Utilization

The cache can be organized and implemented as a Look-through cache or a Look-aside
cache, each one with its own advantages and disadvantages. Whenever the Look-through
architecture searches for the requested data in the L1 cache it uses the local bus, and if it
wasn't found, then it goes to an upper-level cache to search that data, thus, it will be using
the system bus at this point, it has to be noted that the bus utilization for the upper-level
caches is only required whenever there is a cache miss, by this way it saves unnecessary
searches to these long-latency, it also saves power-wasting upper-level cache memories as
well as unnecessary system bus utilization. In the other hand, the Look-aside searches in the
L1 cache memory as well as in the upper-level caches, that is to say, it does not isolate the
local bus searches from the system bus searches, this wastes more power and does more
utilization of the bus (this can drive to memory access overhead), by the way, an advantage is
that whenever there is a cache miss it gets the requested data faster than with another
scheme, while the Look-through first searches in the closer level cache and then to the other
level caches, the Look-aside searches all at the same time, thus it does not waste time in
waiting for a cache miss.

Write Policy

There are two concepts for outdated data problems within the cache consistency, the first
one happens when some memory location has been modified or updated (it is called to be
“dirty” data) in a level cache but the outdated data in the another level cache hasn'’t (it is called

Background

Chapter 2 33

to be “stall” data), thus, an updating operation must be driven in order to ensure cache
consistency. The most common case is when the cache has been updated (now is a dirty
memory location) with a store operation, while the copy in main memory is outdated (has stall
data for that memory location). The way the processor solves the cache consistency problem
is called the “Write Policy”, the easiest implementation is the Write-Through policy, and this is
because, whenever a store operation has been selected to update the architectural state of
the processor's data cache, it also updates the copy of that memory location in its upper-level
cache, it is simpler to implement but it results in lower overall performance because it has to
access a long-latency main memory. A modification of this scheme is the Buffered Write-
Through policy, this is one of the most used, it has a buffer where the store operations are
saved, and simulates that there was a cache hit, but actually the operation will take place a
little later, this policy is an improvement of the write-through policy. The Write-Back policy only
updates the upper-level cache whenever it is necessary (just the locations that are marked to
be dirty), the upper level is updated only when the cache location that contains “dirty” data is
about to be overwritten by another memory location, then the upper-level cache has to be
updated with this modified data.

Associativity

Remembering that the main memory is organized by pages and that the cache is divided
by cache lines (also known as blocks or sets), there are three main concepts within the
organization and addressing inside the cache, this organization can be a Fully-Associative,
Direct-Mapped or an N-Way Set-Associative cache. With the Fully-Associative cache
organization, the main memory is seen as a huge only “page”, so that it is only divided by
blocks, in this organization every block in main memory can be located (or not) in any of the
L1 cache blocks, thus, when a memory location is accessed, this memory address is searched
in each of the cache directory entries in order to know if this memory location copy is actually
in the L1 cache or if it may need to be taken from upper-level caches, this drives to long-
latency waiting cycles in the case of a big L1 cache (more than 4KB), it also consumes more
power energy because of all the comparisons inside this CAM directory. This model increases
the cache hit rate as well as overall performance for those processors that use small L1
caches. In Figure 2-29 is shown a simple diagram of this cache organization.

Background

Chapter 2

34

Address of Data 6

Address of Data s

Address of Data 4
Address of Data 3

Address of Data 2
Address of Data 1
Address of Data o

N
(N
Data 6
Data s
Data 4
Data 6 Data 3
Datas Data 2
Data 4 Data1
Data 3
Data 2 Datao
Data 1 /
Data o

CACHE DIRECTORY

Figure 2-29. Fully-Associative Cache Organization

Contrary to the fully-associative cache is the Direct-Mapped cache organization, only one
entry has to be checked in the cache directory in order to indicate if the memory location copy
is in cache or in main memory (cache hit or cache miss), in this organization the main memory
is divided into pages, so that every set in the cache can map to that set of any of the pages in
main memory, thus, it is simpler to implement and the latency in checking the cache directory
is smaller than with the other schemes, the disadvantage with this organization is that there
is only one permitted entry in the cache per set in the main memory, then it forces that
whenever it has to be accessed the same set but from another page, that set has to be
overwritten (in the hypothetic case where there are various consecutive accesses to set 0 but
from different pages, every access will incur in page miss) (Figure 2-30).

Background

Chapter 2

35

CACHE DIRECTORY

Page 1 Setn

Set 4
Page o Set 3
Page o Set 2
Page o Set 1
Page 2 \

Qlo

Data 3

Data 2

Data 1

Datao

Data 4

The Tag must be updated
to Page 2 to reflect the
location of the data from

“Read 5"

Setn
Set 4

Set 2
Set 1
Set 0
Setn
Set4
Set 3
Set 2
Set1
Set 0
Setn
Set 4
Set 3
Set 2
Set 1
Set 0

Figure 2-30. Direct-Mapped Cache Organization

Read 5
Read 4
Read 3

Read 2
Read 1
Read 0

MAIN MEMORY

ﬂ)ata from “Read 0” must

be overwritten since data
from “Read 5” occupies

\ the same set number

In order to make it possible to have in cache more sets of the same set in main memory
but from different pages, an improvement of the last cache organization, is the N-way set-
associative cache, it can be 2-Way Set-Associative, 4-Way Set-Associative, etc., as it
increases the number of “ways”, its associativity increases. Each “way” is one more portion of
cache memory of the size of a single page (4KB, 8KB, etc.), which can store the same set but
from a different page in main memory, that is to say, if there is already a set stored in “Way
A" and an access to the same set but from a different page occurs, it isn't necessary to be
overwritten the already stored set in “Way A”, it is stored in another way (i.e. “Way B”). This

scheme increases the cache hit rate compared to the Direct-Mapped cache organization.

Figure 2-31 illustrates a simple diagram for this cache organization (a two-way set-
associative cache organization).

Background

Chapter 2 36

Setn ..., .
:PAGE m:
Set2 |-
Set2 |'PAGE3:
Set 1 Data 4 | Read 4
Set0
Setn
Set 2

CACHE DIRECTORY CACHE Set1

Set 0 Data 3 Read 3

Setn
Set 2 —— Setn Dataz2 | Read 2
et (0 1 L
B , s | D set2 |{PAGET:
age 3 e ata4 gg—m | |
Set1l
Set0 jr et 0
et
Page 1 Setn Data 2 \ Setn
A Page o Set 2 Data 1 \ Set 2 Read 1
Page o Set 1 Data o Set1 Read 0

Page 2 Set0 Data 3 Set0

Although the point to the same MAIN MEMORY

set, both values can be kept in
cache without overwritten in that
set, just kept in different “way”

:

&

Y

Figure 2-31. Two-Way Set-Associative Cache Organization

2.5 TAGAND DATA ARRAY ACCESSES

Each memory address has three fields of information, the K least significant bits are the
offset bits, with these bits a specific byte along the cache line (set) can be accessed, the next
field is the index field, it determines which set in the page is being addressed, and the last
field (in the most significant bits) is the tag, which is used to identify the page inside the
memory subsystem. The size of these fields is noted in Table 3.

Background

Chapter 2 37

Table 3. Memory Address Fields

o Block Size (in bytes) = (@
Taking into Number ofsets = S
account...

Tagbits = T

Offset bits (K) = logz(Q)

Index bits (M) = log:(S)

Page Size (in bytes) = S*Q
Memory addresslength = T+M+K

Because different addresses can map to the same set inside the cache (but it belongs to
a different page, though), there is a Tag Array that serves as a mechanism to “reverse-map”
these indexes to addresses. It has the same organization as the Data Array, and for each block
inside the data array, the tag array has stored both the Tag bits and the state bits of that block
(whether it is valid, dirty, cached, uncached, etc.). There are two kinds of tag and data array
accesses, the parallel access and serial access.

2.5.1 PARALLEL TAG AND DATA ARRAY ACCESS

In this scheme, the tag and data arrays are accessed in a parallel manner, the access
process is the following: The tag bits from the memory address are compared with the tag
bits found in all the “ways” of the tag array addressed by the index field of the memory address,
if there is a hit, then it says that the memory location copy is in cache (it indicates in which
“way” of the data cache blocks can be found), owing to the fact that all the “ways” of the data
cache are read, the correct “way” has to be selected with the help of a multiplexor (the selected
“way” is indicated by the tag array hit). If the tag is not found in the tag array, then it is said
that the memory location copy isn't in the L1 cache and it has to be brought from upper-level
memory. This scheme is fast by the fact that it read in parallel both the tag array and the data
array, but it unnecessary wastes power energy in reading all the “ways” of the data array
(Figure 2-32) [9].

Background

Chapter 2 38

Tag array Data array
Way 0 . Way N-1 Way 0 =+ | WayN-1
@ 7}
el e}
o =}
IS o
Q| ———— T T | rT——— T T =
o D |y Tags i = Seti
I 2
< B A Y R L R I N R
o kel
Nel T
< <<
[AN é_*i ~__Way mux
[~ 1
| | index offset I vi Aligner
Address

Hit/Miss Data

Figure 2-32. Parallel Tag and Data Array Access

2.5.2 SERIAL TAG AND DATA ARRAY ACCESS

In the other hand, with the serial tag and data array access, an extra cycle is introduced
but some energy is saved, also, the access frequency increases because the “Way-Mux” is
not necessary anymore. The Tag array is accessed firstly indicating if there is a cache hit or
miss (if there is a cache hit, in this phase it is already known in which “way” of the Data array
the data can be found). If a hit, the data array is accessed directly, if not, then the data is
brought from the upper-level memory (Figure 2-33) [9].

Data array
Way 0
Seti
Tag array F————
Way 0 - Way N-1
5}
[el
[o
3)
5 o
8| - Lode o a T
— 2) Tagsi o Way N-1
<A I i I R I 3
% <<
<
Seti
ﬁ.)
| V) ¢
| %
| | index | offset I Aligner
Address
Hit/Miss Data

Figure 2-33. Serial Tag and Data Array Access

Background

Chapter 3 39

Chapter 3

STATE OF THE ART

In contemporary superscalar processors almost all designs include techniques such as
store-to-load data forwarding [13], memory dependence prediction, speculated execution,
etc., the conventional design is the one where the Load queue and the Store queue are two
separated CAM queues searching associatively each other in order to perform either a data
forwarding or a squashing in those load instructions executed prematurely (Figure 2-24),
leading to unnecessary wasted energy, thus, there has been some Load Store queue design
proposals which offer a low latency and a reduced power consumption [13] [14] [15] [16]
[17] [18]. Due to the necessity in identifying any data dependency between a younger and an
older in-flight memory access instruction, these research proposals use filtering techniques to
reduce the number of associative searches.

Despite of this restriction, there are a lot of models which offer speculated execution for
these load instructions freeing them from waiting for the younger store instruction to have
their memory address computed, this is done via a memory address dependence predictor,
and it can be a “naive” predictor or a more sophisticated “dynamic” predictor, this last one can
actually offer a very accurate prediction (+96%), it achieves this accuracy because it goes
learning the memory address dependency patterns as long as the program is executing, when

State of the art

Chapter 3 40

the program starts its execution, the predictor will take “naive” decisions and fail occasionally
but after some cycles the accuracy increase considerably.

Normally, it is necessary for a load instruction to wait for any older store instruction to have
already computed its memory address in order to ensure any memory dependency with these
older store instructions. If a load has a data dependency with an earlier store, the load either
has to wait for the store instruction to commit or a store-to-load forwarding can be done in
order to forward the speculative data from the uncommitted store to the load. Store-to-load
data forwarding occurs when the load virtual address matches with a store virtual address
and the store size is greater than or equal to the load size [19]. Normally, a load instruction is
more urgent to be executed than a store [20], it is because the data read from cache memory
is more probable to be needed by a close younger instruction, because of that, load
instructions may have preference over store instructions, but there must be extra careful with
their un-computed memory addresses, executing out-of-order dependent memory access
instructions may lead to incorrect results.

The memory disambiguation is the mechanism that identifies any dependencies between
memory access instructions, allowing these instructions to be executed in parallel. Any
processor should have an efficient memory disambiguation scheme if the Instruction Level
Parallelism is wanted to be achieved with memory access instructions. There is no
dependency conflict when load instructions execute out-of-order, the conflict is generated
when a load instruction executes before of a dependent older store, also, in order to maintain
the memory semantically, it is necessary an in-order execution with those store instructions
addressing to the same memory location, that is why modern out-of-order processors execute
stores at commit time. In first memory disambiguation implementations this was made at
compile-time [21] (called “static”) but it is more suitable if it is made via a combined
hardware/software implementation or an only hardware implementation, that is at run-time
(“*dynamic” memory disambiguation).

Because the architectural state of the processor (talking about the data cache) is only
changed at commit time, a store instruction has its source data stored in the store queue or
written in a store buffer, allowing a store-to-load data forwarding by detecting whenever there
is a load dependency with an older store.

Some early implementations of dynamic hardware disambiguation [20] are:

State of the art

Chapter 3 41

e The IBM System / 360 Model [22] — It has a store queue which can detect store-
load dependencies. If it is detected a dependency between a load and an earlier
store, the data is forwarded from the store to the load instruction.

e The HPS Model [23] - It uses a dependency matrix which blocks all the younger
loads ongoing an unresolved store.

e The Address Resolution Buffer (ARB) [24] — It allows speculative execution for load
instructions and it detects if this execution was successful (without any
dependence) or not. Stores do not update data cache memory until commit time,
this implementation is more complex than the IBM System 360 model and the HPS
model.

3.1 RESEARCH PROPOSALS FOR LSQ & MEMORY DISAMBIGUATION

3.1.1 TRIPS

The TRIPS (Tera-op, Reliable, Intelligently adaptive Processing System) microarchitecture
was designed and implemented by a research group in the Department of Computer Sciences
at the University of Texas at Austin. This distributed, tiled microarchitecture prototype (Figure
3-1) offers higher instruction-level concurrency than current industrial processors, each core
can execute up to 16 out-of-order operations per cycle and it is composed of multiple copies
of five different types of tiles interconnected via microarchitectural networks [25].

State of the art

Chapter 3 42

(a) TRIPS execution node (b) TRIPS processor core (c) TRIPS prototype chip

125 MHz 125 MHz
DOR 250 MHz DDR
= (1) ==

Global control:
Protocols: fill, flush, commit

16KB 2-way, 1-port, cache-line interleaved banks

Contains |-cache tags, TLB, 8 MSHRs, LS0, dependence pred. perbank Total signal pin = 220 MHZ ==
block header state, r/w instructions Supports load speculation and distributed commit count: ~1,144 125 MHz (21) 125 MHz
branch predictor I-cache banks: DDR DDR
Register banks: [7] 16KB 2-way, 1-port L1 instruction cache banks Chip-to-chip:
32 registers per bank x 4 threads L= Each bank delivers four insts/cycle H Protocol: OCN extension
64 static rename registers per bank Banks are staves to global control unit tag store 64b data path each direction
Dynamically forwards interblock values Memory: 4 channels: N/S/E/W
Execulion nodes: DDR SDRAM, PC2100 DiMMs likely 2 GB/s each direction on each channel
E Single-issue ALU tile 4 channels w/ page interleave Control processor interface:
Full-integer and floating-point units (no FDIV) Synopsis memory controller MacroCell Slave side of generic memory interface
Buffers 64 instructions (8 insts x 8 blocks) per tile 2 GBY/s each channel Source interrupts to get attention
Runs like asynchronous memory
Includes CP command handler
JTAG:
Protocol: IEEE 1149
4 channels w/ page interleave
Includes scan intercept TAP controller
Used for test and early low-level debug

Figure 3-1. TRIPS prototype microarchitecture

Each data tile (DT) partition manages memory (load and store) instructions, performs
address translation and protection with the help of its Data TLB, has a Miss-Handling Unit
which can handle up to 64 cache misses, tracks and resolves memory dependencies between
load and store instructions using its Load Store queues (Figure 3-2), it uses load/store
dependency prediction in order to permit an out-of-order execution, and updates the data
cache when the results become non-speculative.

State of the art

Chapter 3 43

(a) TRIPS Processor Core (b) Data Tile Components
256
o ..) entry
i 256 entry LSQ CAM 150
I r} RAM
e
1
MHU Lp
! | '. o 16 exry 8KB, 2-uway
E MSHR data cacke
MHLU (1 read, 1 twrite)
Write Bufler
Dependence Predictor 1 (_;'{r;

Figure 3-2. TRIPS Processor's Data Tile

Each load/store instruction can be mapped into any of the 16 execution units, it issues
when all its source operands are available and then it is sent to the DT through the network.
[26] When a load enters the data tile, it accesses the TLB to do an address translation, checks
protection attributes, checks the Dependence Predictor (DPR) for a store dependency,
identifies older matching uncommitted stores to perform a store-to-load data forwarding and
it also checks the tag array for a cache hit/miss. There are four possible scenarios depending

on the hit/miss responses as shown in Table 4, and thus, an operation to be performed in
every scenario.

Table 4. Load Execution Scenarios (X=Don't care)

TLB DPR Cache LSQ Action

Miss X X X Report TLB Exception

Defer load until all prior
stores are received

Hit Hit X X

Hit Miss Hit Miss |Forward data from cache

Forward data from L2

Hit Miss Miss X cache, issue cache fill
request
Hit Miss Hit Hit Forward data from LSQ and

cache

State of the art

Chapter 3 44

This architecture supports different sizes for store-to-load data forwarding (8, 16, 32 and
64 bits), thus, whenever there is a “hit” in the LSQ indicating that a store-load data forwarding
is possible, the matching bytes are taken from the LSQ whether the remaining bytes are taken
from the data cache.

When a store is sent to a data tile it is buffered in the LSQ and notifies to the other DTs
that it has been issued, it checks for any dependence violation inside the DTs and if a younger
load with the same memory address is found in the queue, then a recovery process is initiated.
The dependence predictor is updated with this dependence misprediction. In order for a store
to update the architectural state of the processor, it has to commit, then its store data is taken
from the LSQ, the cache tags are checked in TLB and tag array (it is also updated the LRU
algorithm mechanism), and if there is a hit, the cache/memory system is updated with the
store data, then the corresponding cache line is marked as dirty.

3.1.2 TRIPS (UNORDERED, LATE-BINDING LSQ DESIGN)

[15] [27] Unordered, Late-Binding LSQs (ULB-LSQs) sizes are smaller than traditional
LSQs, this is because it allocates the memory instructions at issue time, and thus, it requires
a different allocation mechanism. The allocation entry is taken from a pool of free LSQ slots
in comparison with the traditional LSQs which is age-indexed, this un-links the age of the
instruction from its occupied slot. The age of every L/S instruction is stored in a separate
special CAM which output can indicate the result of a “greater, lesser or equal” operation
instead of a “match” operation. Figure 3-3 and Figure 3-4 show the contrast between the
traditional LSQ design and the ULB-LSQ design.

Allocation Search Ordering Commit
2 -)
on ol
= S g
Ml |8 |—=| CAM |—|2 —= RAM data array e
= = - £
@ =
= - -)
P
o o

1 search, 1 read &
1 write port . ' ' .
M: Memory instruction window size

Figure 3-3. The Age-Indexed LSQ

State of the art

Chapter 3 45

Allocation Search Ordering Commit

2 Q
- _;SJ - gﬁ
U Free| _ CAM age |—=|on | w RAM d _ ~
< = ata array =
Slot CAM || 5 |,) £
= g
(] Q

1 Sjamh»] read 2 fjc?fcha lrcad M= Memory instruction window size

and 1 write port and 1 write port U = Size of LB-LSQ (U << M)
Log2(M)

Figure 3-4. The ULB-LSQ Microarchitecture

When a store instruction arrives, it checks the address CAM for matching loads, and the
special age CAM for younger loads, then using an OR operation between these two results, a
violation is detected. With the store-load data forwarding mechanism, there is no conflict when
there is only one match, but when there are multiple matches, in this case, the age of every
match are read from the ULB-LSQ (one per cycle) and encoded into a per-byte bit vector
(taking multiple cycles to generate this vector), these bits indicate which bytes should be
forwarded to the load, multiple store forwarding is uncommon in many benchmarks, though.

This proposal also includes LSQ filtering optimizations [28], in conventional LSQs, as the
number of in-flight instructions increases, the number of entries that have to be searched
increases as well, so the number of searches can be reduced with the help of hash tables and
bloom filters [29] [30], every load/store address is hashed to a single bit (with the help of
these bloom filters), it is written (incremented) in a hash table, later, when a filtered load/store
address checks this hash table and it is already set that bit, then there is likely to be a match
in the LSQ, if it isn't set, then it is certain that there is not any possible match inside the LSQ,
this search elimination technique is called Bloom filter predictor (BFP) (Figure 3-5). When a
load/store instruction retires, then the BFP entry is reduced by one.

State of the art

Chapter 3 46

Load & Store

Hash predictor LSQ search
function tables decision
—— ST —
Memory
address — | LSQ

Figure 3-5. BFP Search Filtering

3.1.3 STORE SETS

[31] In order to achieve a maximum performance in out-of-order processors, the load
instructions must issue as soon as possible, this can be achieved with the help of memory
dependency predictors which indicate whether a load instruction may have memory
dependence with some of the in-flight store instructions or it should be issued freely, if a
dependence violation occurs, then a recovery process must be taken and the memory
dependence predictor is updated (dynamic predictors), the simplest memory dependence
predictor is the “naive” one (also known as “static” or “blind” predictor), this predictor indicates
either that any load instruction may be dependent of any earlier store forcing it to wait for all
the memory addresses of earlier stores to be known, or that non load instructions are
dependent of any uncommitted store and they should issue as soon as possible.

In this research proposal, they achieved an improved memory dependence predictor which
uses “store sets”, a store set is the set of the stores (identified by their PC) upon which a load
has ever been dependent. They take as a baseline the assumption that historic behavior of
memory-order violations servers is a good prediction for future memory dependencies.

The algorithm is the following: whenever a program begins, the store sets of all the load
are cleared and a naive prediction is temporally used, every time a dependence violation
occurs, the store PC is saved in the store set of the implicated load, if another dependence
violation occurs with the same load, that store PC is saved in that store set as well, then, the
next time the load has to wait until those store instructions included in its store set issue. If
the load has no occupied entries in its store set, it should issue as soon as possible.

State of the art

Chapter 3 47

Because the implementation for this store sets mechanism is hardware expensive, the
modified implementation is achieved using two tables (Figure 3-6), a Store Set ID Table
(SSIT) and a Last Fetched Store Table (LFST). Both load and store instructions access the
SSIT based on their PC and get a store set identifier (SSID), when the SSID is valid it means
that the load/store has a valid store set and with this SSID the LFST is accessed, an “inum”
(hardware pointer which identifies an in-flight instruction) of the most recently fetch store
instruction belonging to that store set is taken, then the memory access instruction must wait
for that store instruction to issue. When a store accesses an entry in the LFST, it updates that
entry with its own “inum”, later on, when it issues, it accesses again the LFST and if it is still
its own “inum” then, it clears that entry.

Load/Store PC Store Set ID Table Last Fetched Store Table
(SSIT) (LFST)
Index
P Store Inum

—> SSID

Figure 3-6. Implementation of Store Sets Memory Dependence Prediction

When a recovery process (branch misprediction, jump misprediction or memory order
violation) is taken, the aborted stores are simply marked as done in the LFST.

3.1.4 STORE VECTORS

[18] It is proposed an improved algorithm for memory dependence prediction (8.1% better
performance than store-sets) based on store vectors, rather than tracking the program
counters of dependent stores, the load-store dependencies are tracked based on the relative
age of a store. Each store vector for any load has the relative positions of all the stores that
enforced memory ordering violations in the past (Figure 3-7). There are three steps:
“lookup/prediction”, “scheduling” and “update due to ordering violations”. The load-store
dependencies are recorded in a data structure called “Store Vector Table”, it is indexed with
the least significant bits of the load's PC, then the store vector taken from the table is rotated
and copied into the load scheduling matrix (LSM). The store vector is rotated such that the

State of the art

Chapter 3

48

least significant bits are aligned to the most recent store (resolved stores are cleared in order

to prevent deadlocks), then, it is written into the LSM.

Store A StoreB LoadW StoreC Load X

.//

(a)

Store Vector

1 13

Store A StoreB LoadW StoreC Load X

(b)

Figure 3-7. (a) Store-address tracking of dependencies, and (b) Age-tracking of dependencies

The position of the bits in the store vectors indicate which stores are predicted to have a
memory dependency with each load, thus, every load has to wait for their predicted dependent
stores to be resolved. When a store is resolved its bit is cleared from the store vectors (its
corresponding column), and once a load has all its store vector’s bits cleared, it is considered
as ready, then it can be issued (Figure 3-8). Initially, the vectors are full of zeros and a naive
prediction is used, the memory ordering violations will fill the corresponding bits in these
vectors, the contents of the SVT are periodically reset in order to clear possible inexistent
predicted dependencies due to changes in program phases, dynamic data values, etc. In

Figure 3-9 is shown an example of the store vectors operation steps.

Store Vector
Table (SVT)

Load PC

[TTTTTT+— Barrel Shift)

Store Addr Ready

‘//‘ Load Scheduling
Matrix (LSM) Load Queue

N
—»

Select

Figure 3-8. Store vectors data structures and interaction with a conventional load queue

State of the art

Chapter 3 49

1 Store Vector

Table (SVT)
STQ Head (oldest)
PC(Load X) STQ tail
| Load Scheduling
STQ Indices: 0 7 Matrix (LSM)
!
ojof1]o]o]1]o0 i I
Ol oKl 1 |Acar Ready
i
TTTTTT] i T
JA e L G B P i _ - -
N7 | Right Barrel Shiit ’- [To XX e o olo]0] HE 0[0]0[0]0F— o Reaty=0
I [T 11 [loRNolel+ o] [
________________________ Frmmme e e e e e e e em e ————————————————
2 1 3 PC(Load X) Store Vector Table (SVT)
Store B Issues 1 Store A Issues
1
1
1
1
1
. ofof1fo]1]1]0
1
Ezﬂooooo-—_<—»nady=1 | zzﬂooooo
Load X issues 1 //
| | next cycle | | | _% . A——r'
1 L i store A colides with Load X [1T 1
' I [1]
1

Figure 3-9. Example store vectors operation

3.1.5 STORE-TO-LOAD FORWARDING VIA STORE QUEUE INDEX PREDICTION

[16] In this store-load data forwarding proposal, rather than doing associative searches
within the store queue, they incorporate a speculative indexed access. The address CAM is
replaced by a simple decoder (Figure 3-10), in order to avoid this associative search (a power
saving technique), they use a forwarding index predictor (based on store sets) to predict the
most likely store index to be dependent with a load, then forward data from this store entry.
For those loads that had a memory ordering violation, a delay index predictor is used, this
delays the execution of a load until all non-predicted stores that may have a memory
dependency have committed. The predicted SQ index is generated during the decode/rename
pipeline stages, in this stage is either identified a dependency between a store or predicted a
non-dependency, load issues only when its input registers are ready and when the store
corresponding to its forwarding index has executed. In order to ensure memory ordering
correctness, a load re-execution prior to committing may be made [14] (a violation is detected
when a load’s re-executed value is not equal as the first executed value) for those loads that
executed with older unresolved stores.

State of the art

Chapter 3 50

s |8
addr) 3| |2 addr | |predicted SQ entry
3 2 sq [sQ
— .2 ¥ o~ J4—]
Cs | 2 e T Sl s s
o FR Rl g s Py | 18pERTS
) |
CAM RAM —[= < RAM |
— data || data |
(a) (b) 4‘1‘%

Figure 3-10. Store queues: (a) associative, (b) indexed

3.1.6 ADDRESS INDEXED MEMORY DISAMBIGUATION AND STORE-TO-LOAD FORWARDING

[17] Because store-to-load data forwarding and memory disambiguation require fully-
associative, age-ordered searches, this yields to high latency as well as high dynamic power
consumption. In this proposal, the store-to-load forwarding is done with help of a store-
forwarding cache (SFC) and the memory disambiguation is resolved with a memory
disambiguation table (MDT), both of them are not CAM structures, the SFC is accessed as a
cache, speculatively and out-of-order, and the MDT requires sequence numbers in order to
identify and recover from memory dependence violations.

The SFC stores the values of the store instructions as they complete, the loads may
forward their values from this SFC (it is accessed in parallel with the L1 data cache) because
SFC is accessed speculatively and out-of-order, memory ordering violations can occur, thus,
MDT identifies all these memory ordering violations, if exist a memory ordering violations, the
memory unit initiates a recovery mechanism. There is also a store FIFO which retires store
instructions in order when they are dispatched, their data is written to the FIFO, as they
execute, their address is written to their address field in this FIFO, and when they commit, its
entry is cleared (Figure 3-11).

State of the art

Chapter 3 51

Fetch

Decode

Memory Dependence

Prediction Store

Rename QFO

Schedule

Memory Unit
SFC

Retire 4/

A 4

MDT |«

Figure 3-11. Processor pipeline, store forwarding cache (SFC), memory disambiguation table (MDT) and Store FIFO

Because there can be memory ordering violations due to the out-of-order accesses in the
SFC, the MDT tracks the sequence numbers (in-flight tags) of loads and stores to each in-
flight address, whenever it is identified a violation, a recovery mechanism is triggered. In this
proposal, the store set predictor [31] is modified in order to reduce the pipeline flushed caused
by memory ordering violations, the store set id table is replaced by a producer table and a
consumer table, and the last-fetched store table is replaced by a last-fetched producer table.
The updating process of this predictor table is: “When the MDT notifies the producer set
predictor of a dependence violation, the predictor inserts a dependence between the earlier
instruction (the producer) and the later instruction (the consumer) by placing the two
instructions in the same producer set”. Merging producer sets is very similar to merging store
sets. The MDT is address-indexed, if a load/store’s sequence number is later than the one
found in the MDT entry, or if there is no valid load sequence number, then the entry takes the
sequence number from this load/store. Otherwise, if it is earlier, then a memory ordering
violation is identified.

State of the art

Chapter 4 52

Chapter 4

PROPOSED LOAD/STORE QUEUE DESIGN

The main contribution of the thesis is the design of a LSQ for the Lagarto Il processor
which fetches two instructions per clock cycle (Figure 4-1), a conventional Load/Store Queue
with in-order execution design was used as a base model and is described in detail in the first
subsection of this chapter, then a modified design with an out-of-order execution and the
energy saving techniques implemented is described in the second subsection.

4.1 LoAD/STORE UNIT WITH IN-ORDER EXECUTION

This first design of a LSQ with in-order execution was taken as a base model in order to
be modified to the out-of-order design, both designs get from Dispatch stage up to two
instructions per cycle and can issue up to one instruction per cycle. The main building blocks
in this first design are the “Ready Bit Register”, “WakeUp Logic”, “Select Logic”, “Register
Files”, “Address Computation Unit", “Tag Bus", “Destination Bus”, “Bypass Logic”, “Forward
Logic”, “Reorder Buffer (Dispatch, Issue & Execution flags)” and the “Memory Access
mechanism” (Figure 7-3).

Proposed Load/Store Queue design

Chapter 4

53

LAGARTO

/4

Lagarto 11 Microarchitecture

Fetch
LL Branch

Instruction Predictor

Cache Instruction Fetch Queue

Cache Controller Decode

Allocation & Rename

Dispatch

Integer Floating Point
Queue Queue

INT FP
Register File Register File

Cache Controller

:Addr!ss & Data BusL

. AGU ALU
Translation

Lookaside
Buffer

64b 64b 64b 64b
Branch Branch FMAC FMAC FMAC FMAC

ALV

Figure 4-1. Lagarto Il Microarchitecture

4.1.1 IN-ORDER ADDRESS COMPUTATION PIPELINE

Reorder Buffer

Exception Handler

The whole pipeline of this Load/Store Unit is divided into Address Computation (also
known as the Address Queue) and Memory Access (also known as the Load/Store Queue),
the Address Computation section is where the instructions wait for their source operands to
be ready in order to either bypass their source operands values from the Bypass network or
read them from the Register Files, then the Address Computation Unit can calculate their

memory addresses adding a base operand and a signed immediate value .

Proposed Load/Store Queue design

Chapter 4 54

An instruction is written into the LSQ when its entry has been assigned in the queue (the
Tail Pointer assigns this entry in the ROB) and is dispatched (its flag in the Dispatch-ROB
entry is then set to “1”) from the Front-End, its source registers check the Ready bit vector
register (a building block which keeps track of the value generation for every register) in order
to know if their values have been already generated by earlier instructions, the Ready Bits for
the ready registers are set to “1” and written in its corresponding instruction queue entry, if
their values aren't generated yet, then a “0" is written (Figure 4-2). Also, the Immediate value,
the control bits and the physical register tags are stored in the queue (the source and
destination tags are written in the Memory Access section).

Address Queue

from Dispatch
i — % Ready Logic (Base) ’ I | l
nstruction =
LD SR5 ¢ 0x04(SR2) =
1 0 |
| O |
Instruction B .
SD $R3 = 0x08($R4) Ready Logic (Source) ’ I | |
—
)]
+—
8]
[=Ts}
[J]
o 0 st .
- g g Immediate
o
>
©
(18]
[J]
o
1 '
1] o
0 0 = Not Ready Fointer
1 1 = Ready
| O |
LO |

Figure 4-2. Ready Bit Assignment Example

The associative WakeUp is done by comparing the un-ready base register tag from each
entry in the queue with the register tags sent through the Tag Bus every cycle, if there are any
matches, the corresponding ready bits for those registers are then set to “1" (Figure 2-19).
The Select Logic waits until the queue entry pointed by the Head Pointer (Figure 4-3) has its
base register “ready” in order to issue that instruction (the Head Pointer is incremented in
order to point to the next instruction and its flag in the Issue-ROB entry is set to “1"), the
Integer Register File is read and the Bypass network is accessed, then the memory address
is computed by adding the base register data with the sign-extended immediate value (Figure
4-4). The generated memory address is then stored in its corresponding entry in the Memory
Access section of the LSQ.

Proposed Load/Store Queue design

Chapter 4 55

New
dispatched Head
instructions Pointer
1A
Address
Queue
T Next
Tail instruction
Pointer toissue
Figure 4-3. Head Pointer and Tail Pointer
Head
Pointer Data Base

!
Priority Order Selection Logic
Base
e TTTTITTITT | [owe
ready?

Ready Logic (Base) Reg Tag

AGU

Payload @8
Base Reg Tag RAM
CAM
Integer
Register
File
Immediate
Payload RAM

Figure 4-4. Select Logic and Address Generation Unit

4.1.2 IN-ORDER MEMORY ACCESS PIPELINE

In this section of the LSQ are stored the memory address, the Load/Store bit (it serves as
a read/write enable for the Cache Memory), the Source data (the data to be written to cache
memory by a store instruction), the Destination register tag (the register to be updated with
the data read from cache memory by a load instruction) and the Destination data (the data
read from the cache memory by a load instruction) for every dispatched memory access
instruction; also, the cache memory is accessed by the memory access instructions selected
to be executed. When a store instruction is dispatched and enters the LSQ, its source register
tag (it points to the physical register containing the data that will be written to cache memory)
accesses the Register File, the Bypass Network and the Ready bit Register in order to know if

Proposed Load/Store Queue design

Chapter 4 56

it has been already generated, if it has, the data taken from the Register File (Integer or
Floating Point) or the Bypass network has the newest value for that physical register, then it
is written to its corresponding entry in the Memory Access section of the queue, if it hasn't
been generated, a “0” is written in the ready bit field of that source register and the source tag
is stored in the Forward Logic CAM, this CAM is similar to the WakeUp CAM, the un-ready
register tags in the Forward Logic CAM are compared with the tags sent through the
Destination Bus, and, when there is a match, the source data is forwarded to its corresponding
data field entry of the queue (Figure 4-5).

Integer & FP | [|
Register

fnstruction A H
SD $R2 - 0x04{$R4) Files

Data

Data Source A — —
(Source/Dest)

forwarded
RF or Bypass

Instruction B
SD $R3 - 0x08($R4)

Data Source B ===+

Bypass

Ready Logic

»{ @ Source A

» @ Source B Forward Logic

(Source)

Ready Bit Register

Forward
Logic

Figure 4-5. Forward Logic Example

The memory addresses generated in the Address Computation section of the queue are
stored in the “memory address” field of this Memory Access Queue section, the select logic
checks the entry pointed by the Head Pointer and sends to execution a load if it has its memory
address already computed, the stores are sent to execution only at commit cycle and it is also
needed its source data to be already forwarded, taken from the Register Files or bypassed. In
order to access the cache memory, the L/S Bit serves as a Read/Write enable for the cache
memory, in the case of a load, the data loaded is sent through the Destination Bus and written
in the corresponding Register File (accessed by its Destination Register tag), and for a store,
the Source Data is stored in cache memory accessed by its memory address (it is written first
in the store buffer in order to don’t generate waiting cycles due to cache hit misses). Figure
4-6 and Figure 4-7 show the memory access for both Load and Store instructions.

Proposed Load/Store Queue design

57

at Commit-time -==========

Head
Painter
a load executes

if it has its

computed

""" memory addess

L/S Bit 1ef N
2
emory S|G{emon Adtreg] s Data
Address =
o Data
Destination N Cache
Register XL%‘I Memory
|
| %
Data 5 E 5
(Source) <(8 &
5|7 §
=
Store --------3 i 2
I Load y %
<
TLB

Destination Physical Register Tag.

Bypass

Destination Data

Data Dy

Register
Files

Figure 4-6. Memory Access (Load)

Head
Pointer
i
at Commit-time --------
:
H 2 . | Read/Write
L/S Bit t P Cooble
[ee]
S
Memor S
Y I MelnlmyAddreg Address
Address r -
S g Data
G
Destination | |, § Cache
. x
Register § Memory
3
L <
e
Data =
= P Input Data
(Source) <
3
Store -------- .
A4

TLB

Figure 4-7. Memory Access (Store)

Proposed Load/Store Queue design

Chapter 4 58

4.2 LoAD/STORE UNIT WITH OUT-OF-ORDER EXECUTION

In-order LSQ designs requires less complex logic due to the in-order select mechanism
which only checks the entry pointed by the Head Pointer, and since there is no out-of-order
execution, memory dependency violations can’t occur (a memory disambiguation scheme isn't
necessary), but, the drawback is that ready non-dependent instructions can't issue nor
execute if there are earlier instructions that haven't issued/executed yet, leading to an overall
low performance.

This proposed LSQ design comprises a power-efficient memory disambiguation scheme
using a Hash table and Bloom filters [30] as well as a novel low dynamic power consumption
store-to-load data forwarding and memory address disambiguation using “Non/Possible
Dependencies Vectors”, the LSQ is divided into three logical queues, the Address Queue, the
Load Queue and the Store Queue (Figure 4-8), being the Address Queue the section (Address
Computation section) where the instructions remains in their reservation units until their base
registers are ready in order to compute its memory addresses in the Address Computation
Unit (ACU) (also known as the Address Generation Unit), whether the Load Queue and Store
Queue belong to the Memory Access section, in the Load and Store Queues are carried the
memory accesses, the store-to-load data forwarding and the memory disambiguation
mechanism. The Instruction Queue using a Block Mapping Table [1] was adapted to the
Address Queue in order to reduce the number of comparisons carried by the WakeUp Logic,
it also inspired the idea of the Non/Possible Dependencies Vectors design reducing the
amount of comparisons carried by the Memory Disambiguation Scheme and the Store-to-
Load Forwarding Logic.

Proposed Load/Store Queue design

Chapter 4 59

Front End
Register Address Queue
Banks
|
| !
)) Dependencies
Address Generation Unit Control
(PDV)
| |
l Store-Load l
Load Data forwarding Store Memoryv
> le— Dependencies
Queue Queue Disambiguation
Store
Data Cache Buffer

Figure 4-8. Proposed LSQ General Pipeline

4.2.1 UNKNOWN/KNOWN MEMORY ADDRESS, BLOCK MAPPING TABLE & ADDRESS GENERATION

Every memory access instruction is classified into any of these two memory address-
status categories, a known address or an unknown address, being the Address Queue the
logical structure with the unknown address instructions stored in it, whether the instructions
are stored in either the Load or the Store Queue. Since a memory address isn’t known until
being computed by the Address Generation Unit (each instruction waits in its reservation
stations until it has its base register “ready” to be read from the Integer Register File or to be
bypassed from the Destination Bus), there must be extra careful with the memory access
instructions executed out-of-order, thus, a memory disambiguation scheme must be used in
out-of-order designs.

Proposed Load/Store Queue design

Chapter 4 60

The Address Queue implemented in this thesis project uses an adaption of the “Low-
Energy Instruction Wakeup Mechanism” [1], the whole queue is divided into four blocks and
the comparisons carried out between every base register tag of the “unready” entries and the
register tags sent through the tag bus, are directly enabled or disabled by a Block Mapping
Table (BMT). Figure 4-9 shows an example of the Block Mapping Table functionality, the
“unready” source operands for the three instructions are marked in the BMT (a, b, ¢) in the
moment they are stored in the CAM-Blocks and the value for their source operands are
“unready”, this BMT indicates which blocks require the physical registers sent through the
Tag Bus, then, whenever a register tag is received, the BMT enables only the required
comparisons and disables the remaining blocks (d).

Figure 4-10 illustrates how the Address Queue's CAMs & RAMs are organized along the
BMT.

Block Mapping Table Block Mapping Table
Example code Example code
B0|B1[B2B3| B0[B1(B2|B3 ¢——

RO 1)R1 <- R2+R3 RO 1)R1 <-R2+R3

R1 2) R5 <- R1'Ré R1 ——R1[X 2) R <-R1*R4
R2 R2 3) R8 <- R1+R5 R2 [X 3) R8 <- R1+R
R3 ——R3 || R3 (X | |

R4 R4 ———R4 X

RS CAM-Blocks RS CAM-Blocks

Yo [B3] [B2] [B1] [BO] oo [B3] [B2] | [B1] [BO]
o Raldl || s Rl [.] | o
+ - +
& N g
v 5 v
& = &
{a) (b)
Block Mapping Table BOTEES Block Mapping Table D
B0|B1/B2[B3)] Bo|B1B2 B3]

RO [1) R1 <- R2+R3 Dest TAG o — 1) RY, < R2+R3
R1 —R1_[X]|X 2) RS <- R1"R4 Rl ——pq [XX 2) RE£R1°R4

= 3) R8 <- R1+RS R2 (X 3) R8 <“R1+R5

R3 | X R3 [X

R4 |X Ra| |x
RS RS ¥ CAM-Blocks RS X CAM-Blocks

[B3] | [B2] [B1] [BO] e [B3] [B2] [B1] [BQ)
)

2

3
—a—
4

R8<-R1 +R5
R5<- R1* R

R1<-R2 +R3
R1<-R2 +R3

ExplicitEnabling for Comparison

€] {d)

Figure 4-9. Block Mapping Table Functionality Example

When an instruction first enters the Load/Store Unit (Address Queue, Load Queue & Store
Queue), it still does not have its memory address calculated, thus, it is sent to the Address
Queue, belonging to the unknown address status, it is assigned an entry in the Load or Store
Queue as well. In order to implement (for both CAM & RAM) four single-port memories, the
entries along the queue are organized as shown in Table 5, needed to be included some write
enabling control and multiplexers intended for supporting the logical two-input ports for the
two input instructions (Table 6). This logic control makes use of the Tail Pointer in order to

Proposed Load/Store Queue design

Chapter 4

61

determine in which block the instructions are stored, avoiding to implement multi-port

memories.
Table 5. Entries Organization inside the Queue
LSB MSB DECIMAL #BLOCK
4 . a
000 0
001 4
010 8 o
0 Nz
o 011 12 %
N 100 16 O
101 20 o
110 24
111 28
e
000 1
001 5
010 9 i
. 011 13 5
< 100 17 O
101 21 =s)
110 25
111 29
d 000 2
001 5
010 10 oN
5 011 14 5
100 18 O
101 22 =e)
110 26
111 30
¢ 000 3
001 7
010 11 ag]
- N
ST STV
100 19 (@]
101 23 [as)
110 27
111 31
Table 6. 4 Blocks-RAM/CAM write enables and multiplexers between two input instructions
Tail Enable Enable Enable Enable Instruction 0/1 Instruction 0/1 Instruction 0/1 Instruction 0/1
Pointer Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3
00 1 1 0 0 0 1 0
01 0 1 1 0 0 0 1 0
10 0 0 1 1 0 0 0 1
11 1 0 0 1 1 0 0 0
BASE
POINTER ENABLES MUX

Proposed Load/Store Queue design

Chapter 4 62

In the BMT are marked only the “unready” operand tags needed by every block, and are
cleared every time the operand tags are received from the Tag Bus.

Selection Logic

Recovery Flag,
Recover Enable Recovery
In-Flight Tag Tai Pointer
. " Cleaning Ready Bits & Valid N
Ready ‘ Tail Pointer ‘ Valid Bits Bits Rearranged Header Pointer “
- §|t
Register Tail Pointer &
Checking Tail Pointer +1 Pre-charge
S WritingPort &| ~| Reading Port
= RIS
/ EN, / EN, \
S|/ Lmsto, CAM S|/ list RAM g
Hnsty finst @
5-/ M Load/Store Unit LA E/ [‘J" Load/Store Unit \ =
Inst 1) y Block O T lmstq x Block O
(8 entries) / (8 entries) \
EN, EN,
CAM RAM
Inst O, /ns!g
v Load/Store Unit | | | o Load/Store Unit
Inst 1, x Block 1 inst 4| x Block 1
(8 entries) (8 entries)
D D
Instruction. E E Instruction Issued
structions M T E— — M u
U U X
X EN, X EN,
CAM RAM
Inst 0, inst ¢
M Load/Store Unit LA Z" Load/Store Unit
Inst 1,] x Block 2 inst§| x Block 2
(8 enties) (8 entries)
\ EN, \ EN, /
CAM RAM
Inst O, /nstq
B" Load/Store Unit | | | [‘J" Load/Store Unit
Inst 1,] x Block 3 inst 4| x Block 3
(8 entries) \ (8 entries) /
In-Flight Tag
4 In-Flight Tag
/ Hnst Oy M ;':;;r?g Enabling
Inst1
) Tape | Block0 BMT Block 0 Values
T
A~ ¥ oF | Recovery Flag o
° CONOTCAXL]
. /mtgl x htﬂs;o;;:g Enabling Recover Enable -
ey [E— Block 1 D
#Block X Table BMT Block 1 Values IHOCOVEOR
E
“Not Ready”, M S NCUCUVCT \'l
Register Tags and Valid Bits U T
Host0y m Block 2 Enabling FOT
X st U Mapping Block 2
¥ o Table BMT Block 2 Values, DR AT =
S DIV S
sty :LO:;:E Enabling
Linst 1,
X Table Block3 BMIT Block 3 Values,
J Destination
Neg-edge Latch Tags

Figure 4-10. Address Queue (inside the L/S Unit) & the Block Mapping Table

Proposed Load/Store Queue design

Chapter 4 63

The implemented design for the Queue’s Ready Bit Logic is shown in Figure 4-11. It
reduces the dynamic power by setting the unnecessary comparison’s register tags to “0” so
that it won't change until the ready bit is updated with a new dispatched load/store instruction.

Match
WakeUp Logic in
Tag Bus
(OR Reduction)

Block’s Ready Bits

Actual Bit Value
[

Match and Actual Value,

Enable Comparisons in
Block (From Block

<€ Mapping Table for each
destination tag reading
the table)

New Register Tag Entry 0

— Read)
,,,,,,, Value Register Tag Entry 1

nsto | Enable 1 Register Tag Entry 2

) | g g Entry

| } . Register Tag Entry 3 .
Tag 1 : Register Tag Entry 4 :

A(‘:‘:’s;‘t‘;g ! Register Tag Entry 5
- Register Tag Entry 6
Register Tag Entry 7

Ready Bjts

1]

Clock

1
(LU
jal

Sources Ready from Register Ready Bit (New Instructions)
MUX

Tag Bus

Figure 4-11. Queue's Ready Bit Logic

4.2.2 OUT-0F-ORDER SELECT LOGIC

In order to prevent deadlocks and to support an out-of-order selection, it was adapted a
Leading Zero Counter [32], achieving a fast low power priority order selector (Figure 4-12).
This circuit is implemented for both “oldest first” and “youngest first” required priority order
selectors, the “oldest first” mechanism is used in the Select Logic for the Address Queue and
Load Queue (the Select Logic for the Store Queue is carried by the Commit mechanism),
whether the “youngest-first” mechanism is used in the Store-to-Load Data Forwarding, this
is because it is needed to forward the most updated data value (load instruction-relative) for
every memory location whenever this mechanism is used. The circuit used in order to perform
this out-of-order selection is illustrated in Figure 4-12, and the whole selection pipeline
(incorporating the Address Queue, the Address Generation Unit, and the Possible
Dependencies generation) is shown in Figure 7-5 in Appendix-A.

Proposed Load/Store Queue design

Chapter 4

64

© ¢ Ll ¢) b By—
. 3 |
‘ .
e ¥]

i 3 Bt A T P
I R i

— | . >-7v'
e . L

10
1
.
v

11

o~ . -
- ‘ Wiy 000 o W
- |

Ig
v

4
PR

15

17

16
b T [
o »
.
S
.
L
4

18
»

. —n P
@
]
] *T*T‘ . T
R . e —
I " §)
- -
]
< —
. I — b4 T S "y
— e — —»
g) PR ™ 1 ; 3
e ’
g l = 1 s e
~ 1 -

~
o~
&
3
b4 . T T
‘ " iH
& -
R . | -
o
=
@ i @
)
5 g g g &
S & s H S
“\ ke v < @\
o S s o
@ [IS 1
o S PE 3 S
Z S S
o S) 3
vy i w

Figure 4-12. Leading Zero Counter as a Priority Selector (oldest-first) — 32bits

0 Valid

1

o

<

Proposed Load/Store Queue design

Chapter 4 65

4.2.3 MEMORY DISAMBIGUATION & STORE-TO-LOAD DATA FORWARDING MECHANISM

The memory disambiguation and store-to-load data forwarding mechanism proposed in
this thesis are constituted by “non/possible dependencies vectors”, “hash table and bloom
filters” [29] [30].

A) Non/Possible Dependencies Vectors

The non/possible dependencies vectors are dynamic vectors used to enable/disable
several memory address comparisons carried between the issued loads and stores, the “un-
rotated” selection bits given by the Select Logic in the Address Queue are used to index a
Possible Dependencies Memory, this memory’s output is a vector mask which after a
combinational logic operation between the valid/busy bits and the load/store bits, generates
the Non/Possible Dependencies Vector. Figure 4-13 shows the generation of this vector.

[TAIL POINTER |

ADDRESS QUEUE (Loads = 0 / Stores = 1)
0 0

Ready Instructions
Valid Instructions

1
1
1

~|=lo|-
o
wlol=|~
~lolo|~
ol=lo]o

1 1
1 0
4 3 2

Rearranged

SELECTED INSTRUCTION I HEAD POINTER I

ADDRESS QUEUE (Loads = 0 / Stores = 1)

(NON) POSSIBLE DEPENDENCIES VECTOR

GENERATOR 1 0 0 1 0 1 0 Load / Store
0 1 1 0 0 0 0 Ready Instructions
0 1 0 0 1 1 1 Valid Instructions
7 6 5 3 2 1 [
| >l 0 | 0 | 0 1 | 1 | 1 | 1 Jvask
1 0 | 0 | 0 0 | 1 0 1 |

| (NON) POSSIBLE DEPENDENCIES VECTOR |

Figure 4-13. Non/Possible dependencies vector generation

Atable testis illustrated in Figure 4-14..25, it shows how the non/possible dependencies
vectors along with the hash table mechanism identifies memory order violations while it
reduces the amount of memory addresses comparisons carried between the loads and stores
achieving a store-to-load data forwarding effectively. For every memory order violation, the
memory dependence predictor has to be updated. When a store issues, its memory address
is written (incremented the counter in “1” after the bloom filter reduction) in the hash table,
the un-issued load instructions found from its entry position in the queue to the head pointer
are marked as “1" in its non-dependencies vector, these marked loads disables the

Proposed Load/Store Queue design

Chapter 4 66

comparisons between this issued store. In the other hand, when a load issues, it searches the
hash table for a possible memory address dependency, if it matches, then the store queue is
accessed, if not, it is written directly to the load queue without executing any comparison, the
un-issued store instructions found in the queue from the load’s entry and the head pointer are
marked as “1" in its possible dependencies vector”, these marked stores enables the
comparisons between that load and the un-issued marked stores. When a store issues, if a
match has occurred with any younger load, the load’s possible dependencies vector is updated
and all the bits from that store’s position are cleared to “07, if there isn't any match, just the
entry of the store is cleared in the vectors. A load is solved (it means that it has no more
memory dependencies left) when the bits in its possible dependencies vectors are all set to
‘0",

@ Entry L/S \validBits Simulated Order
*

0 ° 0 5 0 o Issued
1 o | 1| s00 1 s |unknown - Unissued
2 o 350 2 s |unknown - Selected
3 4 ° 250 3 s |unknown| - Head Pointer | (Next to commit)
4 § il 650 4 L |unknown - Tail Pointer | (Also committed)
5 z ° 600 5 s | Kknown #1 w | Committed
6 g ° 500 6 L |unknown
7] ° 350 7 s |unknown| Load Queue
8 § o 650 8 S |unknown Store Queue
9 2 ° 350 9 s |unknown| Non Possible
A 4 ° 450 A s |unknown| Possible
B E o 350 B L |unknown| (YW Match in Hash Table
c ? ° 500 € S |unknown| Read Hash Table
D o 250 D L |unknown - | w [write Hash Table
3 o T » E - 0 *
3 o l F 0 & Hash Table
AQEntry

600

Figure 4-14. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (a)

@ ENTRY L/S validBits Simulated Order
*

0 ° ° 0 s o * Issued
1 ° o | 1| s00 1 s |unknown - Unissued
2 o o 350 2 s | known #2 w | Selected
E] 2 ° ° 250 3 s |unknown| - Head Pointer | (Next to commit)
4 3] - ° 650 1 L [unknown B Tail Pointer | (Also committed)
B
5 > ° ° 600 5 8 Known #1 Committed
6 E ° ° 500 6 L |unknown|
7 g o ° 350 7 s [unknown| Load Queue
8 e °© ° 650 8 S |unknown Store Queue
9 § ° ° 350 9 S |unknown Non Possible
2
A IS ° ° 450 A s |unknown Possible
] E © ° 350 B L |unknown| [Vl Match in Hash Table
o
c 5 ° ° 500 c s |unknown Read Hash Table
D ° ° 250 D L |unknown - | w [write Hash Table
E © °© | T E - 0 o
F E} ° F 0 2 Hash Table
o ™
@
Mem. Add.

Figure 4-15. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (b)

Proposed Load/Store Queue design

Chapter 4 67

@ ENTRY L/S v

its Simulated Order

0 © ° 0 * 0 S 0 o Issued

1 ° ° 0 600 1 S |unknown - Unlssued

2 ° ° 0 350 2) Known #2 Selected

3 g o o 0 250 3 S |unknown| - Head Pointer | (Next to commit)
4 S EHE ° - ° 0 650 4 L |unknown - Tail Pointer | (Also committed)
5 g ° o 0 600 5 S Known #1 Committed

6 E* ° o 0 500 6 L |unknown| -

7 £ o o 0 350 7 S |unknown| - Load Queue

8 é © o - 650 8 L | known #3 R Store Queue

9 ;5,, E o 0 350 9 S |unknown| - Non Possible

A 8 ° ° 0 450 A s |unknown - Possible

B E ° ° 0 350 B L |unknown| - [Yll Match in Hash Table

c ? °© ° 0 500 € S |unknown| - Read Hash Table

D ° ° 4 250 D L |unknown - | w [write Hash Table

3 E} o 0 W E - 0 -

F °© ° [* F - 0 o Hash Table

AQ Entry

Mem. Add.

Figure 4-16. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (c)

@ ENTRY L/S v

Simulated Order

(1] o o 0 * 0 S 0 o Issued

i ° ° 0 600 1 S |unknown - Unlssued

2 ° o 0 350 2) Known #2 Selected

3 g o o 0 250 3 S |unknown| - Head Pointer | (Next to commit)
4 il - |- | o ° - ° 0 650 4 L |unknown - Tail Pointer | (Also committed)
5 g * * o o ° o 0 600 5 S Known #1 Committed

6 E P I S o o o 0 500 6 L |unknown| =

7 || - - o o 0 350 7 S |unknown) - Load Queue

8 é o E} °© 0 650 8 L Known #3 Store Queue

) H ° o ° 0 350 9 S |unknown| S Non Possible

A 2 ° ° ° 0 450 | A S |umknown 5 Possible

B E o E} o 0 350 B L |unknown| - (YW Match in Hash Table

C 5 © ° o 0 500 (4 S |unknown - Read Hash Table

D o ° o 250 D L | Known #4 R| [w][witeHashTable

E) ° o 0 . E - 0 &

3 o o o 0 . F - 0 * Hash Table

AQ Entry

Mem. Add.

Figure 4-17. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (d)

L
P @ ENTRY L/S VvalidBits Simulated Order
0 o|o o o * 0 9 0 S 0 o Issued
1 “| o o o B 0 600 1 S |unknown| - Unlssued
2 oo ° ° B 0 350 2 s | known #2 Selected
3 2 = | o ° ° . 0 250 3 s |unknown| - Head Pointer | (Next to commit)
a4 G o | «~ - =Y 0 650 4 L |unknown| - Tail Pointer | (Also committed)
5 g o| o ° o 0 600 5 S Known #1 Committed
3 g o~ ° ° 0 500 6 L |unknown| -
7 £ | o ° ° 350 7 s | known #5 w Load Queue
8 é \ / T o ° o 0 650 8 L Known #3 Store Queue
) % /><\ oo o ° 0 350 9 s |unknown| = Non Possible
A S BN o oo ° ° 4 450 A s |unknown| - Possible
B =l - |- | o _// o|o o o 0 350 B L |unknown B [Vl Match in Hash Table
c ? °|o °© ° 0 500 € S |unknown - Read Hash Table
D oo ° ° 0 250 D L | Known #4 | w [write Hash Table
E o| o ° o 0 . E - 0 &
3 o| o o o 0 b4 F 0 & Hash Table

AQ Entry

Mem. Add.

Figure 4-18. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (e)

Proposed Load/Store Queue design

Chapter 4

STORED POSSIBLE DEPENDENCY VECTORS

-

AQEntry

Menm. Add.

Cleaned
Possible
Dependencies

Possible
Dependencies
Left & Stored

0 00 O0O0OTOTGO

0 0 0 0

1

Store-to-Load
Forwarding

STORED POSSIBLE DEPENDENCY VECTORS

mOUO®P®©ONOUAWNRO

-

AQ Entry
g

Mem. Add.

Enabled
Comparisons

0000000000001'010‘V7—

0 0 0 0

1

0O 0 0 O0O0OO0OUOUO OO0OOO0

ENTRY L/S val
o 0 s 0 * Issued
| n]eoo| 1 S [unknown 5 Unlssued
350 2 s | xnown #2 Selected
250 3 S |unknown| - Head Pointer | (Next to commit)
650 4 L |unknown - Tail Pointer | (Also committed)
600 5 8 Known #1 Committed
500 6 L |unknown 5
350 7 s | known #5 Load Queue
650 8 L | known #3 Store Queue
350 9 S |unknown| - Non Possible
450 A S |unknown| - Possible
350 B L Known #6 [Match in Hash Table
500 C s |unknown - Read Hash Table
250 D L | known #4 | w [write Hash Table
| T * E 0 o
* F 0 9 Hash Table

Dependencies Vectors & Hash Table (f)

00 0O0OOOOOOOOOODOO0TO0O0

Figure 4-20. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible

STORED POSSIBLE DEPENDENCY VECTORS

mOUO®>P>®O®ONOUSWNRO

-

Mem. Add.

0 0 0 0 0 0 0 0 O RN

1

1

| A

Enabled
mparisons

oo - -

OODOOOOOOIOMOUO

00000000000\

0 0 0 0

1

0 00 O0O0OTO OODOTU OO0

=3
n
o

Figure 4-19. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible

@ ENTRY L/S val
* 0 S 0 o Issued
| 1| s00 1 s |unknown - Unissued
350 2 s [known #2 Selected
250 3 s | known #7 w Head Pointer | (Next to commit)
650 4 L |unknown) = Tail Pointer | (Also committed)
600 5 S Known #1 Committed
500 6 L [unknown) =
350 7 s | known #5 Load Queue
650 8 L Known #3 Store Queue
350 B s [unknown = Non Possible
450 A s |unknown = Possible
350 B L Known #6 [Vl Match in Hash Table
500 c s [unknown = Read Hash Table
250 D L | Known #4 | w [write Hash Table
| T * E] - 0 .
. F . 5 >

Dependencies Vectors & Hash Table (g)

0

0 00O0O0OOOOOOOOOTU OO0 O

000 O0O0OOOOOOTOOUOTO0OO0O0

0 00 O0O0OTOTO

Figure 4-21. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible

~ 5]

0
0
0
0
0
0
0
0
0
0
0
0
0
0

o)

ENTRY L/S val ulated Order
* 0 s [* Issued
H | 600 1 s [known #8 w | Unissued
350 2 s | Known #2 Selected
250 3 s | known #7 Head Pointer | (Next to commit)
650 4 L [unknown| - Tail Pointer | (Also committed)
600 5 8 Known #1 Committed
500 6 L [unknown| -
350 7 s [known #5 Load Queue
650 8 L | known #3 Store Queue
350 9 s [unknown] = Non Possible
450 A s [unknown = Possible
350 8 L | known #6 Y0 Match in Hash Table
500 c s [unknown = Read Hash Table
250 D L | Known #4 | w [write Hash Table
| T * E 0 o
5 = . 5 ¥

Dependencies Vectors & Hash Table (h)

Proposed Load/Store Queue design

Chapter 4 69

L L
P P @ ENTRY L/S VvalidBits Simulated Order
0 o oo o olo|=« . * 0 - 0 * Issued
1 o oo o olo |« * » 1 - 0 * Unlssued
2 ° oo ° oo« |- [H] 3s0 2 s [xnown #2 Selected
3 2 o oo ° olo |« |+ 250 3 s | known #7 Head Pointer | (Next to commit)
4 § -1 |o o | « - olo |« |+« 650 4 L |unknown| B Tail Pointer | (Also committed)
5 5 - By > oo ° oo« |- 600 5 s | known #1 Committed
e =B T ol « = olol-]|- 500 6 L |umknown 5
7 S o olo|o o olo |« |+ 350 7 S Known #5 Load Queue
8 § o e olol|o ° oo« |- 650 8 L | known #3 Store Queue
) = [E olo|e ° P PSS P 350 9 s | xnown #9 w | Non Possible
IR - |- ole|e ° oo« |- 450 A s [unknown = Possible
B 2 o|lo|o o ofo 350 B L | Known #6 [Vl Match in Hash Table
c 2 olo|e o oo 500 c s [unknown = Read Hash Table
D o|loloe o of o 250 D L | Known #4 | w [write Hash Table
E o|lo|o o ofo K * E =) *
F olo| o o ol o o F - 0 ©

AQ Entry

Mem. Add.

Figure 4-22. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (i)

L L L L
3 [3 [] ENTRY L/S Validgits Simulated Order
0 o o ol o olofle |« . . * 0 - 0 * Issued
1 o o oo o|loflo |« * * L 1 - 0 * Unlssued
2 « ° ° ofe ofolol« |-]+ . 2 5 o * Selected
3 5 ° ° o|e oloflo|x ||~ [H] 250 3 s | xnown #7 Head Pointer | (Next to commit)
4 g ° ° o« aloeflo ||~ 650 4 L | Kknown #10 R | Tail Pointer | (Also committed)
5 E o o oo ololeo |« || 600 5 s Known #1 Committed
6 g o o of = olofleof« ||+ 500 6 L |unknown| =
7 8 ° ° ofleo|e ofolol«|~]- 350 7 s | Kknown #5 Load Queue
8 é ° ° olo|e ofloflo|x|*|= 650 8 L Known #3 Store Queue
2
9 ¢ ° ° oflo|e ofolo|« |+]+ 350 9 s | known #9 Non Possible
A g P I - olo|o olo|e 450 A s |unknown| - Possible
B E o|lo|o olo|e 350 B L | Known #6 Match in Hash Table
c £ oflofo oflo]o 500 c s |unknown = Read Hash Table
D 5 oleol|o ol|lo|e 250 D L | known #4 | w [write Hash Table
E o|lol|o olo|e K * E =) *
F olo| o o|lo]|e o F - 0 ©

AQ Entry

Mem. Add.

Figure 4-23. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (j)

L L L

0 o o ol o o - - . . * 0 - 0 * Issued

1 o o oo o * * * * L 1 - 0 * Unlssued

3 « ° ° oo ° P I I * 2 o * Selected

3 S o o - | o o * * * * * 3 - 0 * Head Pointer | (Next to commit)
4 g o o o |~ - O I I H | 650 4 L Known #10 Tail Pointer | (Also committed)
5 E o o oo o e x| 600 5 s Known #1 Committed

6 § o o o« o PO PO R 500 6 L |unknown -

7 e o o o|o o N 350 7 S Known #5 Load Queue

8 % ° ’z;: o|e ° O I I 650 8 L | Known #3 Store Queue

) 8 ° Comparisons oo ° 350 9 s | xnown #9 Non Possible

A H - | oo ° 450 A s |unknown| B Possible

B E | o ofo o 350 B L | Known #6 Match in Hash Table

c = - ole ° 500 c s [known #11 w | Read Hash Table

D 5 S | oo ° 250 D L | known #4 | w [write Hash Table

E o ofo o K * E =) *

F o ol o o o F 0 ©

AQ Entry

Mem. Add.

Figure 4-24. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (k)

Proposed Load/Store Queue design

Chapter 4 70

@ ENTRY L/S VvalidBits Simulated Order
* 0 - 0 o Issued

Unlssued

Selected
Enabled

Comparisons.

*
*

0 9 Head Pointer | (Next to commit)
*

Tail Pointer | (Also committed)

Known #1 Committed

Load Queue

Store Queue

Non Possible

Possible

[Vl Match in Hash Table

Read Hash Table

=
5
]
g
g
]
]
s
g
2
2
o
g
8
g
s
g
o
g

ol lolo|-]o]~|o
3
H
H
2
©

Known #4 | w [write Hash Table

0 0 0 0 0 0 O0 0 O0 0 O0 0 1 0 0 0N
00 00 0 0 OO0 O0 0 0 0 0 0 0 O0JpCHEEC

000 O0O0OOTOOOOTZ11O0O0OTO0OO0OTO0TO0

000000000|0|k010000

0 00O0OOTOOCOOTZ11O0 10000
a
&
S
nlmlolole|z|e]e|<w]|o|a|s|o]n]-

0 © Hash Table

o o
Iy 2

Figure 4-25. Example for the Memory Disambiguation & Store-to-Load data forwarding using the proposed Non/Possible
Dependencies Vectors & Hash Table (1)

A desk evaluation for every Load/Store combination between three consecutive load/store
instructions and its memory disambiguation scheme is provided in Appendix-B.

Hash Table & Bloom Filters

The Bloom filters along with the hash table function as a reduction filter operation, taking
the 40 LSB bits of each load/store’s memory address, it is applied this reduction in order to
turn it into only 5 bits incrementing one of the 32 counters found in the hash table. When a
memory address is known just after the issuing stage, it passes through a bloom filter which
uses a three-phase XOR operation within its 40 less significant bits > 40+ 2+ 2+ 2 =b bits,
then with these bits the hash table is accessed (32 locations), for every location there is a 5
bit counter (counting from O to 32, one for every queue entry), if a store accesses these
counters a “4+1" operation is executed in the accessed counter, whether a load only reads
these counters and if a “[1-32]" is read, then it means that it is possible to be the complete
40 bits memory address in the store queue, thus it enters to the Store-to-Load Forwarding
Logic Mechanism.

4.2.5 STORE-TO-LOAD FORWARDING MECHANISM AND DELAYED SOURCE DATA FORWARDING

Due to the fact that a store can compute its memory address before its data value is
generated by an earlier instruction, a “waiting cam table” containing the waiting store queue's

Proposed Load/Store Queue design

Chapter 4 71

entries is included in the load queue, when a Forwarding mechanism is executed but this
source data is not ready, the entry of the required store’s source data is stored in this waiting
CAM, then a forwarding is performed whenever the Store Queue’s Source Data Forward Logic
(Figure 4-5) sends the forwarded data through the “Delayed Source Data Local Bus”, the
design is shown in Figure 7-2.

Proposed Load/Store Queue design

Chapter 5 72

Chapter 5

RESULTS

This design has been implemented and simulated using the Altera’s Quartus Il EDA
software getting an overall working frequency of 83.79MHz (Figure 5-1) making use of the
Altera’'s DE2-115 FPGA board, the Front-End data path also is included in order to perform
these simulations. The results are presented as follows, the simulation of the Front-end, the
generation of the Possible Dependencies Vectors, the selection logic, the tests within the Block
Mapping Table and the whole RTL diagram for the implementation.

spilation Report - AddressQueue [G.@ CAM_ReqTag.v

Slow 1200m¥ 85C Model Fmax Summary

Fmax Restricted Fmax Clock Mame Mote
1 88.79 MHz 88.79 MHz Clock

Figure 5-1. Maximum Overall Frequency

Results

Chapter 5 73

Clock

Fetch_Valid_In

FlushDecode_Dispatch

FlushFetch_Decode

In_FlightTag

Instruction_In0 10000000000000...
Instruction_In1 11100100000000.,.
StallDecode_Dispatch

StallFetch_Decode
BytesSel_Decode_Dispatch0
BytesSel_Decode_Dispatchi
Decoded_Valid_Decode_Dispatch0
Decoded_Valid_Decode_Dispatchi
Immediate_Decode_Dispatch0
Immediate_Decode_Dispatchi
Load_Store_Decode_DispatchQ
Load_Store_Decode_Dispatchl
ReadEnable_FPR_Source_Decode_Dispatch0
ReadEnable_FPR_Source_Decode_Dispatchi
ReadEnable_GPR_Base_Decode_Dispatch0
ReadEnable_GPR_Base_Decode_Dispatchi
ReadEnable_GPR_Source_Decode_Dispatch0
ReadEnable_GPR_Source_Decode_Dispatchi
ReqgTag_Dest_Decode_Dispatch0
RegTag_Dest_Decode_Dispatchl
RegTag_FPR_Source_Decode_DispatchO
ReqgTag_FPR_Source_Decode_Dispatchi
RegTag_GPR_Base_Decode_Dispatch0
ReqgTag_GPR_Base_Decode_Dispatchl
ReqgTag_GPR_Source_Decode_Dispatch0
RegTag_GPR_Source_Decode_Dispatchl
Signed_Decode_Dispatch0
Signed_Decode_Dispatchi
‘WriteBank_Decode_Dispatch0
‘\WriteBank_Decode_Dispatchi

4
4
4
4
-
-
-
4
4
-
-
4
4
-
-
4
4
4
4
4
4
4
4
-
-
-
-
-
-
-
-
4
4
4
4

Figure 5-2. Decoder

The Decoding circuit reads the base, source and destination registers, it also generates
the control bits-vector used to execute the load/store instruction through the whole datapath.
In this simulation two instructions (/ntruction_In 0 and Instruction Inl) are dispatched, they
correspond to: LB $R1<-4($R0) and SWC1 $R1->8($R0) respectively.

Results

Chapter 5

74

« DestTagINTO_In
4 DestTagINT1_In

4 DestTagINTZ2_In

4 DestTagINT3_In

4 DestTagINT4_In

4. DestTagINTS_In

4 DestTagINT6_In

4. Fetch_Yalid_In0

4. Fetch_Yalid_Ini

4. FlushDecode_Dispatch
4. FlushFetch_Decode

4 In_FlightTag_In

4 Instruction_In0O

4. Instruction_Ini

4. Recover

4 RecoverFlag

4. StallDecode_Dispatch
4. stallFetch_Decode

4. BytesSel_Out0

4 BytesSel_Outl

4. Dispatched_Valid_Out0
4. Dispatched_Yalid_Out1
4 Immediate_Out0

4 Immediate_Out1

4. In_FlightTag_Out

4. Load_Store_Out0

4 Load_Store_Out1

4

4

4

4

4

4

4

4

ReadEnable_FP_Source_Out0
ReadEnable_FP_Source_Out1
ReadEnable_GPR_Base_OQutd

ReadEnable_GPR_Base_Out1

ReadEnable_GPR_Source_Out0
ReadEnable_GPR_Source_Out1

ReadyBitFPSource0_Dispatch
ReadyBitFPSourcel _Dispatch

ReadyBitINTBase0_Dispatch

ReadyBitINTBasel_Dispatch

ReadyBitINTSource0_Dispatch
ReadyBitINTSourcel_Dispatch

RegTag_Dest_Out1

RegTag_FP_Source_Out0
RegTag_FP_Source_Outl
RegTag_GPR_Base_Out0

Adn_ v _ AR A ___A.L4

4
4
4
4 RegTag_Dest_OutD
-
-
-

100000001 10000...
11100100001000...
0

B - O O = = = OO — O O — = = O = 0O = M B = = £ ~ O O B

oot
oot
oo
oo
oot
oot
oot

Figure 5-3. Integer Ready Bit Register - Test 1

An implementation and simulation of the Ready Bit Registers (INT & FP) is done in order
to check at dispatch time if a source physical register is ready to be read from the Register
Files or to bypassed from the Bypass network, in the test 1 (Figure 5-3) a physical register

Results

Chapter 5 75

24 is checked and it is found in the Destination Bus, so a ready bit set to “1” is sent to the
Address Queue. In the test 2 (Figure 5-4), a 4 is required and it is also found in the Destination
Bus.

DestTagINTO_In
DestTagINT1_In
DestTagINTZ_In
DestTagINT3_In
DestTagINT4_In
DestTagINTS_In
DestTagINTE_In
Fetch_Valid_In0
Fetch_Valid_Inl
FlushDecode_Dispatch
FlushFetch_Decode !
In_FlightTag_In 17 BEEEEEEEEEEEEEEEEIIDEEE
Instruction_In0 1000000011000+ | (100000001 100000000010000000000000100 | |
Instruction_In1 11100100001000,..
Recover 0

RecoverFlag
StallDecode_Dispatch
StallFetch_Decode
BytesSel_OutD
BytesSel_Outl
Dispatched_Yalid_OutD
Dispatched_Yalid_Out1
Immediate_Out0 I
Immediate_Out1 I —
In_FlightTag_Out DDDDDDDD:}DDDD:E} R
Load_Store_Out0
Load_Store_Out1
ReadEnable_FP_Source_Outd
ReadEnable_FP_Source_Out1
ReadEnable_GPR_Base_Out0
ReadEnable_GPR_Base_Outl
ReadEnable_GPR_Source_Out0
ReadEnable_GPR_Source_Out1
ReadyBitFPSource0_Dispatch
ReadyBitFPSourcel_Dispatch
ReadyBitINTBase0_Dispatch
ReadyBitINTBasel_Dispatch
ReadyBitINTSource0_Dispatch
ReadyBitINTSourcel_Dispatch
RegTag_Dest_Out0
RegTag_Dest_Out1
RegTag_FP_Source_Outd
RegTag_FP_Source_Outl
RegTag_GPR_Base_Out0
RegTag_GPR_Base_Outl

OO T T et T T
OO T T T e T T
IEEEEEEEEEEEEEEEEIIBEEEn
OO T T T e T
OO T T T e T e
OO T T T e T T T
OO T T et T e

LU N

LN

(=T = O - BTV

A A M AN

LN

LS

.

LS

:)4

L SN

4

LN

L s = =

LN

A A M A A A A A A AN

-—-—-—-—-—-———-:—-_-—_——-_-—-

Figure 5-4. Integer Ready Bit Register - Test 2

Results

Chapter 5

76

Some simulations are made for the FP Ready Bit Register (Figure 5-5).

LR

~

AN AN AN

LN

~

v AN NN A A A

4
4
I
I
4
4
4
|
I
4
4
4
4
4
4
4
4
4

AAM AN AN

LN

EN

LN

Clock

DestTagFPO_In
DestTagFP1_In
DestTagFP2_In
DestTagINTO_In
DestTagINT1_In
DestTagINT2_In
DestTagINT3_In
DestTagINT4_In
DestTagINTS_In
DestTagINT6_In
Fetch_Yalid_In0
Fetch_valid_In1
FlushDecode_Dispatch
FlushFetch_Decode
In_FlightTag_In
Instruction_In0
Instruction_In1

Recover

RecoverFlag
StallDecode_Dispatch
StallFetch_Decode
BytesSel_Out0
BytesSel_Out1
Dispatched_Yalid_Out0
Dispatched_Valid_Out1
Immediate_Out0
Immediate_Out1
In_FlightTag_Out
Load_Store_Out0
Load_Store_Out1
ReadEnable_FP_Source_Out0
ReadEnable_FP_Source_Out1
ReadEnable_GPR_Base_Out0
ReadEnable_GPR_Base_Out1
ReadEnable_GPR_Source_Out0
ReadEnable_GPR_Source_Out1
ReadyBitFPSource0_Dispatch
ReadyBitFPSourcel_Dispatch
ReadyBitINTBase0_Dispatch
ReadyBitINTBasel_Dispatch
ReadyBitINTSource0_Dispatch
ReadyBitINTSourcel_Dispatch
RegTag_Dest_Out0
RegTag_Dest_Out1
RegTag_FP_Source_Out0
RegTag_FP_Source_Outl
ReaTan P e Okl

1
1111111
0000000

10000000000000..
11100100000000...

g
OO OO OO OO T O OO T OO
OO OO OO O OO T O OO T OO
OO O O OO OO T O O OO T OO
0 O I O 0 0 O 0 O 0 0 A0 0 A0 0 0 O A A A0 A 0 0 A0 0 00 A 0 A A 0 O A0 O A B
OO O O T

OO O O O O O T

O OO OO O O O O T OO T T AT
OO O O O T T e T T T OO
OO OO OO O T T e T T OO
OO OO OO O O T O e O T T OO

OO OO O O OO OO OO OO OO OO

Figure 5-5. Floating Point Ready Bit Register - Test

The control logic of the Head Pointer and Tail Pointer is implemented and simulated, in
test 1 (Figure 5-6), it was expected to get a “Queue Full” signal in order to stall the pipeline
and in the context recovery mechanism test (Figure 5-7), the Recovered Tail Pointer is being
taken from a Recovery Memory and it updates the actual Tail Pointer after the recovery
mechanism.

Results

Chapter 5 77

Clock
CommitMatchInHeader0
CommitMatchInHeader1
EnableNewInstruction0
EnableMewInstruction1
HeadPointer_Out
QueueFull_Out
TailPointer_Out

1
0
0
1
i
S
1
S

Figure 5-6. Pointer Control Logic - Test 1

Clock
CommitMatchInHeader0
CommitMatchInHeader1
EnableMewInstruction0
EnableMewInstructionl
In_FlightTag

Recover

Recover_Flag
HeadPointer_Out
TailPointer_Out
QueueFull_Out

OENY N N = - = = O O O

Figure 5-7. Recovery Mechanism

For an out-of-order issuing, a priority order selection logic is implemented, the “test
simulation 1" (Figure 5-8) initiates with a Head Pointer of “29”, expecting to be selected no
entry (that is to say that a Valid Selection Bit is set to “0”) because there are no ready
instructions to be issued, in “test 2" (Figure 5-9), the next available instruction to be issued
is the “entry 3", similarly, in “test 3" (Figure 5-10), the selected instruction is the “entry 6”.

Clock L
HeadPointer 29 29
ReadyInstructions 01000000000000000000010011001101
ValidInstructions 10111111111111111111101100110010

Position_Mask_PDY¥G_Out
SelectionBits_Out
YalidSelection_Out

Figure 5-8. Selection Logic - Test 1

Results

Chapter 5 78

Clock
HeadPointer 29

-

ReadyInstructions I T T T IO 00T T0T0 4 (11111111111111111111101100111010
YalidInstructions 00000000000000000000010011001101

EETETRRTRTETTREERRREREL IRL SR FL L1 S—

Position_Mask_PDVG_Out
SelectionBits_Out
ValidSelection_Out

Figure 5-9. Selection Logic - Test 2

Clock

HeadPainter 29

ReadyInstructions 01000000000000000000010011001101

YalidInstructions 1011111111111 111111101101 110010 | (101111114111111111a1101101140010 ||

L U

Position_Mask_PDVG_Out [0 e
SelectionBits_Out (0 e [1

ValidSelection_Out

Figure 5-10. Selection Logic - Test 3

A write/read operation to the Address Queue is simulated in Figure 5-11, it is checked if
the 4-blocked Address Queue is actually storing the corresponding data in its corresponding
blocks, as well as the reading of the blocks throws the correct issued instruction.

:):):):):):):):):) 13
[f6 [17 [I8

RegTag_GPR_Source0
RegTag_GPR_Index0
RegTag_FPR_Source0

RegTag_GPR_Basel
RegTag_GPR_Sourcel
RegTag_GPR_Index1
RegTag_FPR_Sourcel
RegTag_Dest1

Immediate 1

Issued_Valid
RegTag_GPR_Base_Selected
RegTag_GPR_Source_Selected
RegTag_GPR_Index_Selected
RegTag_FPR_Source_Selected
RegTag_Dest_Selected
Immediate_Selected
RegTag_GPR_Base_Selected_cam
RegTag_GPR_Source_Selected_cam
RegTag_GPR_Index_Selected_cam
RegTag_FPR_Source_Selected_cam

Figure 5-11. Address Queue's Write/Read Test

Results

Chapter 5 79

The Block Mapping Table for the Address Queue’'s wake-up mechanism is tested in
Figure 5-12, it is tested expecting a Register Tag 28, it is gotten from the fourth register sent
through the Tag Bus, thus, the comparison is enabled for that Tag Bus’s input.

Clock

Dispatched_Valid
In_FlightTag

ReadyBit

Recover

Recovery_Flag

Reg_Tag
TagBusINTO_In
TagBusINT1_In
TagBusINTZ_In
TagBusINT3_In
TagBusINT4_In
TagBusINTS_In
TagBusINTE_In
Enable_TagBusINTO_Out
Enable_TagBusINT1_Out
Enable_TagBusINTZ_Out
Enable_TagBusINT3_Out
Enable_TagBusINT4_Out
Enable_TagBusINTS_Out
Enable_TagBusINT&_Out

Na AN A

LN

LN

LN

LN

LN

4

LN

LS

A A M A AN AN

Figure 5-12. Block Mapping Table Test

The non/possible dependencies vector generation is simulated taking some desk
evaluations in order to know what vectors have to be generated. The “test 1" (Figure 5-14)
simulates the first case (Figure 5-13), where a “000000000000000000000000000100" vector
is expected after the final rotation, the selected instruction is a store, thus, this NPDV is written
to the Store Queue and it marks the un-issued loads that are not possible to be dependent
with that store.

x
x
>
x
x
x
x
>
x
x
x x>
x
x
x
x
x
x [[= |-

| 1]
0

"Ready"
"Unlssued"

x
x
x
x
x
x
x
x [x
x
x
x
x
X
x
x
x

TEST 1
0X1C
0X1B
O0X1A
0X19
0X18
0X17
0X16
0X15
0X14
0X13
0X12
0X11
0X10
OXOF
OXOE
0X0D
0X0C

Figure 5-13. Possible dependencies vector - Desk evaluation 1

Results

Chapter 5 80

Clock

HeadPointer 29

LS_bits 0110101 010010110001001
LS_selected il

PDMask 00000000000000000000000000111111
YalidInstructions 00000000000000000000010011001101
00000000000000000000000000000100

Figure 5-14. Possible Dependencies Vector - Test 1

The second test (Figure 5-15) simulates another case where a load is selected to be
issued and the un-issued stores that can be possible memory-dependent with that load are
marked as “010000000000000000000000001001" (Figure 5-16).

x
x
x
x

>
>
x
X
x
X
>
>
x
x
X
>
x
x
X
>
>

n "Ready"
0

"Unlssued"”

TEST 2
0X1C
0X1B
OX1A
0X19
0X18
0X17
0X16
0X15
0X14
0X13
0X12
0X11
0X10
OXOF
OXOE
0X0D
0XoC

Figure 5-15. Possible dependencies vector - Desk evaluation 2

Clock

HeadPointer 29

LS_bits 0110101 1010010110001001
LS_selected 0

PDMask 00000000000000000000000111111111
YalidInstructions 01000000000000000000010011001101
01000000000000000000000000001001

Figure 5-16. Possible Dependencies Vector - Test 2

For the Store-to-Load data forwarding implementation is tested in Figure 5-17, due to
the limitation in inputs/outputs, some delayed store-to-load forwarding bus lanes were
generated inside the code simulating them, the second lane was an addition of the first lane
plus 10, the third was an addition of the first lane plus 20 and goes on. In the simulation, the
entry 5 of the Load Queue has a memory-dependency with the issued store corresponding to

Results

Chapter 5 81

the entry 2 of the Store Queue (the value is not generated yet, thus, the entry of the dependent
store is written in the waiting table), at the same time this store has a memory-dependency
with the entry 0 of the Load Queue but the memory-dependency for this entry found in the
store-to-load data forwarding belonging to an associative access from a previous issued load
(memory-dependent with the entry 4 of the Store Queue) has the most updated value for that
memory-dependency, thus, the memory-dependency with the entry 2 is ignored and the store-
to-load data forwarding with the entry 4 is executed (forwarding the data “654"). The Store
Queue’s entry 2 is sent through the bus in the following clock cycles letting the Load Queue’s
entry 5 to forward this data (“102"). The loads (entries 5 and 0) are sent to execution in order
to ensure that their data values have been forwarded (in “Data_Sent”).

Clock

I5_StL_Forwarding_Data
15_StL_Forwarding_Delayed
I5_StL_Forwarding_Store_Entry
I5_StL_Forwarding_Valid
Load_Entry

Load_Valid_Issued
SQ_StL_Forwarding_Data
SQ_StL_Forwarding_Delayed
SQ_StL_Forwarding_Load_Entry
SQ_StL_Forwarding_Store_Entry
SQ_StL_Forwarding_Valid
SelectionBits

ValidSelection

Data_Sent
Valid_Forwarding_Memory_Sent
Valid_Sent

Figure 5-17. Store-to-Load Data Forwarding - Test

Results

Chapter 6 82

Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

The main contribution of the project thesis, which is an Out-of-Order Load/Store Queue,
is successfully achieved supporting up to three accesses to the Data cache (one load and two
stores), and it is shown that the proposed design of the Non/Possible Dependencies Vectors
along with the bloom filters and hash table, resulted in an efficient way to reduce a big amount
of unnecessary comparisons done by the Memory Disambiguation Mechanism and the Store-
to-Load Data Forwarding Logic, reducing a lot of dynamic power consumption in their
operation. The Load Queue is supporting up to four dispatched Load/Store instructions per
cycle, but it is permitting only one instruction to be issued per cycle due to the complexity of
the memory disambiguation process.

Conclusions and Future Work

Chapter 6 83

6.2 FUTURE WORK

For future work, it is planned to include a memory dependence predictor, this will increase
the performance because each predicted-free dependent load won't wait to be solved (no
possible stores left to be issued), thus, some load entries can be sent to execution (accessing
the data cache or sending the forwarded data to the destination bus) in advance. Also, a
replacement of the source data CAM is planned to be replace for a RAM, this will decrease a
little the performance of the design because the source data memory won't be updated whole
every cycle, thus, two stores could get its source data every cycle, the advantage of this
replacement is the reduction of the implementation because FPGA’s logic elements will be
replaced for memory bits. Another future work is to include miss-status handle registers in
order to support in-flight data cache misses. After this work done, for future implementations,
it will be added the support for multiprocessor technology, and more power saving techniques
will be included to the design.

Conclusions and Future Work

Appendix-A

Appendix-A 85

BLOCK
MAPPING TABLES |fead Block

(INT & FP)
Tail
Pointer

Load/Store Unit
[RAM & CAM]

New Entries,

[Dispatch Flag]

Comparisons

Enable
llocate

Ready FPR
Sources

In-Flight Tag
Valid

H (I

| [Floating Tint Source |
FPR

Register (Base)

] Register (Source)

B aJs e
|

1110

Register (Destination)

Ready GPR Enabyle Read Base Port GPR Bank

sources Enable Read Source Port GPR B3anki

|
[Source |
J
GPR

Enable Read Source Port FPR Bgnk

([T

Enable Write Bank
Ready GPR Base

o

Ready GPR Source

Arrange
Logic Unit

DECODER

INSTRUCTION ——
(TEST)

MEMORY
4 (TEST) 1

—

Ready FPR Source

ITOo-A>r

Immediate

[Load / Store

Bytes Select [[[[‘

IO-A>r

queve rul—— [T] Signed [T11]

Figure 7-1. Front-End

Appendix-A

©
i
©
()
8 @
5 9
Q9 wo Destination
(V2]
n S Bus-to-Source
0 T Data
S5 © Forwarding
S 2
>
g o
o
[-
o
) o)
i £
Store S
p -
Queue g
(Source Data) o
s
l o
©
(@]
-
Store Queue’s 8
When a Load]
Store-to-Load | . Qv
Forwarding is Issued [e)
-
wn
©
4]
Load Queue
8
(%]
9
5 B
Most Updated Forwarded | € w
Data =
Value a ®5
=
‘©
=
o
+—
o+
c
(]
(%]
al ©
Issued Store’s w
Store-to-Load [m)]
Forwarding | When a Store 'g
is Issued 9

r

Issue Stage

Destination Bus

Figure 7-2. Store-to-Load Forwarding Logic including the Delayed Source Data

Appendix-A

Load/Store Instruction Format

Execution Flag

Issue Flag
Memory Access
Dispatch Fla]
P g In-Flight Tag Ir_mr Fly
In-Flight Tag, L/S Bit & Destination Reg ag
L/S Bit L/S Bit ——
. P~
Address Computation Data Base S
Memory Mem
SELECT LOGIC Addrese nd §
In-Flight Tag "
Destination <
Ready Logic @ Destination A Register S
o 8 O
i = @ Base
Base Reg WakeUp Logic e Data Source cﬁ Data o
(Base) —Q'_ Data =—
=) Data Destination (Source/Dest)
3 g -
& S Register
] o
o @ Source Fi Ies 2 Ready Logic
= o
Immediat @ -‘_c_,' Forward Logic
eclae % Immediate g (Source)
8 o N
o L :
Load Store | | | | | I N |
Buffer Entry
Source Reg

DESTINATION BUS

Figure 7-3. Load/Store Queue with In-Order Execution

Appendix-A

88

Instructions Package (2)

Instuction
Decoder

Tag Array

4-Way
8KB Page Size
4 Banks

T

15Q's
) stall Context Valid Instructions in Load & Store Queues, Tail and Head Pointers
Dispatch Recovery
Memory
HHE
HHE
HE
— ! Commit—--—--—
i
Free
Register
Lists Source/Destination Reg Tag & Source Ready Bit
Non Possible
Dependendies
Vectors and
Comparators -
o Q
e a e o € Forwarding f Rearrangement Queue
il e HIN H £lg| £ E £ e lder requests
i s HE g ¢ HEE Selection_| frt
3| &] HE H 3 gl 2|2 s enty toforwars [Priory e youngest o
— HE £ HE H i E E HEE E p——— Source Reg Tag Store J—H sekcton | first 5
— £93] & — ossible (Loads) g
[, creck ety egiers N . o 1 &Non Possible — %uege ot io-Qdereare - P — Store Buffer
- ®] g (Stores) Dest Reg Tag , (32 entries) y Doto/ Reg-Tog H 2 Hlgrment
;. E ; ‘memory access Jorwarded v w
— s] . S 3 Address Vector Data Source H
@ Context E Floating Point 2 Context | | £ Integer g Context 3 a 2 Generator Address ossodiatively searc}
2 Recovery [|3 Queue] Recovery [3 Queue 2| o J) Recovery b ueue 1 S | inragse Regiser Bloom
pcate sy st | " | ety e repsier Memory 5 Memory 5| 39 Memory (82 entries) B Fitter L
Register ey s || ey sore s x (32 entries) i r'S (32 entries) LR “address calculation” g
Renaming & ° SEE ° x| Stores Rearrangement Queue
. o g 3 (I T
E ~§ Y Control Bits I Load:
= oads
=] 3 8 Thso/der
T . - 3y —J g g Fitor Forwarding Sekstbn first Resource
n I INT Base Register E| S Address to request |
Busy Table ¢ £ 2 Vector
Recovery — L 3 3 S| S entries saved in forwarding, Data Array
Memory — b 3 k| k| 9 [2 the waiting table, 32KB
— i i g Data g g < regardlessit s the Load M o
Floating Point Integer & 5 o 4 Store Queue o Queue 2 4-Way
—/ i /M i I < 5ypass| < g S Load Quee — k) .
| Register Bank . Register Bank . > 3 (32 entrics) p 8KB Page Size
[Greck Reody Regiters g 8 E k| . “memory access”| | | f— oy < 4 Banks
[| E g | seegtn 3
. [l Data Bypass 3 i g g o The older
- E 5 o E g first —
] i i omp 3 S
k) a5 < Tog & 3 sogment | & MHSR Forwarding 3
2 o I/ —— I/ 1 3 we) § L
updote usy st |2 | ey soumenegaers < s
3 | 8 Solved Loads| Data T
@ ¢ Quete || oieq Agrment
o Delayed | & T T e
- Broadcast Logic
w source L] POV, Possible [brosdeast Log
1 Data Dependencies [Miss
P , o Forwarding tor Vectors and [Updating Handle
Busy Table ¢ K Adress Genraion == Comparators the Predictor Status
\— - - . Py Unit glle Data wh 3 Registers
Recovery Functional Units Functional Units g == gl s ata whenever 8
Memory — 8l& |8 Sl thereisa N
NN g5 2 | Memory Dependencies memory B
= 8| s R - bt il B Predictor (Tentative) dependence & bt 3
g8 Eoment gl 18 violation 3 Loade
NN S S
28
I
s| 3 §|2
S| Rl S|
3
HEIEE
20 3| g3
JEE I 1

Active List

Instruction
Cache

32KB
4 Way

Instruction
Fetch Queue

Fetch

PC

Cache Controller
&
Prefetcher

D-TLB

Cache Controller

&

Prefetcher

I-TLB

Memory System

Figure 7-4. Incorporation of the proposed Load/Store Unit to the processor

Appendix-A

89

Dispdtched

Instructions

Address Queue Pointers updating

AQ In-Flight Tags
Committed Tag

‘ Head Pointer | Head Pointer

L

Address Queue | New Address Queue

updoted in each clock’ rising
edge, the Head is updated with
the Commited nstructions,
whether the Tail with the
Dispotched ones.

Address Queue
Tail Pointer

WakeUp Logic

The Ready
and Valid
Instructions
are updated
in the rising
edge of the
clock.

The cleaning bits
and valid bit are
used to clean the
already issued L/S
instructions in
order to not be
chosen again.

Setting Bits [4.0] x N
Valid Ready Taq x

New Instruction written in the Queue X

Sources Reagy from the Register Ready Bit x 2,

Setting Bits [4..0] x 2

in the Queue x 2
Cleaning Bits [4..0]

Ready Instructions

32 bits

Right Rotator

Right Rotator

Control Bits [4..0]

Select Stage

H

]

Valid
Instructions

AND Ready
Instructions
Rotated in
ordertodoa
“Priority
Selection”

I 1

Priority Selection

(Leading Zero Counter)

&

(Selection Mask Rotated)

Valid Selection

Memory Address

(Non) Possible Dependencies Vector

Load/Store Unit

Selection Bits [4..0]

Valid Selection

Address
Generation Unit
(Read Register File & Bypass)

INT Register File

IAldd Q Selected
ress Queye Instruction
4 Blocks
Head Pointer used to rotate the Possible D Mask
2
£
V T‘f’ v
S| 8 >
83
5§
2
o <
)
Al]
T| =
58
S ; 8 L /S bit from selected| |L /S bit from selected
S ElQ L/Sbits| [L/Sbits
g N
o g &
5§ ¢
Address Queue E = T
Head Pointer, 33
Selection Bits Selection Bits [4..0] Selectjion Bits [4..0], 48 Head Pointer used to rotate the Possible IHead Pointer used
Rotated| % Dependencies Mask| |to rotate the mask
Vblid Selection >

Rotated

Selection Bits J

Position to generate the Mask [4..0],

Position to generate the Mask [4..0]

(Non) Possible

(Non) Possible Dependencies Mask [31..0]|

(Non) Possible

Valid Selection’

Selection Bits [4..0]

Valid Instructigns [31..0],

Valid Instructions [31..0]

Dependencies
Mask Memory

Valid Instructions [31..0]

IDependencies
IMask [31..0]

Valid Instructions

[31..0]

Figure 7-5. Select Logic, Address Generation & PDVs pipeline

(Non) Possible Dependencies
Vector Generation

(Non) Possible

Address
Generation Unit

(Generate Address)

»
0

Dependencies’
Vector

Appendix-B

Appendix-B

Memory Disambiguation Test:

LSL (Load-Store-Load)

Position Instructions L / 5 Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read [Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
[} L Chel00) 1 1 x o oo o o | 0] OO | 0] o 1
1 sD 000 1 o o 1 0x01 . r o o o | 1] o 1| o 0
2 LD 01 1 0 o 1 * o o 2 o 2 o 0
Position Instructions | L /5 Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Man) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
= o LD 000 1 1 x 0 000 o a | 0] 0x00 | O] 0 1
E 1 SD Coe00 1 0 o 1 O=0L " r o o o 1 o L o 0
2 LD 01 1 0 o 1 o o 2 o 2 o 0
Paosition Instructions | L /S Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read [Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Quewe Entries Solved Loads
o} LD [1 1 o o (W u] o o | O] OO0 | O] o 1
1 5D a0 1 o o 1 O=0L . r o o a _J_ o _J_ a
2 LD a0l 1 o o 1 o o 2 o 2 o a
Position Instructions L / 5 Quewe Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queuwe Entries Solved Loads
o} LD 00 1 0 o 1 " o o [} o 1] 0x00 a
1 D %00 1 1 % 0 000 001 w o o o | 1| o L o 0
2 LD 001 1 0 o 1 o o B 0 B 0 0
- Position Instructions | L /5 Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Man) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
T o} LD [1 0 o 1 * o o 4] o 1] 0x00 a
E 1 D %00 1 1 % 0 000 001 w o o o | 1| o 1| o 0
2 LD 01 1 0 o 1 " o o 2 o 2 o 0
Position Instructions | L /5 Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Man) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
o} LD [1 0 o 1 " o o 4] o 1] 0x00 a
1 D %00 1 1 % 0 000 001 w o o o | 1| o L o 0
2 D 01 1 0 o 1 o o B 0] 0 0
Position Instructions | L/ S Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read [Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Cueue Entries Solved Loads
[u} LD Coe00 1 0 o 1 " o o | 0] o | O] o 0
1 sD 000 1 o o 1 000 r o o a | 1] %01 | 1| 0
2 LD a1 1 1 x 0 010 =] a 2 o 2 o]
~ Position Instructions | L /5 Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Man) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
E [u} LD Coe00 1 0 o 1 " o o | O] o | O] o 0
E 1 SD Coe00 1 0 o 1 O=00 r o o o 1 Om01 L o 0
2 LD D01 1 1 o 0 010 o o 2 o 2 o a
Position Instructions | L /5 Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Man) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
[u} LD Coe00 1 0 o 1 " o o 4] o 1] o 0
1 5D 00 1 D o 1 000 r o o a | 1] D01 | 1] o 0
2 LD D01 1 1 i 0 010 o o 2 o 2 o a
Position Instructions | L /S Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read [Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
o} LD 00 1 1 o o [u] o -] | 0] 000 | O] o 1
1 s5D [1 1 o 1 DL " r o o o | 1] o 1 a
o 2 LD a0l 1 0 o 1 o o 2 o 2 o 0
g
o Position Instructions L / 5 Queue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
[u} Lo [1 1 o o oo o o | 0] 000 | O] o 1
1 5D a0 1 1 o 1 O=0L . r o o a 1 o 1 a
2 LD %01 1 0 o 1 o o | 2| o B o 0
Paosition Instructions | L/ S Oueue Allocation Valid Instructions State 0] Selected Valid Instructions Mew Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queuwe Entries Solved Loads
o LD a0 1 o o 1 " o o 4] o (4] Ox00 a
1 SD 000 1 1 x C 0x00 001 w o o o 1] | 1| o 0
E 2 LD 001 1 1 o 1 " o o 2 o 2 o a
- Position Instructions | L /S Queue Allocation Valid Instructions State 0] Selected Valid Instructions New Head Pointer {Mon] Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
o} LD [1 0 o 1 " o o | 0] o | O] 0x00 a
1 s5D [1 1 o o 0x00 001 w o o o | 1] o | L] o a
2 LD a0l 1 1 o 1 * o o 2 o 2 o 0
@ Position Instructions | L/ S Queuws Allocation Valid Instructions State 0] Selectad Valid Instructions MNew Head Pointer {Non) Possible Dependencies Vector Read [Write EBF | Hitin EBF | Forwarded | Dependence Detaction Load Queue Entries Store Queue Entries Solved Loads
T o LD a0 1 1 ® o 000 o [:] i OO0 i o 1
= 1 5D 0x00 1 1 o 1 0x0L . r s o o | 1] 0 | 1] o 0
2 LD a0l 1 1 o 1 o o 2 o 2 o 0

Appendix-B

Memory Disambiguation Test:

LSL (Load-Store-Load)

State 1| Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependendies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load OQueus Entries Store Queuse Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
" o 4] oo o o | 0] 000 a 000 1 " o 4]
1 % o 002 000 w o o 1 o | 1] o 0 a o Ox03
0 o 1 * o 2 o 2 o 1] 1 x 1]

State 1| Selected Valid Instructions MNew Head Pointer {MNon) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selecred Valid Instructions Mew Head Pointer
y o o] 000 o o 0 000 0 o 1 * o Q
0 o 1 0x01 . r o o o (1 | 001 1| o 0 1 x 0 003
1 % o] a10 o o 2 o 2 o 0 * a 1]

State 1| Selected WValid Instructions Mew Head Pointer {Mon) Possible Dependencdies Vector Read [Write EBF Hitin EBF | Forwarded Dependence Detection Load Queus Entries Store Queus Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
" o o 000 o o | O] D00 | 0] 000 1 " -]]
1 £ o 002 000 W o o 1 o 1 o 4] o] Ox03
1 o 1 * o o 2 o 2 o o 1 x o

State 1| Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependendies Vector Read [/ Write EBF Hit im EBF Forwarded Dependence Detection Load Oueue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions Mew Head Pointer
1 ® o 000 o o o D00 a 000 1 " a]
" o 002 o1 r " o 1| o __. o] -]] Ox03
0 1 * o 2 o 2 o 4] 1 x 4]

State 1| Selected Valid Instructions MNew Head Pointer {MNon) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
0 o 1 000 o o 0 o 0 Q00 o 1 " o
. o 0 0x00 001 r x * o (1 | 001 1| o 1 . ° 0 003
1 * o] * o o 2 o 2 o 0 o 0

State 1| Selected Valid Instructions MNew Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
1 £ o 000 o o 0 D00 0 000 1 " -]]
" Ju] CreD2 o001 r o o o 1| o __. o o o o 003
1 1 * o o 2 o 2 o 1] 1 x 1]

State 1| Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF Hitim EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
1 £ o Qoo o o | O] 000 0 o 1 * a o
0 1 001 - r o o 1 001 1| o 0 1 x o 0x03
- o 4] 010 o o 2 o 2 o 4] * o [i]

State 1| Selected Valid Instructions New Head Pointer {MNon) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
1] a 1 * o o o o 0 000 Q 1 ® Q
1 x 0 0:00 001 w o o o 1| 001 B o 1 . ° 0 003
- [:] 2] 010 o x 2 o 2 o Q o 0

State 1| Selected Valid Instructions MNew Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selecred Valid Instructions Mew Head Pointer
1 % o] Qoo o o 0 Q00 a o 1 * a Q
1 o 1 CreD1 * r o o o 1]| 0L : o o 1 b4 o 003
" o o] a1 o o 2 o 2 o 1] * a 1]

State 1| Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF Hitim EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
" o o 000 o o | O] D00 a 000 1 " a]
1 ¥ o 0012 000 w o o o 1 o : o o] o o] w03
a =] 1 * o o 2 o 2 o 1] 1 b 1]

State 1| Selected WValid Instructions Mew Head Pointer {Mon) Possible Dependendies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Oueus Entries Store Queuse Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
" o o Qoo o o | O] 000 | 0 000 1 " -]]
1 * a 002 000 w o o 1 o = o o o o 003
1 Q L * o o 2 o 2 o 0 1 .t. 0

State 1| Selected Walid Instructions Mew Head Pointer {Mon) Possible Dependendies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load OQueus Entries Store Queus Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
0 o 1 * o o o o 0 000 o 1 x o
" o o D00 001 r ® = o _1 D01 : o 1] 4] 003
1 * 4] 000 o o 2 o 2 o] =]]

State 1| Selected Valid Instructions MNew Head Pointer [Mon) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions Mew Head Pointer
1 £ o 000 o o | O] D00 a 000 1 " -]]
. o a OreD2 oo1 r ® o o 1 o = o o o o O=03
1 Q 1 * o o 2 o 2 o 4] 1 x 4]

State 1| Selected Valid Instructions Mew Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF Hitim EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Walid Instructions Mew Head Pointer
" o o 000 o o L D00] D00 1 "] 4]
1 x o 0x02 000 w = o 1 o B o 0 . o o 0x03
1 =] 1 * o o 2 o 2 o 1] 1 b 1]

Appendix-B

Memory Disambiguation Test:

LSL (Load-Store-Load)

{Non) Possible Dependencies Vector Read J Write EBF Hit in EBF | Forwarded Dependence Detection Load Queus Entries Svore Queus Entries Solved Loads

ooo o o | o | 000 | o | 000 1

ooo r % x o | 1] Ox01 | 1] o 1

000 o o 2 o 2 o o
{Non) Possible Dependencies Vector Read J/ Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

o0 o o a 000 4] Omi00 1

000 w o o o [1] Ow01 | 1| o 1

Q10 o x o 2 o o
[{Non)} Possible Dependencies Vector Read f Write EBF Hit in EBF | Forwarded Dependence Detection Load Queus Entries Svore Queus Entries Solved Loads

ooo o o | o | 0x00 | o | 000 1

000 r = ® a _J_ Om=01 _J_ o 1

D00 o o 2 o 2 o o
{Non) Possible Dependencies Vector Read J Write EBF Hit in EBF Forwarded Dependence Detection Load Quewes Entries Store Queue Entries Solved Loads

Qo0 o o a Ow00 4] Omi00 1

0oL r x x o [1] Ow01 | 1] o 1

000 o =] _2 0 _2 o o
{Non) Possible Dependencies Vector Read J/ Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

oo0 o o [0} Ow00 4] Omi00 1

0oL r x o o 1| Ow01 N o 1

000 o o 2 o 2 o o
{Non) Possible Dependencies WVector Read f/ Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

oo0 o o o]} Ow00 4] Omi00 1

0oL r x x o [1] Ow01 | 1] o 1

000 o [=] _2 0 _2 o o
{Non) Possible Dependencies Vector Read J/ Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

oo0 o o a 000 4] Omi00 1

ooo w o o o [1] ox01 | 1 | o 1

010 o . 2 o 2 o o
{Non) Possible Dependencies Vector Read J/ Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

oo0 o o [0} Ow00 4] Omi00 1

0oL r x o o 1| Ow01 [1| o 1

Q10 o o 2 o 2 o o
{Non) Possible Dependencies Vector Read J/ Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

000 o o o]} 000 4] Omi00 1

000 w e = o [1| w01 | 1| o 1

Q10 o X 2 O 2 o o
{Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

000 o o [o] 000 [o] 000 1

ooo r x x o | 1 w01 | 1] o 1

Q00 o o 2 O 2 o o
{Non} Possible Dependencies Wector Read J Write EBF Hit in EBF | Forwarded Dependence Detection Load Queues Entries Svore Queues Entries Solved Loads

ooo o o | 0| 00 | o | 000 1

000 r = ® a 1 Om=01 1 o 1

000 o o | 2 | O B o o
{Non) Possible Dependencies Vector Read J Write EBF Hit in EBF Forwarded Dependence Detection Load Quews Entries Store Queue Entries Solved Loads

000 o o 4] Om00 L] OmiD0 1

oo1 r x o o | 1] Ox01 E o 1

(]] o o 2) 2 o o
[{Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

000 o o [0] 000 [o] 000 1

0oL r x x o | 1 w01 | 1] o 1

Q00 o o 2 o 2 o O
{Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads

0co o) | O | 000 | o] 000 1

ooo r . x o | 1] Ox01 B o 1

Q00 o o 2 O 2 o o

Appendix-B

Memory Disambiguation Test:

LLL (Load-Load-Load)

Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read /Write EBF | Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
o LD 0x00 1 1 * o ooo 1} o 0 Ox00 o o
1 LD 0x01 1 0 a 1 0x01 * r o 0 o [] o 1| a
2 D 0302 1 0 0 1 * 0 5 B 5 2] 0
- Position Instructions L / S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Yector Read fWrite EBF | Hitin EBF | Forwarded Dependence Detection Load Queus Entries Store Queue Entries
T u] LD 0x00 1 1 ® u] ono o o 0 0x00 u] o
E 1 D 0x01 1 o a 1 GNGE) * r o 0 o [1] o N o
2 LD 0x02 1 1] o 1 * 0 o 2 o 2 o
Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read /Write EBF | Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
1) LD 0x00 1 1 * 1) ooo 5} a 0 Ox00 1] o
1 LD 0x01 1 0 ° 1 0x01 s r 0 o ° [1] ° | 1] 0
2) 0302 1 0 0 1 * 5 5 2 5 [2] 0
Position Instructions L / S Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Wector Read /Write EEF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
] LD 0x00 1] o 1 *] o 0 o 0 o
1 D k01 1 1 X 0 K00 00D r a 0 a [| GNIEY 1| a
2 D 0302 1 0 0 1 * 0 5 B 5 B 0
- Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read /Write EBF | Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 1] LD 0x00 1 1] a 1 * o a 0 a 1] a
E 1 LD 0x01 1 1 % 0 0x00 000 r o ° o n 001 | 1] o
2 LD 0x02 1 0 o 1 * 0] 2] 2 o
Position Instructions L / 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read fWrite EBF | Hitin EBF | Forwarded Dependence Detection Load Queus Entries Store Queue Entries
a LD 0x00 1 a o 1 * o o 0 o 1] o
1 D 0x01 1 1 x o 000 00D r a 0 o [1] 001 | 1] o
2 LD 0x02 1 0 0 1 * 0] 2] T 0
Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read /Write EBF | Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 0 o 1 * o o 0 o 0 o
1 LD 0x01 1 0 a 1 %00 * r o 0 o [1] o 1| a
2 D 0302 1 1 ¥ 0 000 0 5 B 0x02 B 0
~ Position Instructions L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Yector Read /Write EEF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
';|_: a LD 0x00 1 a o 1 * o o | 0} o | 0} o
E 1 LD 0x01 1 1] o 1 0x00 * r a a o | 1] o | 1] o
2 LD 0x02 1 1 # 1] jujulu]] =] 2 0x02 2 o
Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read /Write EBF | Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
] LD 0x00 1] o 1 *] o 0 o 0 o
1 LD 0x01 1 0 ° 1 0x00 s r 0 o ° [1] ° | 1] 0
2 LD 0:02 1 1 3 1] 00o] =] 2 0x02 T 1]
Position Instructions L / S Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Wector Read /Write EEF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
1] LD 0x00 1 1 b3 1] ujlu]] o 1] 0x00 1] o
1 sD 0x00 1 1 a 1 0n01 * r a 0 a [| a 1| a
m 2 LD 0x01 1 0 o 1 * o o _2 o _2 o
E
E Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possihle Dependencies Wector Read /Write EBEF | Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
o LD 0x00 1 1 * o ooo 1} o 0 Ox00 1] o
1 50 0x00 1 1 0 1 D01 * r o 0 5 B 5 | 1] °
7 LD 0x01 1 0 a 1 * 0 a B a | 2| a
Position Instructions L / S Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Wector Read / Write EEF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
a LD 0x00 1 a o 1 * o o 0 o 1] o
1 S0 000 1 1 X 0 Ox00 ooo r [z} o [z} 1 | Dx01 _1 o
< 2 D 0301 1 1 0 1 * 0 5 H 5 B 0
=
E Position Instructions L/ S Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Pointer {Non)} Possihle Dependencies Wector Read / Write EBF | Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
a LD 0x00 1 a o 1 * o o 0 o 1] o
1 sD 0x00 1 1 x o 000 00D r a 0 o [1] 001 | 1] o
2 LD 0x01 1 1 0 1 * 0] 2] T 0
n Position Instructions L/ S Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Wector Read /Write EEF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 1] LD 0x00 1 1 b3 1] ujlu]] o 1] 0x00 1] o
E 1 sD 0x00 1 1 a 1 0n01 * r a 0 a [1] a | 1] a
2 LD 0x01 1 1 0 1 * 0] 2] 2 0

Appendix-B

Memory Disambiguation Test:

LLL (Load-Load-Load)

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Mon) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 = o o] 000 o o o] w00 a o 1 * o o]
0 1 x o oxol 000 r o o o 1] oH01 1 o 1 * o o
o] o] o 1 * o o H 0 [2] o o] 1 X o]

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 = o o] 000 o o o] w00 o] o 1 * o o]
0 0 o 1 On0L = r o o o [1] o 1 o 0 1 X 0
o] 1 X o] 000 o o 2 Ox02 2 o 1 * o o]

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o o] oo o o o] o] a o 1 * o o]
0 1 x o Ox0z 000 r o o o [1] oH01 1] o 1 * o o
0 1 o 1 * o o B o 2] o 0 1 X 0

Solved Loads State1| Selected Valid Instructions Newr Head Pointer [Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] 1 X o} oo o o 0 OO0 o 1 * o o}
1 * o 0 ow02 000 r o o o [1] 0x01 1] o 1 . o 0
o] 0 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer {Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Seleded Valid Instructions
o] o] o 1 = o o 0 o] o] o o] 1 X o]
1 * o o 000 000 r o o o [1| owoL 1] o 1 * o o
0 1 x 0 000 o o H 0x02 2] o 1 * o 0

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 x a 000 o o a OO0 0 o 1 * o a
1 * o o on02 000 r o o o H 01 1] o 1 . o 0
o] 1 o 1 * o o 2 0 2 o o] 1 X o]

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Mon) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] 1 X o] 000 o o o] w00 a o 1 * o o]
0 o o 1 oxol * r o o o 1] o 1 o o 1 x o
1 * o o 000 o o [2] 0x02 2] o 1 * o o

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Mon) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forvarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] o] o 1 = o o o] | O] o o] 1 X o]
0 1 x o Ox00 000 r o)) [1] il (1]) 1 * o o
1 * o o] 000 o o 2 Ox02 2 o 1 * o o]

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] 1 X o] 000 o o o] w00 o] o 1 * o o]
0 1 o 1 Ox01 * r o o o [1] o [1] o 0 1 % 0
1 * o 0 000 o o H 0x02 B o 1 * o 0

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Seleded Valid Instructions
1 = o o] 000 o o o] w00 o] o 1 * o o]
0 1 x o w2 000 r o o o [1] ool [1] o 1 = o o
o] o] o 1 * o o 2 0 2 o o] 1 X o]

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Mon) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o o} oo o o ol OO0 0 o 1 * o o}
0 1 x o Ox0z 000 r o o o 1] oH01 1 o 1 * o o
0 1 o 1 * o o B o 2] o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer [Mon) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] o} o 1 * o o o 0 o o} 1 X o}
1 * o o K00 000 r o o o [1] oH01 1] o 1 * o o
o 1 x o 000 o o H [oer) 2] o 1 * o o

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer {Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Seleded Valid Instructions
o] 1 X o] 000 o o o] w00 a o 1 * o o]
1 * o 0 Ox02 000 r o o o [1] ox01 1 o 1 * o 0
o] 1 o 1 * o o 2 0 2 o o] 1 X o]

Solved Loads State 1| Selected Valid Instructions Newr Head Pointer {Non) Possible Dependencies Vedor Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries | Store Queue Entries Solved Loads State 2| Seleded Valid Instructions
1 = o o] 000 o o | O] w00 o 1 * o o]
0 1 % o w02 000 r o o o 1 ouol (1] o 1 * o 0
o] 1 o 1 * o o H 0 [2] o o] 1 X o]

Appendix-B

Memory Disambiguation Test:

LLL (Load-Load-Load)

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
ooo o o u] 0x00 u] o 1
0403 000 r a o a 1] 0x01 1| a 1
0oo o o T Ox02 T o 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queues Entries Store Queue Entries Solved Loads
afuli} [z} 0 0 Ox00 0 =} 1
0x03 ooo r 0 o o 1] 0x01 1] a 1
000 5 a [2] 0x02 B a 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
afuli} [z} 0 0 Ox00 0 =} 1
0x03 ooo r o o o I 0x01 I o 1
000 [z} 0 2 Ox02 2 0 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
afuli} [z} 0 0 Ox00 0 =} 1
005 oon r o a o [1 | 0n01 [1 | a 1
om0 5 0 [2] 0x02 2] 0 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0ooo o o u] Ox00 u] o 1
005 000 r o o o [1] 0x01 [1] o 1
oon a o B k07 B a 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
ooo =] o 0 0x00 0 o 1
0x03 0oo r 0 ° ° 1] Dx01 1] 0 1
000 [z} 0 2 Ox02 2 0 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0ooo o o u] Ox00 u] o 1
0x03 ooo r 0 0 0 1] 0x01 1] 0 1
000 [z} 0 2 Ox02 2 1} 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
afuli} [z} 0 0 Ox00 0 =} 1
0x03 ooo r o o o _1 0x01 _1 o 1
000 5 o [2 | 0x02 [2 | a 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
ooo o o u] Ox00 u] o 1
003 000 r 0 o 0 [1] D01 [1] 0 1
0oo a o 2 Ox02 2 o 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
afuli} [z} 0 0 Ox00 0 =} 1
0403 000 r a o a 1] 0x01 1| a 1
0oo o o T Ox02 T o 1

New Head Pointer {Mon) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Sohved Loads
0ooo o o u] Ox00 u] o 1
005 000 r o o o [1] 0x01 [1] o 1
oon a o B k07 B a 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queus Entries Store Queue Entries Solved Loads
afuli} [z} 0 0 Ox00 0 =} 1
0x03 ooo r 0 o o 1] 0x01 1] a 1
oon a o B k07 B a 1

MNew Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0ooo o o u] Ox00 u] o 1
0x03 000 r 0 o 0 [1] D01 [1] 0 1
000 [z} 0 2 Ox02 2 0 1

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
afuli} [z} 0 0 Ox00 0 =} 1
003 ooo r E o E [1] 0x01 [] o 1
0oo a o T Ox02 T o 1

Appendix-B

Memory Disambiguation Test:

LLS (Load-Load-Store)

Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Hezd Painter {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
u] LD Ox00 1 1 X o ooo o o o Ox00 o o
1 LD 001 1 0 o 1 0x01 * r 0 a o n o | 1] a
2 50D 0x00 1 0] 1 * 1]] 2] 2 0
- Pasition Instructions L/ 5 Queue Allocation Walid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T u] LD 0x00 1 1 ® u] ooo o o u] 0x00 0 5]
E 1 LD k01 1 o o 1 0x01 * r 0 o o [1] o | 1] o
2 5D 0x00 1 0] 1 * 1]] 2] 2 0
Pasition Instructions L/ 5 Queue Allocation Walid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
u] LD 0x00 1 1 ke 1] ooo o o 1] 0x00 1] o
1 LD k01 1 o o 1 0x01 * r 0 o o [1] o | 1| o
2 50 0x00 1 0 5 1 * 0 5 2 5 B 0
Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD DOx00 1 0 [z} 1 * o [z} 0 [z} 1} 5}
1 LD Ox01 1 1 x 0 0x00 oao r 0 0 0 [1] 001 B 0
2 5D 0x00 1 1] o 1 * 0 o 2 o 2 0
- Pasition Instructions L/ 5 Queue Allocation Walid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 LD 0x00 1 1] a 1 * a a 1] a a 0
E 1 LD Ox01 1 1 X 0 0x00 ooo r] o [z} I Dx01 I 5}
2 50D 0x00 1 0] 1 * 1]] 2] 2 0
Pasition Instructions L/ 5 Queue Allocation Walid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
] LD 0x00 1] o 1 * o o 0 o] 0
1 LD ko1 1 1 X o 0x00 Gl r 0 o o [1] w1 | 1| o
2 50D 0x00 1 0 a 1 * a a 2 a j o
Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
u] LD Ox00 1 1) a 1 * o a 1) a 1) 0x00
1 LD Ox01 1 0 0 1 0x00 * w 0 0 0 [1] 0 B 0
2 5D 000 1 1 b 0 011 1} [z} 2 [z} 2 0
~ Position Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Hezd Painter {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T u] LD 0x00 1 u] o 1 * o o u] o _D 0x00
E 1 LD k01 1 o o 1 0x00 * w 0 o o [1] o | 1] o
2 5D 000 1 1 X 0 011 1} [z} 2 [z} 2 0
Pasition Instructions L/ 5 Queue Allocation Walid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD Ox00 1 0 [z} 1 * =} [z} 0 [z} 0 0x00
1 LD k01 1 o o 1 0x00 * w 0 o o [1] o | 1| o
2 50 0x00 1 1 X 1] 011 o o 2 o j o
Position Instructions | L/ S Queue Allocation Valid Instructions State D | Selectecd Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read /Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
u] LD 0x00 1 1 X 1) ooo o a 1) 0x00 1) o
1 LD Ox01 1 1 0 1 0x01 * r 0 0 0 [1] 0 B 0
m 2 5D 0x00 1 1] o 1 * 0 o 2 o 2 0
E
g Position Instructions | L/ 5 Queue Allocation Valid Instructions State D | Selectecd Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read /Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
u] LD Ox00 1 1 X o ooo o o _EI Ox00 _EI o
1 LD Ox01 1 1 o 1 0x01 * r a o o 1 a | 1] o
2 50 000 1 0 5 1 * a 5 B 5 2 a
Position Instructions | L/ S Queue Allocation Valid Instructions State D | Selectecd Valid Instructions New Head Painter {Non) Possible Dependencies Vector Read /Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
] LD 0x00 1] o 1 * o o 0 o] 0
1 LD ox01 1 1 X i} 0x00 0oo r] o [z} [1 | 0x01 Z 5}
< 2 50 000 1 1 5 1 * a 5 [2 | 5 2 o
=
E Pasition Instructions L/ 5 Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 i} [z} 1 * o [z} i} [z} a} 5}
1 LD Dx01 1 1 % 0 0x00 ooo r 0 ° o [1] Dx01 | 1] 0
2 5D 0x00 1 1] 1 * 1]] 2] 2 0
n Position Instructions L/ § Queue Allocation Valid Instructions State 0 | Selected Valid Instructions New Head Painter {Non) Possible Dependencies Wector Read f/Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T u] LD 0x00 1 1 ke 1] ooo o o 1] 0x00 1] o
E 1 LD kD1 1 1 a 1 D011 * r 0 a a 1] a 1] o
2 50 0x00 1 1 a 1 * o a 2 a Z 5}

Appendix-B

Memory Disambiguation Test

LLS (Load-Load-Store)

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | HitinEBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
0 * [z} 0 oon [z} 5} 0 0x00 5} 1 * o 0
0 1 x 0 002 000 r a o a 1] 0x01 [1| a 1 * 0 0
0 0] 1 *] 0 2 0 2 0 0 1 i 0

Solved Loads State 1| Selected Walid Instructions New Head Painter {Non) Possible Dependencias Vector Read / Write EBF | Hitin EBF | Forwarded Depentence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
] * o] 0oo o 0 0 0x00 0 0x00 1 *]]
0 0 [z} 1 0x01 * W 0 [z} 5} I 5} I 5} 0 1 X 0
0 1 b 0 010] 0 2 0 2 0 0 * 0 0

Solved Loads State 1| Selected Walid Instructions New Head Painter {Non) Possible Dependencias Vector Read / Write EBF | Hitin EBF | Forwarded Depentence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
] * o] 0oo o 0 0 0x00 0 0 1 *]]
0 1 % 0 Ox02 oon r a o o [1 | Ox 01 [1 | o 0 . 0 0
0 1 o 1 * o 0 B 0 B 0 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | HitinEBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
u] 1 X u] ooo o o 1] Ox00 1] o 1 * 1} o
1 * 0 0 0x02 ooo r 0 0 0 1] ox01 [1} 0 1 * 0 0
0 1] o 1 * o 0 2 0 2 0 0 1 X 1]

Solved Loads State 1| Selected Walid Instructions New Head Painter {Non) Possible Dependencias Vector Read / Write EBF | Hitin EBF | Forwarded Depentence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
]] o 1 * o 0 0 0 0 0x00] 1 i]
1 * [z} 0 0x00 oon W 0 [z} 5} I 0x01 I 5} 1 * o o
0 1 b 0 001] 0 2 0 2 0 0 * 0 0

Solved Loads State 1| Selected Walid Instructions New Head Painter {Non) Possible Dependencias Vector Read / Write EBF | Hitin EBF | Forwarded Depentence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
0 1 X 0 aali} [z} 0 0 0x00 0 0 1 *] 0
1 * o 0 Ox02 oon r a o o [1 | Ox01 [1 | o 1 * ° 0
0 1 a 1 * a o ? o ? o 0 1 % 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | HitinEBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
u] 1 x u] ooo a o 1) Ox00 1) D0x00 1 * 5} 1)
a a o 1 0x01 * r ¥ o 0 z 0 Z 0 a 1 3 a
0 * o 0 011 o 0 2 0 2 0 0 * 0 1]

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
]] o 1 * o 0 0 0 0 0x00] 1 i]
0 1 X 0 0x00 oon r % [z} 5} I 0x01 I 5} 1 * o o
0 * o 0 011 o 0 2 0 2 0 0 * 0 1]

Solved Loads State 1| Selected Walid Instructions New Head Painter {Non) Possible Dependencias Vector Read / Write EBF | Hitin EBF | Forwarded Depentence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
u] 1 b3 u] Qoo o o 1] 0x00 1] 0x00 1 *] 1]
0 1 [z} 1 0x01 * r % [z} 5} 1 | 5} 1 | 5} 0 1 X 0
0 * a 0 011 a o ? o ? o 0 * a 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vectar Read / Write EBF | HitinEBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
1 * o 0 oon o o 0 0x00 0 o 1 * a 1}
0 1 x 0 0x02 ooo r 0 0 0 1] ox01 [1} 0 1 * 0 0
0 1] o 1 * o 0 2 0 2 0 0 1 X 1]

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | HitinEBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
1 * [z} 0 oon [z} 5} | O | 0x00 | O] 5} 1 * o 0
0 1 X u] 0x02 aali} r o o o 1 Ox01 1 0 1 * a 0
0 1] 1 *] 0 T 0 T 0 0 1 i 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vectar Read / Write EBF | HitinEBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
]] o 1 * o 0 0 0 0 0x00] 1 i]
1 * [z} 0 0x00 alali} W 0 [z} 5} Z 0x01 I 5} 1 * o 1]
0 1 b 0 001] 0 2 0 2 0 0 * 0 0

Solved Loads State 1| Selected Walid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | HitinEBF | Forwarded Depentence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
u] 1 X u] ooo o o 1] Ox00 1] o 1 * 1} o
1 * o 0 (12 000 r o o o [1] Ox01 [1 | a 1 * 0 0
0 1] 1 *] 0 2 0 2 0 0 1 i 0

Solved Loads State 1| Selected Walid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | HitinEBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2 | Selected Valid Instructions
1 * o] 0oo o 0 1] 0x00 1] 0 1 *]]
0 1 x 0 007 oon r o a o 1| k01 [1| o 1 * 0 0
0 1 a 1 * a 5} T 5} T 5} 0 1 X 0

Appendix-B

Memory Disambiguation Test:

LLS (Load-Load-Store)

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0403 000 w a a o 1| 0x01 1| a 1
0oo o o T o T o 1]

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 0ao r % o 0 1] ox01 [1] a 1
0ooo o o T o T o 1]

New Head Pointer {Non) Possible Dependencies Vectar Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 00D w 0 ° ° 1] 0x01 (1] 0 1
000 0 [z} 2 0 2 0 0

New Head Pointer {Non) Possible Dependencies Vectar Read f Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 0ao w 0 0 0 (1] ox01 (1] 0 1
000 1} [z} 2 1} 2 1} 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 0ot r ® o o _1 0x01 _1 o 1
000 1} [z} B 1} B 1} 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
003 000 w o 0 o [1] 0x01 [1] 0 1
0oo o a 2 o 2 o 1]

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
005 ooo r x a a 1 | w011 1 | a 1
011 o o T o T o 1]

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0ooo o o 1] 0x00 1] 0x00 1
0x03 0ao r % o 0 1] ox01 [1] a 1
011 o o T o T o 1]

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Sohved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 00D r x ° ° 1] 0x01 (1] 0 1
011 0 [z} 2 0 2 0 0

New Head Pointer {Non) Possible Dependencies Vectar Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0ooo o o 1] 0x00 1] 0x00 1
0x03 0ao w 0 0 0 (1] ox01 (1] 0 1
000 1} [z} 2 1} 2 1} 0

New Head Pointer {Non) Possible Dependencies Vector Read f Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 0ao w 0 o 0 1] ox01 [1] a 1
0ooo o o T o T o 1]

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 0ot r ® o o _1 0x01 _1 o 1
001 1} [z} [2 | 1} [2 | 1} 0

New Head Pointer {Non) Possible Dependencies Vectar Read f Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0x03 00D w 0 ° ° 1] 0x01 (1] 0 1
000 0 [z} 2 0 2 0 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
0oo o o 1] 0x00 1] 0x00 1
0403 000 w a a o (1] 0x01 (1] a 1
0oo o a T o T o 1]

Appendix-B

Memory Disambiguation Test:

SSS (Store-Store-Store)

Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sSD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 sD 0x01 1 0 o 1 0x01 * w o o o | 1| o 1| o
2 sD 0x02 1 0 P 1 * o o B o B o
o Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
T 0 sSD 0x00 1 1 X 0 000 o o 0 o 0 0x00
< 1 sD 0x01 1 0 o 1 0x01 u w o o o |1] o 1] o
2 SD 0x02 1 0 o 1 * a o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 sSD 0x00 1 1 X 0 000] o 0 o 0 0x00
1 sD 0x01 1 0 o 1 0x01 * w o o o | 1] o 1] o
2 sD 0x02 1 0 P 1 * o o B o [2] o
Position Instructions | L/SQueue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 0 o 1 * o o 0 o 0 o
1 sD 0x01 1 1 X 0 0x00 000 w o o o | 1| o 1] 0x01
2 sD 0x02 1 0 o 1 x o o | 2 | o [2 | o
- Position Instructions L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
- 0 sSD 0x00 1 0 o 1 * o o 0 o 0 o
E 1 sD 0x01 1 1 X 0 0x00 000 w o o o | 1] o [1] 0x01
2 SD 0x02 1 0 o 1 x o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
o] sD 0x00 1 0 o 1 * L] o 0 o 0 o
1 D 0x01 1 1 X 0 0x00 000 w o o o | 1] o [1] 0x01
2 sD 0x02 1 0 o 1 * o o B o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
o] sD 0x00 1 0 o 1 * a o 0 o 0 o
1 sD 0x01 1 0 o 1 0x00 x w o o o | 1| o 1| o
2 sD 0x02 1 1 x 0 000 o o B o B 0x02
~ Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Passible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T o] sD 0x00 1 0 o 1 * a o 0 o 0 o
E 1 sD 0x01 1 0 o 1 0x00 * w o o o 1] o [1] o
2 sSD 0x02 1 1 X 0 000 a o 2 o 2 0x02
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
o] SD 0x00 1 0 o 1 * a o 0] 0 o
1 sD 0x01 1 0 o 1 0x00 * w o a o |1 | o [1 | o
2 sD 0x02 1 1 X 0 000 o o | 2 | o B 0x02
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sSD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 sD 0x00 1 1 o 1 0x01 * w o o o 1| o 1] o
™ 2 sD 0x01 1 0 P 1 * o o B o B o
=
E Position Instructions L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 1 X 0 000 a o 1] o 1] 0x00
1 sD 0x00 1 1 ° 1 0x01 » w o o o [1] o 1] o
2 D 0x01 1 0 o 1 * o o |2 | o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
o] sD 0x00 1 0 o 1 * a o 0 o 0 o
1 sD 0x00 1 1 X 0 0x00 000 w o o o | 1] o 1] 0x01
< 2 sD 0x01 1 1 o 1 x o o B o B o
&
o Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
o] SD 0x00 1 0 o 1 * a o 0] 0 o
1 sD 0x00 1 1 x 0 0x00 000 w o o o | 1] o 1] 0x01
2 sD 0x01 1 1) 1 * o o B o B o
" Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
- 0 sD 0x00 1 1 X 0 000 a o 0 o 0 0x00
< 1 5D 0x00 1 1 o 1 0x01 x w ° o o 1] ° 1] o
2 SD 0x01 1 1 [s] 1 * o o 2 o 2 o

Appendix-B

Memory Disambiguation Test:

SSS (Store-Store-Store)

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] * o o] 000 o o 0] 0 0x00 0 * a 0
0 1 x 0 0x01 000 w o o o (1 | o [1] 0x01 0 * o 0
0 0 P 1 * o o B o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] * o o] 000 o o 0] 0 0x00 0 * a 0
0 0 o 1 0x01 * w o o o 1| o 1 | o 0 1 X 0
0 1 X 0 000 o o B o B 0x02 0 x o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o 0] 0 0x00 0 * a 0
0 1 X 0 ox02 000 w o [} [} 1] o 1 | 0x01 0 * a 0
0 1 o 1 * o o B o [2 | o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o [} 0 o 0 0x00 0 * o 0
0 * ° 0 0402 000 w o o o 1] o [1] 0x01 0 * o 0
0 0 P 1 * o o B o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 o 0 o 0 1 X 0
0 * ° 0 0x00 000 w o o o R o [1] 0x01 0 * o 0
0 1 X 0 000 o o B o [2] 0x02 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 o 0 0x00 0 *] 0
o] * o o] 0x02 000 w o o o 1] o 1 | 0x01 0 * a 0
0 1 o 1 * o o B o | 2 | o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 o 0 0x00 0 *] 0
o] 0 o 1 0x01 * w o o o 1 | o I o 0 1 X 0
0 * P 0 000 o o B o 2 0x02 0 x o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 o 0 o 0 1 X 0
0 1 X 0 0x00 000 w o o o 1] o [1] 0x01 0 * o 0
0 * o 0 000 o o B o [2] 0x02 0 x o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000] o 0 o 0 0x00 0 *] 0
o] 1 o 1 0x01 * w o o o 1]] 1 |] 0 1 X 0
0 * o 0 000 o o [2| o [2 | 0x02 0 x o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o 0 o 0 0x00 0 * o 0
0 1 X 0 0x02 000 w o o o 1| o [1] 0x01 0 * o 0
0 0 o 1 * o o 2 | o T o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] * o o] 000 o o 0] 0 0x00 0 * a 0
0 1 x 0 0x02 000 w o o o (1] o [1] 0x01 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] 0 o 1 * o o 0 o 0 o 0 1 X 0
0 * o 0 0x00 000 w o o o 1] o [1] 001 0 ' o 0
0 1 X 0 000 o o 2 o 2 0x02 0 *] 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o [} 0 o 0 0x00 0 * o 0
o] * o o] 0x02 000 w o o o 1] o 1 | 0x01 0 * a 0
0 1 o 1 * o o B o [2 | o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o] * o o] 000 o o 0 o 0 0x00 0 * a 0
0 1 X 0 0x02 000 w o ° o [1] ° [1] 001 0 * ° 0
0 1 [s] 1 * o o 2 o 2 o 0 1 X 0

Appendix-B

Memory Disambiguation Test:

SSS (Store-Store-Store)

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o ° o [1| ° 1] 0x01 0
000 P o B P 2] 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o o o [1 |) 1] 0x01 0
000 ° o B ° B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o o a R o [1 | 0x01 0
000 o o B o B 0x02 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o o o [1|) 1] 0x01 0
000 ° o B ° B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o ° o [1 | o 1] 0x01 0
000 o o B o B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o o a [1 | o [1 | 0x01 0
000) o B) B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o o o [1|) 1] 0x01 0
000 o o B o B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o a 0 o 0 0x00 0
%03 000 w o o o [1| o 1| 0x01 0
000 o o B) B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o o a [1 | o [1 | 0x01 0
000) o B o B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
%03 000 w o o o [1| o 1] 0x01 0
000 o o B o B 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o ° o [1] o 1] 0x01 0
000 o a 2 o 2 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0x00 0
0x03 000 w o ° o [1] o [1] 0x01 0
000 [¢] o 2 [¢] 2 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0x00 0
0x03 000 w o o o [1] o (1] 0x01 0
000 o o B P H 0x02 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 o 0 0x00 0
0x03 000 w o o o [1] o 1] 0x01 0
000 2] o 2 [2) 2 0x02 0

Appendix-B

Memory Disambiguation Test:

LSS (Load-Store-Store)

Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 1 X 0 000 o o 0 0x00 o
1 D 0x00 1 0 o 1 0x01 * r o) o [1 | ° [1| °
2 D 0x01 1 0 o 1 * o o B o B)
° Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
':|_: 0 LD 0x00 1 1 X 0 000 o o | 0 | 0x00 | 0| o
g 1 sSD 0x00 1 0 <] 1 0x01 * r o o o | 1] o | 1] o
2 SD 0x01 1 0 o 1 * o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 1 X 0 000 o o 0 0x00 0 o
1 SD 0x00 1 0 o 1 0x01 * r o o o 1 | o 1| o
2 D 0x01 1 0) 1 x o o B o B)
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 0 o 1 * o o 0 o 0x00
1 SD 0x00 1 1 X 0 0x00 001 w o o o 1| o [1] o
2 D 0x01 1 0 o 1 x o o B) B)
- Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
- 0 LD 0x00 1 0 o 1 * o o 0 o 0x00
< 1 sD 0x00 1 1 X 0 0x00 001 w ° o o 1] o [1| o
2 SD 0x01 1 0 o 1 x o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 0 o 1 * o o 0 o 0 0x00
1 sD 0x00 1 1 X 0 0x00 001 w o o o [1] o [1])
2 sD 0x01 1 0 o 1 x o 0 2] o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 0 (<] 1 * o o 0 (<] <]
1 D 0x00 1 0 o 1 0x00 x w o o o (1 | o 1] 0x01
2 sD 0x01 1 1 X 0 001 o 0 [2] o B o
~ Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
IE 0 LD 0x00 1 0 (<] 1 * o o | 0| <] | 0| <]
§ 1 SD 0x00 1 0 o 1 0x00 x w o o o | 1] o | 1] 0x01
2 SD 0x01 1 1 X 0 001 o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 0 o 1 x o o 0 o 0 o
1 SD 0x00 1 0 o 1 0x00 * w o o o 1| o 1| 0x01
2 D 0x01 1 1 X 0 001 o o B o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 1 X 0 000 o o 0 0x00 0 o
1 D 0x00 1 1 o 1 0x01 * r o o o (1]) (1] o
o 2 D 0x01 1 0) 1 * o o B o B o
£
g Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 1 X 0 000 o o 0 0x00 o
1 D 0x00 1 1 o 1 0x01 * r o o o 1]) (1])
2 D 0x01 1 0 o 1 * o o B o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 0 o 1 * o o 0 o 0x00
1 D 0x00 1 1 X 0 0x00 001 w o o o (1] o (1] o
< 2 sD 0x01 1 1 o 1 x o o [2] o [2] o
g
o Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 LD 0x00 1 0 o 1 * o o 0 o 0 0x00
1 sD 0x00 1 1 X 0 0x00 001 w o o o [1] o [1] o
2 D 0x01 1 1 o 1 * o o B o B o
" Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 LD 0x00 1 1 X 0 000 o o 0 0x00 o
2 1 sD 0x00 1 1 o 1 0x01 x r ° o o 1] o [1] o
2 SD 0x01 1 1 o 1 * o o 2 o 2 o

Appendix-B

Memory Disambiguation Test:

LSS (Load-Store-Store)

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o 0 000 o o | O | 0x00 | 0| 0x00 1 * o 0
0 1 X 0 0x02 000 w o o o | 1] o | 1] o 0 * o 0
0 0 o 1 * [o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o 0 000 o o 0 0x00 0 o 1 * o 0
0 0 o 1 0x01 000 w o o o [1] o [1] 0x01 0 1 x 0
0 1 X 0 000 o o B o B o 0 *) 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o 0 000 o o 0 0x00 0 0x00 1 * o 0
0 1 x 0 0x02 000 w o o o 1] o [1] o 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 1 * o 0
0 * o 0 0x02 001 r X o o [1] o [1] o 0 * o 0
0 0 o 1 * o o 2 [2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 o 0 0x00 0 1 X 0
0 *) 0 0x00 001 w o o o 1] o [1] 0x01 0 * o 0
0 1 X 0 001 o o 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 1 * o 0
0 * o 0 0x02 001 r X o o 1] o 1] o 0 * o 0
0 0 o 1 * [o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o | 0| 0x00 | 0| o 1 * o 0
0 0 o 1 0x01 * r X o o | 1] o | 1] 0x01 0 1 X 0
0 * o 0 001 o o 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 o 0 0x00 0 1 X 0
0 1 X 0 0x00 001 w o o o (1] o (1] 0x01 0 *) 0
0 - o 0 001 o o B o B o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 o 1 * o 0
0 1 o 1 0x01 * r X o o [1] o [1] 0x01 0 1 x 0
0 *) 0 001 o o B o B o 0 *) 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o 0 000 o o | O | 0x00 | O | 0x00 1 * o 0
0 1 X 0 0x02 000 w o o o | 1] <] | 1] o 0 * o 0
0 0 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o 0 000 o o | 0| 0x00 | 0| 0x00 1 * o 0
0 1 X 0 0x02 000 w o o o | 1] o | 1] o 0 * o 0
0 1 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o 0 o 1 * o o o 0 0x00 0 1 X 0
o * o 0 0x00 001 w o o o [1] o 1] 0x01 0 * 0 0
o 1 X 0 001 [o 2 o 2 [0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
o 1 X 0 000 o o | 0| 0x00 | O] 0x00 1 * o 0
o * o 0 0x02 001 r X o o | 1] o | 1] o 0 * o 0
[1 o 1 * [[2 [2 [0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
1 * o 0 000 o o 0 0x00 0 0x00 1 * o 0
0 1 x 0 0x02 000 w o o o 1] o [1] o 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Appendix-B

Memory Disambiguation Test:

LSS (Load-Store-Store)

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000] [} 0 0x00 0 0x00 1
0x03 000 w <] a [«] T o) T 0x01 0
000 o o T o T o 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 a <] 1] 0x00 1] 0x00 1
0x03 000 w 2] a a T o] T 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 a <] 0 0x00 0 0x00 1
0x03 000 w o a o [1| o [1| 0%01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000] o 0 0x00 0 0x00 1
0x03 001 w o o o [1 | o 1| 0x01 0
000) o [2] o B o 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 001 r x o o [1 | o [1 | 0x01 0
001 o o [2] o [2] o 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000] -] 0 0x00 0 0x00 1
0x03 001 w o a o R o N 0x01 0
000 o o B o B o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w ° o o (1] o 1] 0x01 0
001 Q =] T Q T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 001 r x o ° (1] o 1] 0x01 0
001 a =] T Q T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o o o [1] o (1] 0x01 0
001 a =] 2] o B o 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000] -] 0 0x00 0 0x00 1
0x03 000 w <] a [«] T o) T 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000] o 0 0x00 0 0x00 1
0x03 000 w ° o o [1] o [1] 0x01 0
000) Q 2 Q 2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000] -] 0 0x00 0 0x00 1
0x03 001 r x o ° [1] o [1] 0x01 0
001 a 2] 2 o 2 o 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detaction Load Queue Entries Store Queue Entries Solved Loads
000 a <] 0 0x00 0 0x00 1
0x03 001 w o a o [1 | o [1 | 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 a <] 1] 0x00 1] 0x00 1
0x03 000 w o a o [1] o [1] 0x01 0
000 o o 2 o 2 o 0

Appendix-B

Memory Disambiguation Test:

SLL (Store-Load-Load)

Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 LD 0x00 1 0 o 1 0x01 * w) o o 1] o B o
2 LD 0x01 1 0 o 1 * o o B o 2] o
° Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 Sb 0x00 1 1 X 0 000 o o 0 o 0 0x00
E 1 LD 0x00 1 0 o 1 0x01 * w o o o 1] o [1] o
2 LD 0x01 1 0 [1 * o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 LD 0x00 1 0 o 1 0x01 * w o o o [1| o [1| o
2 LD 0x01 1 0 o 1 * o o B o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 Sb 0x00 1 0 o 1 * o o 0x00 0 o
1) 0x00 1 1 X 0 0x00 001 r o)) (1]) 1] o
2 LD 0x01 1 0 o 1 * o o 2 0 B o
- Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 0 o 1 * o o 0 0x00 0 o
< 1) 0x00 1 1 x 0 0x00 001 r o o o 1] o [1| o
2 LD 0x01 1 0 o 1 * o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 Sb 0x00 1 0 o 1 * o o 0 0x00 0 o
1 LD 0x00 1 1 X 0 0x00 001 r o o o (1] o [1| o
2) 0x01 1 0 o 1 * o o B o B o
Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o o o
1 LD 0x00 1 0 o 1 0%00 * r o o o (1] 0x01 [1| o
2 LD 0x01 1 1 x 0 001 o o 2] o B o
~ Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 0 o 1 * o o 0 o 0 o
< 1) 0x00 1 0 o 1 0x00 * r o o o n 0x01 [1| o
2 LD 0x01 1 1 X 0 001 o o 2 o 2 o
Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o 0 o 0 o
1 LD 0x00 1 0 o 1 0x00 * r o o o [1] 0x01 [1| o
2) 0x01 1 1 X 0 001 o o B o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 LD 0x00 1 1 o 1 0x01 * w) o o 1] o (1 | o
o 2 LD 0x01 1 0 o 1 * o o B o B o
T
g Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 Sb 0x00 1 1 X 0 000 o o o 0 0x00
1 LD 0x00 1 1 o 1 0x01 * w o o o (1] o [1| o
2 LD 0x01 1 0 o 1 * o o B o B o
Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o 0x00 0 o
1 LD 0x00 1 1 X 0 0x00 001 r o o o (1] o [1 | o
< 2 LD 0x01 1 1 o 1 * o o [2] o B o
T
g Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o 0x00 0 o
1 LD 0x00 1 1 X 0 0x00 001 r o o o (1] o [1| o
2 LD 0x01 1 1 o 1 * o o B o [2] o
" Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 1 X 0 000 o o o 0 0x00
E 1 LD 0x00 1 1 o 1 0x01 * w o o o 1] o [1] o
2 LD 0x01 1 1 o 1 * o o 2 o 2 o

Appendix-B

Memory Disambiguation Test:

SLL (Store-Load-Load)

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o | O | 0x00 | 0| 0x00 1 * o 0
0 1 X 0 0x02 000 r X o o | 1] o | 1] o 0 * o 0
0 0 o 1 * [o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o 0 o 0 0x00 0 * o 0
0 0 o 1 0x01 * r x o o [1] 0x01 [1] o 1 1 x 0
0 1 X 0 000 o o B o B o 0 *) 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o 0 0x00 0 0x00 1 * o 0
0 1 x 0 0x02 000 r X o o 1] o [1] o 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 1 * o 0
0 * o 0 0x02 001 w o o X [1] o [1] o 0 * o 0
0 0 o 1 * [[2) 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 0x00 0 o 0 1 X 0
0 *) 0 0x00 001 r o o o 1] 0x01 [1] o 0 * o 0
0 1 X 0 001 o o 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 1 * o 0
0 & o 0 0x02 001 w o) X 1]) 1] o 0 * o 0
0 1 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o | 0| o | 0| 0x00 0 * o 0
0 0 o 1 0x01 * w o o o | 1] 0x01 | 1] o 1 1 X 0
0 * o 0 001 o X 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 0x00 0 o 0 1 X 0
0 1 X 0 0x00 001 r o o o (1] 0x01 (1] o 0 *) 0
0 - o 0 001 o o B o B o 0 i o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 o 0 0x00 0 * o 0
0 1) 1 0x01 * w o o o [1] 0x01 [1] o 1 1 x 0
0 *) 0 001 o X B o B) 0 *) 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o | O | 0x00 | O | 0x00 1 * o 0
0 1 X 0 0x02 000 r X o o | 1] <] | 1] o 0 * o 0
0 0 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o | 0| 0x00 | 0| 0x00 1 * o 0
0 1 X 0 0x02 000 r X o o | 1] o | 1] o 0 * o 0
0 1 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 0x00 0 o 0 1 X 0
0 * o 0 0x00 001 r o o o [1] 0x01 1] o 0 * o 0
0 1 X 0 001 [o 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o | 0| 0x00 0 0x00 1 * o 0
0 * o 0 0x02 001 w o) X 1]) [1] o 0 * o 0
0 1 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o 0 0x00 0 0x00 1 * o 0
0 1 x 0 0x02 000 r X o o 1] o [1] o 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Appendix-B

Memory Disambiguation Test:

SLL (Store-Load-Load)

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o | 0| 0x00 | 0| 0x00 1
0x03 000 r X o o | 1] 0x01 | 1] [1
000 o o 2 o 2 o) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0 0x00 0 0x00 1
0x03 000 r x o o [1] 0x01 [1] o 1
000 o o [2] o B o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0 0x00 0 0x00 1
0x03 000 r x o o 1] 0x01 [1] o 1
000 o o 2 o 2) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0x00 0 0x00 1
0x03 000 r x o o [1] 0x01 [1] o 1
000 o o 2 o 2) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0 0x00 1
0x03 001 w o o X I 0x01 I o 1
001 o X 2 o 2) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0 0x00 0 0x00 1
0x03 000 r X o o 1] 0x01 [1] o 1
000 o o 2 o 2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o | O] 0x00 | O] 0x00 1
0x03 000 r X o o | 1] 0x01 | 1] o 1
000 o o 2 o 2 [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0 0x00 1
0x03 001 w o o X (1] 0x01 1|) 1
001 () X T () T [°) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0 0x00 0 0x00 1
0x03 000 r x o o [1] 0x01 [1] o 1
000 o o B o B) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o | O | 0x00 | 0| 0x00 1
0x03 000 r X o o | 1] 0x01 | 1] [1
000 o o 2 o 2 o) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0x00 | 0| 0x00 1
0x03 000 r X o o 1] 0x01 [1] o 1
000 o o 2 [2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0 0x00 1
0x03 001 w o o X [1] 0x01 [1]) 1
001 o X 2 o 2 o) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0 0x00 | 0| 0x00 1
0x03 000 r X o o 1] 0x01 [1] o 1
000 o o 2 o 2 o) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0x00 0 0x00 1
0x03 000 r x o o 1] 0x01 [1] o 1
000 o o 2 o 2) 0

Appendix-B

Memory Disambiguation Test:

SLS (Store-Load-Store)

Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 LD 0x00 1 0 o 1 0x01 * w) o o 1] o B o
2) 0x01 1 0 o 1 * o o B o 2] o
° Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 Sb 0x00 1 1 X 0 000 o o 0 o 0 0x00
E 1 LD 0x00 1 0 o 1 0x01 * w o o o 1] o [1] o
2 SD 0x01 1 0 [1 * o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 LD 0x00 1 0 o 1 0x01 * w o o o [1| o [1| o
2) 0x01 1 0 o 1 * o o B o B o
o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 Sb 0x00 1 0 o 1 * o o 0x00 0 o
1) 0x00 1 1 X 0 0x00 001 r o)) (1]) 1] o
2 D 0x01 1 0 o 1 * o o 2 0 B o
- Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 0 o 1 * o o 0 0x00 0 o
< 1) 0x00 1 1 x 0 0x00 001 r o o o 1] o [1| o
2 SD 0x01 1 0 o 1 * o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 Sb 0x00 1 0 o 1 * o o 0 0x00 0 o
1 LD 0x00 1 1 X 0 0x00 001 r o o o (1] o [1| o
2 D 0x01 1 0 o 1 * o o B o B o
Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o o o
1 LD 0x00 1 0 o 1 0%00 * w o o o (1] o [1| 0x01
2 sD 0x01 1 1 x 0 010 o o 2] o B o
~ Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 0 o 1 * o o 0 o 0 o
< 1) 0x00 1 0 o 1 0x00 * w o o o n o [1| 0x01
2 SD 0x01 1 1 X 0 010 o o 2 o 2 o
Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o 0 o 0 o
1 LD 0x00 1 0 o 1 0x00 * w o o o [1] o [1| 0x01
2 D 0x01 1 1 X 0 010 o o B o B o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 LD 0x00 1 1 o 1 0x01 * w) o o 1] o (1 | o
o 2 D 0x01 1 0 o 1 * o o B o B o
T
g Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 Sb 0x00 1 1 X 0 000 o o o 0 0x00
1 LD 0x00 1 1 o 1 0x01 * w o o o (1] o [1| o
2 D 0x01 1 0 o 1 * o o B o B o
Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o 0x00 0 o
1 LD 0x00 1 1 X 0 0x00 001 r o o o (1] o [1 | o
< 2 D 0x01 1 1 o 1 * o o [2] o B o
T
g Position Instructions | L /S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o 0x00 0 o
1 LD 0x00 1 1 X 0 0x00 001 r o o o (1] o [1| o
2) 0x01 1 1 o 1 * o o B o [2] o
" Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 1 X 0 000 o o o 0 0x00
E 1 LD 0x00 1 1 o 1 0x01 * w o o o 1] o [1] o
2 SD 0x01 1 1 o 1 * o o 2 o 2 o

Appendix-B

Memory Disambiguation Test:

SLS (Store-Load-Store)

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o | O | 0x00 | 0| 0x00 1 * o 0
0 1 X 0 0x02 000 r X o o | 1] o | 1] o 0 * o 0
0 0 o 1 * [o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o 0 o 0 0x00 0 * o 0
0 0 o 1 0x01 * w o o o [1] o [1] 0x01 0 1 x 0
0 1 X 0 010 o o B o B o 0 *) 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o 0 0x00 0 0x00 1 * o 0
0 1 x 0 0x02 000 r X o o 1] o [1] o 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 1 * o 0
0 i o 0 0x02 001 w o o X [1] o [1] o 0 * o 0
0 0 o 1 * [[2) 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 0x00 0 o 0 1 X 0
0 *) 0 0x00 001 w o o o 1] o [1] 0x01 0 * o 0
0 1 X 0 000 o o 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 1 * o 0
0 & o 0 0x02 001 w o) X 1]) 1] o 0 * o 0
0 1 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o | 0| o | 0| 0x00 0 * o 0
0 0 o 1 0x01 * w o o o | 1] o | 1] 0x01 0 1 X 0
0 * o 0 010 o o 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 0x00 0 o 0 1 X 0
0 1 X 0 0x00 001 r X o o (1] o (1] 0x01 0 * o 0
0 - o 0 010 o o B o B o 0 i o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 o 0 0x00 0 * o 0
0 1 o 1 0x01 * w o o o [1] o [1] 0x01 0 1 x 0
0 *) 0 010 o o B o B o 0 *) 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o | O | 0x00 | O | 0x00 1 * o 0
0 1 X 0 0x02 000 r X o o | 1] <] | 1] o 0 * o 0
0 1 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o | 0| 0x00 | 0| 0x00 1 * o 0
0 1 X 0 0x02 000 r X o o | 1] o | 1] o 0 * o 0
0 0 o 1 * [[2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 1 * o 0
0 @ o 0 0x02 010 w o o x [1] o [1] o 0 * o 0
0 1 o 1 * [[2 [2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o | 0| 0x00 | 0| o 0 1 X 0
0 * o 0 0x00 001 w o o o | 1] <] | 1] 0x01 0 * o 0
0 1 X 0 000 [[2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o 0 0x00 0 0x00 1 * o 0
0 1 x 0 0x02 000 r X o o 1] o [1] o 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Appendix-B

Memory Disambiguation Test:

SLS (Store-Load-Store)

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o ° ° [1] o [1] 0x01 0
000 o [T [T [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0 0x00 0 0x00 1
0x03 000 r x ° o (1] o 1] 0x01 0
010 o [2 0 2 [0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o o o 1] o [1] 0x01 0
000 o [2 0 2 [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0 0x00 1
0x03 000 w o o o 1} o 1| 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0 0x00 1
0x03 001 w) o X [1] o [1] 0x01 0
000 o o T o T) 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o | 0| 0x00 | 0| 0x00 1
0x03 000 w [o o | 1] o | 1] 0x01 0
000 o o 2 [2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0x00 0x00 1
0x03 000 r x ° ° [1] o [1] 0x01 0
010 o [T [T [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 001 w o o X 1] o [1] 0x01 0
010 o] 2 [2] 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 X o 0 0x00 0 0x00 1
0x03 000 r x o o 1] o [1] 0x01 0
010 o [2 0 2 [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o o o 1} o 1| 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o ° ° [1] o [1] 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w [o o I [I 0x01 0
000 o) 2 o 2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0 0x00 1
0x03 001 w o o X Z o I 0x01 0
000 o] 2 [2 [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o o o 1} o 1| 0x01 0
000 o o T) T o 0

Appendix-B

Memory Disambiguation Test:

SSL (Store-Store-Load)

Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 1 X 0 000 o o 0 [0 0x00
1 SD 0x01 1 0 o 1 0x01 * w o o o [1] o [1] o
2 LD 0x00 1 0 o 1 - ° ° B o 2 o
° Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 1 X 0 000 o o 0 o 0 0x00
< 1 sD 0x01 1 0 0 1 0x01 * w o o o 1] o [1] °
2 LD 0x00 1 0 o 1 * o o 2 [J 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 1 X 0 000 o o 0 o 0 0x00
1 SD 0x01 1 0 o 1 0x01 * w o o o [1] o [1] o
2 LD 0x00 1 0 o 1 * o o 2 o 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sb 0x00 1 0 o 1 * o o o 0 o
1 sD 0x01 1 1 X 0 0x00 000 w o o o 1| [T 0x01
2 LD 0x00 1 0 o 1 * o o B o B o
o Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 0) 1 * o o) 0 o
E 1 SD 0x01 1 1 x 0 0x00 000 w o o o [1] o [1] 0x01
2 LD 0x00 1 0 o 1 * o o 2) 2 o
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o | 0| o 0 o
1 D 0x01 1 1 X 0 0x00 000 w 0 0 0 [1| o [1] 0x01
2 LD 0x00 1 0 o 1 * o o 2 o 2 o
Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 0 o 1 * o o 0x00 0 o
1 SD 0x01 1 0 o 1 0x00 * r o o o [1] o [1] o
2 LD 0x00 1 1 X 0 011 [[T [2 [
~ Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 SD 0x00 1 0 o 1 * o o 0 0x00 0 o
E 1) 0x01 1 0 o 1 0x00 * r 0 o o 1] o [1] o
2 LD 0x00 1 1 X 0 011 [[2 0 2 [
Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 0 o 1 * o o 0 0x00 0 o
1 SD 0x01 1 0 o 1 0x00 * r o o o [1] o [1] o
2 LD 0x00 1 1 X 0 011 [[2 [2 0
Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 1 X 0 000 o o 0 [0 0x00
1 D 0x01 1 1 o 1 0x01 * w ° 0 0 [1| o [1 | o
o 2 LD 0x00 1 0 o 1 * o o B o B o
E
E Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 sD 0x00 1 1 X 0 000 o o [0 0x00
1 SD 0x01 1 1 o 1 0x01 * w o o o [1] o [1] o
2 LD 0x00 1 0 o 1 * o o B o 2 o
Position Instructions | L/S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o 0 o 0 o
1 sD 0x01 1 1 X 0 0x00 000 w o o o 1] o [1] 0x01
< 2 LD 0x00 1 1 o 1 * o o 2 o 2 0
=
E Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
0 SD 0x00 1 0 o 1 * o o o 0 o
1 SD 0x01 1 1 X 0 0x00 000 w o o o [1] o [1] 0x01
2 LD 0x00 1 1 o 1 * o o 2 o 2 o
" Position Instructions | L/ S Queue Allocation Valid Instructions State 0| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries
T 0 sD 0x00 1 1 X 0 000 o o o 0 0x00
E 1 D 0x01 1 1 o 1 0x01 * w o 0 o 1] o [1] o
2 LD 0x00 1 1 o 1 * o o 2 o 2 o

Appendix-B

Memory Disambiguation Test:

SSL (Store-Store-Load)

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o o 0 0x00 0 * o 0
0 1 X 0 0x02 000 w ° o o [1] o [1] 0x01 0 * o 0
0 0 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 X o 0 0x00 0 0x00 0 * o 0
0 0 o 1 0x01 * r X o o I o I o 0 1 X 0
0 1 X 0 010 o o 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o 0 o 0 0x00 0 * o 0
0 1 x 0 0x02 000 w o) o [1] o [1] 0x01 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o o 0 0x00 0 * o 0
0 . 0 0 0x02 000 w o o ° [1] o [1] 0x01 0 . o 0
0 0 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 0x00 0 o 1 1 X 0
0 o 0 0 0x00 000 r X X o [1]) 1] 0x01 0 * ° 0
0 1 X 0 001 o 0 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 [¢] 0 0x00 0 * o 0
0 . o 0 0x02 000 w o o o [1] o [1] 0x01 0 . ° 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0x00 0 0x00 0 * o 0
0 0 o 1 0x01 * w [¢] o o I o I o 0 1 X 0
0 * o 0 011 o X 2 o 2 [¢) 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0 0x00 0 o 1 1 X 0
0 1 x 0 0x00 000 w o o o [1]) [1] 0x01 0 * o 0
0 * o 0 011 o X 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 0x00 0 0x00 0 * o 0
0 1 o 1 0x01 e w o ° o [1]) [1]) 0 1 X 0
0 * o 0 011 o X 2 o 2 o 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o 0 [¢) 0 0x00 0 * o 0
0 1 X 0 0x02 000 w o o ° [1] o [1] 0x01 0 . o 0
0 0 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o o 0 0x00 0 * o 0
0 1 X 0 0x02 000 w ° o o [1] o [1] 0x01 0 . o 0
0 1) 1 *)) B) 2 0 0 1 x 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded | Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 0 o 1 * o o 0x00 0 o 1 1 X 0
0 *) 0 0x00 000 r X X o [1]) [1] 0x01 0 . o 0
0 1 X 0 001 o o 2 o 2 0 0 * o 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 1 X 0 000 o o 0 o 0 0x00 0 * o 0
0 * o 0 0x02 000 w o o ° [1] o [1] 0x01 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Solved Loads State 1| Selected Valid Instructions New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads State 2| Selected Valid Instructions
0 * o 0 000 o o o 0 0x00 0 * o 0
0 1 X 0 0x02 000 w o o ° 1] o [1] 0x01 0 * o 0
0 1 o 1 * o o 2 o 2 o 0 1 X 0

Appendix-B

Memory Disambiguation Test:

SSL (Store-Store-Load)

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 r x X ° [1] o [1] 0x01 0
000 o [T [T [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o o o 1] o 1] 0x01 0
010 o X 2 [2] 0

New Head Pointer (Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 r x X o 1] o [1] 0x01 0
000 o [2 0 2 [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0 0x00 1
0x03 000 r X X o 1} o 1| 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o o o [1] o [1] 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o | 0| 0x00 | 0| 0x00 1
0x03 000 r X X o | 1] o | 1] 0x01 0
000 o o 2 [2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0x00 0x00 1
0x03 000 w)) o [1] o [1] 0x01 0
010 o X T [T] 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w 0 o o (1] o 1] 0x01 0
000 [o 2 [2 [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w o o o [1] o [1] 0x01 0
010 o X 2 [2 [0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 r X X o 1} o 1| 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 r X X ° [1] o [1] 0x01 0
000 o o T o T o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF | Hitin EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 w [o o I [I 0x01 0
000 o) 2 o 2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 r x X o 1] o [1] 0x01 0
000 o [2 0 2 o 0

New Head Pointer {Non) Possible Dependencies Vector Read / Write EBF Hit in EBF | Forwarded Dependence Detection Load Queue Entries Store Queue Entries Solved Loads
000 o o 0 0x00 0 0x00 1
0x03 000 r X X o 1} o 1| 0x01 0
000 o o T) T o 0

(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]

(9]

References

M. A. Ramirez, A. Cristal Kestelman, A. V. Veidenbaum, L. Villa and M. Valero, "A Simple Low-
Energy Instruction Wakeup Mechanism," in Proceedings of the 5th International Symposium,
ISHPC, Japan, 2003.

A.S. Tanenbaum, Structured Computer Organization, 5th ed., Pearson Prentice Hall, 2006.
R. L. Britton, MIPS Assembly Language Programming, Pearson Prentice Hall, 2004.

T. Shanley and D. Anderson, ISA System Architecture, MindShare, Inc., 1995.

I. Corporation, "Intel®64 and IA-32 Architectures Software Developer's Manual," 2011.

I. Corporation, "Intel®64 and IA-32 Architectures Software Developer's Manual," 2011.

W. M. Johnson, "Super-Scalar Processor Design," 1989.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 4th ed.,
USA: Morgan Kauffmann, 2007.

A. Gonzalez, F. Latorre and G. Magklis, Processor Microarchitecture: An Implementation
Perspective, Synthesis Lectures on Computer Architecture, 2010.

[10] J. R. G. Ordaz, Disefio de un ROB-Distribuido para Procesadores Superescalares, Mexico,

2011.

[11] J. E. Smith and G. S. Sohi, "The Microarchitecture of Superscalar Processors," in Proceedings

of the IEEE, 1995.

[12] A. J. Smith, "Cache Memories," ACM Computing Surveys, vol. 14, no. 3, pp. 473-530,

September 1982.

[13] F. Castro, D. Chaver, L. Pifiuel, M. Prieto and F. Tirado, "Memory Disambiguation Hardware: a

Review," Journal of Computer Science & Technology, vol. 8, no. 3, 2008.

[14] H. W. Cain and M. H. Lipasti, "Memory Ordering: A Value Based Definition," in Proceedings of

the 31st International Symposium on Computer Architecture, 2004.

[15] L. Sethumadhavan, B. E. and M. S., Scalable Hardware Memory Disambiguation, Texas,
Austin, 2007.

[16] T. Sha, M. M. K. Martin and A. Roth, "Scalable Store-Load Forwarding via Store Queue Index
Prediction (MICRO 38)," in Proceedings of the 38th Annual IEEE/ACM International
Symposium on Microarchitecture, Barcelona, 2005.

[17] S. S. Stone, K. M. Woley and M. I. Frank, "Address-Indexed Memory Disambiguation and
Store-to-Load Forwarding," in Proceedings of the 38th Annual IEEE/ACM International
Symposium on Microarchitecture, Barcelona, 2005.

[18] S. Subramaniam and G. H. Loh, "Store vectors for scalable memory dependence prediction
and scheduling," in The Twelfth International Symposium on High-Performance Computer
Architecture, 2006, Austin, 2006.

[19] A. M. D. Inc., "Software Optimization Guide for AMD Family 15h Processors," 2014.

[20] S. Bieschewski, Design of a Distributed Memory Unit for Clustered Microarchitectures, Spain,
2013.

[21] J. A. Fisher, "Very Long Instruction Word Architectures and the ELI-512," in Proceedings of
the 10th Annual International Symposium on Computer Architecture, ISCA, New York, USA,
1983.

[22] L. J. Boland, G. D. Granito, A. U. Marcotte, B. U. Messina and J. W. Smith, "The IBM
System/360 Model 91: Storage System," IBM Journal of Research and Development, vol. 11,
no. 1, pp. 54-68, January 1967.

[23] Y. N. Patt, S. W. Melvin, W. M. Hwu and M. C. Shebanow, "Critical issues regarding HPS, a
high performance microarchitecture," in MICRO 18 Proceedings of the 18th annual workshop
on Microprogramming, New York, 1985.

[24] M. Franklin and G. S. Sohi, "ARB: A hardware mechanism for dynamic reordering of memory
references," IEEE Transactions on Computers, vol. 45, no. 5, pp. 552-571, May 1996.

[25] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M. S. Govindan, P. Gratz,
D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, P.
Shivakumar, S. W. Keckler and D. Burger, "Distributed Microarchitectural Protocols in the
TRIPS Prototype Processor," in Procceding of the 39th Anual IEEE/ACM International
Symposium on Microarchitecture, Washington, 2006.

[26] S. Sethumadhavan, R. Desikan, R. McDonald, D. C. Burger and S. W. Keckler, "Design and
Implementation of the TRIPS Primary Memory System," in ICCD 2006. International
Conference on Computer Design, 2006.

[27] S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger and S. W. Keckler, "Late-Binding:
Enabling Unordered Load-Store Queues," in Proceedings of the 34th Anual International
Symposium on Computer Architecture, San Diego, 2007.

[28] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore and S. W. Keckler, "Scalable Hardware
Memory Disambiguation for High ILP Processors," in Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture, Washington, 2003.

[29] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors," Communications
of the ACM, vol. 13, no. 7, pp. 422-426, July 1970.

[30] H. Song, S. Dharmapurikar, J. Turner and J. Lockwood, "Fast Hash Table Lookup Using
Extended Bloom filter: An Aid to Network Processing," in Proceedings of the 2005 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications,
Philadelphia, 2005.

[31] G. Z. Chrysos and J. S. Emer, "Memory Dependence Prediction using Store Sets," in
Proceedings of the 25th Annual International Symposium on Computer Architecture,
Washington, 1998.

[32] G. Dimitrakopoulos, K. Galanopoulos, C. Mavrokefalidis and D. Nikolos, "Low-Power Leading-
Zero Counting and Anticipation Logic for High-Speed Floating Point Units," /EEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 16, no. 7, pp. 837-850, July 2008.

[33] P. Mishra, N. Dutt and A. Nicolau, "A Study of Out-of-Order Completion for the MIPS R10K
Superscalar Processor," Information and Computer Science, Irvine, California, 2001.

[34] S. Palacharla, N. P. Jouppi and J. E. Smith, "Complexity-Effective Superscalar Processors," in
Proceedings of the 24th annual International Symposium on Computer Architecture, ISCA '97,
Denver, 1997.

