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Resumen

Esta tesis está dedicada al diseño de una metodoloǵıa novedosa para la tarea de

clasificación de patrones sobre un flujo continuo de datos, basada en un clasificador

asociativo. Hoy en d́ıa vivimos en una sociedad de la información, donde grandes

cantidad de datos son generados por diversas áreas del conocimiento. La necesidad

de extraer información útil de este flujo masivo de datos de una manera eficiente,

abre una gran oportunidad para proponer nuevos métodos que permitan modelar y

predecir el comportamiento de dichos datos.

En un data stream, los datos llegan de forma continua y a una gran velocidad;

por tanto los algoritmos desarrollados para tratar este tipo de flujo, a diferencia de

los algoritmos tradicionales, deben respetar ciertas restricciones como son: trabajar

con una cantidad limitada de tiempo, utilizar poca memoria y los datos deben ser

examinados una sola vez. También es importante que dichos algoritmos sean capaces

de detectar cambios en la distribución que genera los datos ( concept drift), conceptos

recurrentes y surgimientos de nuevas clases.

Con el fin de abordar los aspectos antes mencionados, una nueva metodoloǵıa

basada en el clasificador Gamma se presenta en este trabajo de tesis. Este es

un clasificador basado en instancias, cuya principal ventaja para trabajar con data

streams es su fácil adaptación que puede lograrse mediante la simple adición o ex-

tracción de ejemplos del conjunto de aprendizaje sin tener que hacer costosas adapta-

ciones al modelo. La metodoloǵıa propuesta combina el clasificador Gamma con un

enfoque de ventana deslizante. Tres diferentes métodos para la actualización de la

ventana deslizantes fueron utilizados en este trabajo: ventana deslizante de tamaño

fijo, actualización por control estad́ıstico y actualización por similitud del operador

Gamma, siendo este último método una propuesta original de este trabajo de tesis.
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Este método utiliza el operador γ de similitud para calcular el grado de semejanza en-

tre los patrones de la ventana, y con base en este grado de semejanza, se seleccionan

los elementos a ser eliminados de la ventana.

Para un análisis más exhaustivo de la metodoloǵıa, además de las pruebas rea-

lizadas con bancos de datos reales, se realizaron pruebas con bancos de datos

sintéticos. Los resultados mostraron que la metodoloǵıa exhibe resultados competi-

tivos al ser comparada con otros algoritmos comúnmente utilizados para la clasifi-

cación de patrones sobre data streams. También se realizó un estudio comparativo de

los tres métodos para actualizar la ventana deslizante, mostrando que el enfoque de

actualización usando el operador Gamma de similitud mostraba mejores resultados

que los otros.
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Abstract

This thesis is dedicated to the design of a novel methodology for the task of pattern

classification over a continuous data stream based on an associative classifier. In

today information society, huge amounts of data are generated from diverse fields of

knowledge. The need to extract valuable information from these massive continuous

data streams in an efficient manner opens an opportunity to proposed new methods

to model and predict the behavior of stream data.

In a data stream context, data arrives continuously at high speed, therefore the

algorithms developed to address this context, unlike traditional ones, must meet some

constraints: work with a limited amount of time, use a limited amount of memory,

and one or only few passes over the data. It is also important that such algorithms

are capable of detecting the changes over time in the distribution that generated the

data (concept drift), recurrent concepts and novel class detection.

In order to address the aforementioned issues, a methodology based on the Gamma

classifier is presented in this thesis. This is an instance based classifier, whose

main advantage for data streams context is that adaptation can easily be achieved

by simply adding and/or removing examples to the learning set without complex

model adaptation. The introduced methodology combines the Gamma classifier with

a sliding window approach. Three different methods to update the sliding window

were used: fixed size window, statistical controlled process, and Gamma similarity

update; being the last one an original proposal introduced in this thesis. This method

uses the γ similarity operator to calculated a degree of likeness and based on this

degree the elements to be forgotten from the window are selected.

Experiments on real and synthetic datasets were conducted to assess the efficiency

of the proposed methodology. The results show that the methodology exhibits competi-
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tive results when compared with other state of the art data stream classifiers. A

comparative study of the three sliding window updating methods used is presented,

showing that the similarity based approach achieved better results that the other.
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Itzamá López Yáñez, for your academic guidance and opportune advice. I would
have never been able to complete this without you. To all my fellows in the Intelligent
Computing Laboratory for their help, support, interest and valuable insights on my
research. To my thesis committee for their valuable contributions and criticisms
which have enriched this work.

I would like to thank Dr. João Gama at the University of Porto that welcomed me
to visit LIAAD and for the insightful observations on my research. Your contribution
was of great help to improve this work.

Finally, I would like to thank the Secretaŕıa de Relaciones Exteriores de México,
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Chapter 1

Introduction

In the current document of thesis, a novel methodology for the task of pattern
classification over a continuous data stream based on the Gamma classifier is pre-
sented.

1.1 Background

In recent years, technological advances have promoted the generation of a vast
amount of information. Data is being generated from a variety of real-world applica-
tions, such as stock market transactions, credit card fraud detection, telecommuni-
cation networks, email spam filter, climate monitoring, and medical images analysis,
among others. In a study performed by IDC (International Data Corporation) [1],
the digital universe in 2013 was estimated in 4.4 zettabytes or 4.4 trillion gigabytes;
from 2013 to 2020, the digital universe will grow by a factor of 10, meaning that
the generated data will reach 44 trillion gigabytes by 2020. In 2013, only 22% of
the information in the digital universe would be a candidate for analysis; less than
5% of that was actually analyzed. Another important fact presented in this study is
that in 2013, the available storage capacity could hold just 33% of the information
generated by the digital universe. By 2020, it is projected that the storage capacity
may only store 5% of the generated information.

Under this scenario, the extraction of knowledge is becoming a very challenging
task. We are now confronted with the problem of handling very large datasets
and even with the possibility of an infinite data flow. To address this problem
data stream models have recently arose; models capable of handling flows of data
that are so big that make it impossible to store them. During the last decades,
machine learning algorithms have focused on batch learning where the whole dataset
is available for training, but during the second part of the nineties, data stream
algorithms started to become popular due to some publications that introduced
the problem and proposed solutions to meet the challenges presented by this new
classification scheme [2–4].
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As the idea suggests, a data stream can roughly be thought of as an ordered
endless sequence of data items, where the input arrives more or less continuously
as time progresses [5]. Thus, the major difficulties in data stream classification are
related to memory space, processing and classification time, and change/evolution
of the target concepts. In this context, classification algorithms have to be able to
extract knowledge with only one, or few, passes over the data in a swift manner and
using as little resources as possible.

A data stream model has different requirements from the traditional batch lear-
ning that is performed over static datasets where the algorithms can afford to read
the data several times. When the input data is very large or even possibly infinite,
not all the data can be loaded in memory and an off-line processing of the data is
no longer feasible. Some of the most important constraints for data stream models
are in [6, 7]:

1. Process an example at a time: in data stream scenarios examples arrive one
after another; each one have to be inspected to decide if it will be used or
ignored. Once it has been ignored there is no chance to retrieve it again.
However, an algorithm can remember internally some examples for a short
time frame, while respecting constraint 2.

2. Use a limited amount of memory: the amount of data arriving is extremely
large, and potentially infinite. Thus, it will be impossible to store all the data
in memory. Without a specific mechanism to limit the use of memory, it will
be exhausted. Only statistics, summaries and the current model should be
stored in memory. This constraint can be relaxed if external storage is used,
but this need to be done with consideration of constraint 3.

3. Work in a limited amount of time: each example needs to be processed in real
time. A data stream classification algorithm must process each element as fast
as it arrives, or there will be data loss.

4. Concept change: the distribution generating data items can change over time.
Thus, data from the past may become irrelevant, and even harmful, for the
current model.

5. Be ready to predict at any point: the process of generating/updating the model
should be as efficient as possible. The most desirable case is that the model
is directly manipulated in memory by the algorithm as it processes examples,
rather than having to re-compute the model based on running statistics.

The extensive research on data stream algorithms performed over the last years
has produced a very large variety of techniques to address these types of problems.
Currently, the main approaches use to handle data stream scenarios are the follow-
ing:
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• Concept drift detection methods: [8–11]

• Decision models: [12–24].

• Ensemble methods: [25–34].

• Instance based models: [5, 35, 36].

• Clustering methods: [37–41].

• Artificial neural network models: [42].

• Support Vector Machines models: [43–47].

• Frequent pattern mining methods: [48–52].

• Fuzzy models: [53–56].

• Other approaches: [57–59].

As we can see, several approaches have been used to address data stream sce-
narios, but to our knowledge no model based on an associative approach has been
applied to deal with this kind of problems.

The associative approach is based on the associative memories, whose pioneering
model was proposed by Steinbuch in 1961 [60], the Learnmatrix, a heteroassociative
memory that works as a binary patterns classifier. In 1969, Willshaw, Buneman and
Longuet-Higgins presented the Correlograph [61], an optical device capable of beha-
ving as an associative memory. 1972 witnessed an intense research activity in asso-
ciative memories with the work of James A. Anderson with his Interactive Memory
[62], Teuvo Kohonen presented the Correlation Matrix Memories [63], Kaoru Nakano
unveiled his Associatron [64] and Amari made some theoretical contributions about
Self-organizing Nets of Threshold Elements [65]. In 1982, physicist John J. Hopfield
published his model of associative memory [66]. This model was vital as it revived
the interest in this field of research. During the following years a number of im-
provements were introduced to already existing models, but without any significant
progress, until 1998 when Ritter et al. [67] presented their model of morphological
associative memories.

The morphological associative memories served as inspiration for the development
of the Alpha-Beta associative memories [68]. This model is based on two simple
operations: the Alpha and Beta operators, which are comparable in simplicity to
the basic operations of Boolean logic. Another important model that belongs to the
associative approach is the Gamma classifier [69], which take some elements of the
Alpha-Beta associative memories.

In a number of recent research, it has been shown theoretically and experimentally
that, despite its simplicity, the pattern classification models based on the Alpha-Beta
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associative memories are highly effective and competitive with the models reported
in current literature [70–76].

This thesis proposal is immersed within the research area of the associative a-
pproach for data stream classification problems, particularly the used of the Gamma
classifier applied to these kinds of problems.

1.2 Motivation

In today information society several applications such as: telecommunication,
sensor networks, financial applications, and medical applications, generate massive
amount of information. Current research is mainly focused on traditional method of
classification, where datasets are static and data is available to the algorithms at any
time; this approach is no longer feasible to handle the huge volume of information
that is been generated. It is impossible to store all this wealth of information
available, thus the design and implementation of new methods capable of extracting
knowledge in an online way and able to adapt to changes in the data stream, are
necessary.

Various methods have been designed for data stream classification, but to our
knowledge the associative approach has never been used for this kind of problems.
Since the Alpha-Beta associative memories and other models based on these memo-
ries, have demonstrated excellent performance when used to different applications,
the objective of this thesis is to design a competitive model based on the associative
approach, specifically the Gamma classifier, for data stream classification problems.

Another appealing Gamma classifier’s feature for data stream scenarios is that
it is an instance base learning (IBL) algorithm. These types of classifiers are good
candidates for data stream scenarios since IBL algorithms are naturally incremental
and adaptation can easily be achieved by simply adding and/or removing examples
to the learning set without complex model adaptation.

1.3 General objective

Design, implement and test an adaptive incremental classification methodology
capable of learning from a continuous data stream in situations where the underlying
distribution of the concept may change over time. The methodology will also be
able to deal with the time and space constraints inherent to data stream scenarios.

1.4 Specific objectives

1. Carry out a literature research on the state of the art including the main
aspects for pattern classification on data stream scenarios.
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2. Describe the characteristics, advantages and disadvantages of the state of the
art algorithms that are used for pattern classification on data streams.

3. Perform a study of the datasets commonly used for the task of pattern classi-
fication on data streams.

4. Select a group of datasets, which can be used to test the proposed methodology.
It is essential that the selected datasets allow a comparative study of the results
of the proposed methodology and other representative models for data streams
classification found in current literature.

5. Conduct experiments to test the new proposed methodology, and perform a
comparative study of the experimental results obtained with those reported in
current literature for data streams classification.

1.5 Main contributions

The main contribution of the thesis is a novel methodology for the task of pattern
classification over a data stream based on an associative approach. The introduced
methodology is based on the Gamma classifier combined with a sliding window
approach. Three different methods to update the sliding window were used: fixed
size window, statistical controlled process, and Gamma similarity update; being the
last one an original proposal introduced in this thesis. This method uses the γ
similarity operator to calculated a degree of likeness and based on this degree the
elements to be forgotten are selected.

1.6 Thesis organization

In this chapter the background, justification, objectives, and main contributions
of the proposed methodology were described.

Chapter 2 presents a review of the current literature related to data stream mo-
dels, where several research works addressing data stream mining problems were
analyzed.

Chapter 3, materials and methods, includes the basic concepts and mathematical
tools that are required for the development of this research work.

Chapter 4 is the main part of the thesis; in this chapter the theoretical basis of
the proposed methodology is described and exemplified.

In Chapter 5, the experiments and results of the new proposed methodology are
shown, as well as a study of the performance when compared with other classifiers.

Chapter 6 contains the conclusions and future work to be developed. Finally
references are included.
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Chapter 2

Related work

In this chapter, some of the main aspects for data stream mining are reviewed.
The presented models comprise the state of the art in this area of knowledge.

Before presenting the different methods for data stream mining, some basic con-
cepts relevant to this topic will be presented. Section 2.1 introduces some of the
main characteristics of a data stream. Next, in section 2.2 an inherent property of
data streams, concept drift, is discussed. Section 2.3 describes another important
aspect of data streams, recurrent concept. Finally, in section 2.4 a study of the main
approaches of data stream mining techniques is presented.

2.1 Data stream

A data stream can be seen as a continuous ordered sequence of instances arriving
at a high speed. A flow of this type of data is huge and possible infinite, making
impossible that it can be fully stored. It is also very difficult to process this kind of
data using the current traditional data mining techniques due to the intrinsic nature
of such data. Some of the main characteristics of a data stream are [7, 77]:

1. The data elements in the stream arrive on-line.

2. The system has no control over the order in which data elements arrive.

3. The data elements arrive at high speed forcing a real time processing.

4. Data streams are potentially unbounded in size.

5. Once an element from a data stream has been processed, it is discarded or
archived. It cannot be retrieved easily unless it is explicitly stored in memory;
ideally only samplings or summaries of the data should be stored in memory.

6. The distribution generating the data items can change over time. Thus, data
from the past may become irrelevant.
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Given these characteristics, a data stream model has to respect certain constrains.
According to [77], the three main constrains to consider are: the amount of memory
used to store information, the time to process each data element, and the time to
answer the query of interest.

In order to deal with constrains imposed by data stream scenarios several tech-
niques have been developed. These techniques usually use some kind of summa-
rization to reduce the size of the input and thus also reduce the time and storage
required to process such data. In [78], some of the main techniques used to reduce
data size are introduced.

• Approximation and randomization: Approximation techniques return
answers that are correct within some small fraction ε of error, while randomi-
zation allows a small probability δ of failure. In data stream frameworks both
are used to obtain a correct result with a probability of 1 − δ in an interval of
radius ε.

• Time windows: In some cases, mining over the entire past information is not
necessary relevant, but only over the recent past. The supposition behind this
assumption is that only the most recent information is relevant to the studied
problem. The simplest technique is a sliding window of fixed size. A more
detailed analysis of sliding windows will be presented in section 3.2.

• Sampling: Random sampling is possibly one of the first and simplest tech-
niques used to reduce data size. Instead of dealing with the whole data stream,
sampling selects data elements at periodic intervals. Random sampling me-
thods can introduce errors due to the selection of data elements that are not
representatives of the data stream. A better solution is the reservoir sampling
presented in [79] to maintain an online random sample. The idea behind this
technique is to keep a sample of size k, the reservoir, and replace old elements
in the reservoir with new elements of the stream associated with a certain
probability.

• Synopsis, sketches and summaries: Synopsis are compact structures that
summarize data for future querying. Several synopsis methods have been used,
including: wavelets [80], exponential histograms [81], and frequency moments
[2], to name a few. Sketches built a statistical summary of a data stream
using a small amount of memory while preserving relevant information of the
data. This type of structure is generally used to estimate frequency of the most
common items in a data input [2]. Cormode and Muthukrishnan [82] presented
a data stream summary called count-min sketch, used for (ε, δ) approximation
to solve several problems in data streams such as finding quantiles and frequent
items.
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2.2 Concept drift

Data generated by most of real world applications is not static and usually changes
over time. However, most of current machine learning algorithms assume that train-
ing data was generated from a stationary distribution. One of the main issues in
learning from a data stream is the presence of a non-stationary probability distri-
bution for examples generation. This change in the distribution is known in the
literature as concept drift. Concept drift mean that the concept related to data that
is been collected changes from time to time. It is worth noting that in this context
concept refers to the target variable that we are trying to predict or classify.
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Figure 2.1: Concept Drift versus Concept Evolution
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It is important to discriminate between concept drift and concept evolution. Con-
cept drift implicates a change in the data distribution that can cause a change in the
decision boundary [Fig. 2.1(a)], while concept evolution refers to the appearing of a
new concept [Fig. 2.1(b)]. It is of high relevance to identify which of these problems
we are facing in order to correctly address them. The first one requires a change
detection method that allows data stream mining algorithms to react accordingly to
the extent of the change. On the other hand concept evolution needs a novel class
detection method that incorporates the new knowledge to the decision model.

Learning systems should also incorporate a method to forget outdated informa-
tion and an incremental learning technique that takes into account concept drift and
evolution. Old observations, that reflect the past behavior of the analyzed pheno-
mena, become irrelevant for the current behavior and the learning system must
forget that obsolete information. The change in the concept might occur due to
changes in hidden variables affecting the phenomena or changes in the characte-
ristics of the observed variables [78]. Some algorithms use methods that adapt the
decision model at regular intervals without taking into account if change really ha-
ppened. This implies needless extra processing time. On the other hand, explicit
change detection methods can indicate the point of change and quantify the extent
of the change. In general, the methods for concept drift detection can be integrated
with different base learners which provide flexibility to use this approach across a
wide range of domains. According to [78], two main tactics are used in concept drift
detection:

1. Monitoring the evolution of performance indicators using statistical tech-
niques.

2. Monitoring distribution of two different time windows.

In [8], Gama et al. presented a method to detect change in the probability
distribution of examples. The idea behind this method is to control the online
error-rate of the algorithm. According to the authors statistical theory guarantees
that if the distribution remains stationary the error will decrease, whereas if the
distribution changes the error will increase. For the current context, they define a
warning level and a drift level. A new context is declared, if the warning level is
reached at example kd and the drift level at example kw, then the algorithm learns
a new model using only the examples since kd. They used three distinct learning
algorithms to test their method: perceptron, neural network and a decision tree.

He et al., proposed a framework called ADAIN capable of incremental learning
from data stream [9]. The objective of this approach is to incorporate the previ-
ously learned knowledge to improve the learning process from a new raw data and
accumulate experience to support future decision-making process. They assumed
data stream will arrived in chucks of size D. At time t, a new set of data Dt arrives;
the previous knowledge in this case include a previous hypothesis ht−1, developed
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in time t − 1 and a distribution function Pt−1 associated with data chunk Dt−1. The
ADAIN framework proposed a mapping function that use Dt, Dt−1 and Pt−1 to cal-
culate a new initial distribution for Dt. They also calculated a pseudo-error applying
hypothesis ht−1 to the new data chunk Dt and use the error to refine the calculated
distribution for Dt. In this research work the CART model was used as base learner
and a multilayer perceptron as mapping function.

Another method for change detection is proposed by Kuncheva in [10]. This
method assumes two consecutive windows of data and change detection relies on
the estimation of the probability that data from the two windows come from differ-
ent distributions. A study of two criteria to estimate the probability of the change in
stream data, Kullback-Leibler distance [83] and Hotelling’s T-square test for equal
means [84], is presented. This work also introduces a new criterion for change de-
tection, called semi-parametric log-likelihood detector, which trade some theoretical
rigor for computation simplicity. All the criteria presented in this work, the two
studied criteria and the proposed one, are standard statistical measures of discrep-
ancy between two distributions.

In [11], a method for detecting concept drift which uses an exponentially weighted
moving average (EWMA) chart to monitor the misclassification rate of a stream clas-
sifier is proposed. EWMA charts were originally proposed for detecting an increase
in the mean of a sequence of random variables. In this work, a new estimator and
time varying control limit are introduced to EWMA charts in order to adapt the
method for concept drift detection. After a test instance is presented to the selected
base classifier and the predicted class is determined to be correct or incorrect, the
EWMA estimator is updated and if the obtained value is greater that a given thresh-
old then a concept drift is declared. Generally, there is no way to control the false
positive rate, where a false positive is defined as the detector flagging that concept
drift has occurred, when in fact there is none. This method allows the rate of false
positive concept drift detections to be controlled and kept constant over time.

2.3 Recurrent concept

The dynamic behavior of a data stream generated another phenomenon called
recurring concept, which can be seen as a type of concept drift observed in most of
real world problems. Detecting recurring concepts makes it possible to exploit pre-
vious knowledge obtained in the learning process [32]. It happens when a particular
distribution of data reappears in the data stream. This means that old concepts
(data distribution), which were learned by the classifier, can be forgotten due to
adaptation to current distribution and after some time the old concepts appear
again. If new incoming data belongs to an old distribution that has been forgotten
by the learner, the learning process should be repeated and the first instances of the
reappearing concept will probably be incorrectly classified.

Detecting recurrent concept in a data stream is a relative new area of research
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and also a very challenging task. Relearning a concept is costly and can significantly
affect the performance of the mining process in a data stream. So, in addition to
the previously mentioned characteristics desirable for a data stream model, such
as any-time classification, one pass learning, and low memory use, the necessity of
remembering historically learned concepts have to be added.

One of the first methods for recurrent concepts was introduced by Lazarescu in
[85]. The method uses multiple windows for tracking concept drift. The algorithm
attempts to interpret current data as well as detect, predict and quickly adapt to
future changes in the concept. A usefulness based approach is used to control the
forgetting mechanism to discard data from the system’s memory. Each instance
stored in the window is assigned three values: an age value, an evidence value, and
a change indicator value, which are update each time a new instance arrives. The
age value indicates the position in the window. The older the instance is, the higher
the age of the instance. The evidence value is determined by how well the instance
matches the current target concept description and the other instances stored in
the window. The change indicator value depends on the evidence value. A newly
observed instance may not match either the target concept or the rest of the instances
in the window. In this case the instance is flagged as a potential indicator that a
change is about to occur. Once the usefulness of the instance has been estimated,
both the usefulness and age of the instance are checked to determine whether or not
the instance is to be discarded. Additionally, the algorithm consistently checks the
current rate of change and estimates (based on past history) what the future rate of
change is likely to be. This information is used to improve the control over the size
of the larger dynamic data window which acts as the memory of the system and it
allows for a faster adaptation to changes in the concept. When drift is estimated,
the repository of stored historical concepts is checked for recurrence. Concepts are
described by averages of attributes, and similarity can be measured by any feature
distance metric. If a match is found, then the concept is reset to the old definition.

In [86], a semi-supervised classification algorithm for data streams with recurring
concept drifts and limited labeled data called REDLLA is presented. It is capable of
labeling the unlabeled data with a clustering approach in the growing of a decision
tree and reuses the unlabeled data combined with the labeled data for split-tests of
the current tree. The deviations between clusters are used to identify new concepts
(i.e., concept drifts) and recurring concepts at leaves. Firstly, with the incoming of
stream data, unlabeled data are labeled at leaves using a clustering strategy and the
information of unlabeled data is reused for the growing of the tree. Relevant statis-
tics are stored at the leaves, such as the total number of instances, the distributions
of class labels and attribute values of all available features. If the statistical count at
a leaf is up to a pre-set value, a k-means clustering algorithm is instantiated to label
unlabeled data. The merit of a split-test is evaluated, and correspondingly, the leaf
can be replaced with a decision node and children leaves are generated. A majority-
class method is used to label unlabeled data. Secondly, the recurring concept drift
detection is instantiated using concept clusters maintained at leaves. During the
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first detection period, the concept clusters are directly stored in a concept list. Oth-
erwise, they are used to compare with the last set of concept clusters. To measure
the deviation between these two cluster sets, two variables were defined: the radius
of a concept cluster and the distance between concept clusters. If a concept drift
occurs, the last concept clusters are also compared with a set of history concept
clusters to judge whether it is a recurrent concept or not. Thirdly, to avoid the
space overflow or over-fitting with the continuously growing of the tree, a pruning
mechanism is adopted when reaching a threshold. Several sub-trees from bottom
to top with the roots whose classification error rates are more than 50% are cut
off according to the simple pruning principle. Lastly, to track the performance of
the current classification model, prediction results are evaluated periodically using
a prequential estimation of the error based on the 0-1 loss function [87].

Gama and Kosina [88] present a general framework to detect changes in the data
distribution by monitoring the learning process using drift detection techniques.
When a change is detected, the learned model is stored in a sleep mode for possi-
ble reuse later. The proposed system uses a two-layer learning scheme. Each layer
receives its own data and trains its own classifier. The first layer receives the data
stream and trains a classifier using the labeled examples. For each incoming ex-
ample, the current classifier predicts a class label. If the example is not labeled,
the current model classifies the example and proceeds to the next example. If the
example is labeled, it is possible to compute a loss function, and update the current
decision model with the example. The prediction is either correct or incorrect, and
an example is generated to train the second layer classifier. The example for the
meta-classifier on the second layer has the same attribute values as for the classifier
on the first layer, but the class label is either True, if the example was correctly
classified, or False, if the example was misclassified. The decision problem on layer
two is always binary. The meta-classifier is learning in parallel with layer one clas-
sifier. This way, the meta-classifier learns the regions of the instance space where
the classifier performs well. The learning process of layer one is monitored using a
change detection algorithm proposed in [8]. Whenever a drift is detected, the clas-
sifier and its meta-classifier are stored in a pool for further use. Furthermore, the
system must decide whether to start learning a new decision model or activate one
of the previously learned models. A classifier is reused when the percentage of votes
of its meta-classifier exceeds some given threshold; otherwise a new one is learned.

2.4 Data stream mining

Nowadays, we face a vast amount of information generated continuously and at
high speed. This kind of data is better modeled as a transitory data stream, rather
than a static and conventional datasets. During the last years, several machine
learning model have been proposed for data stream mining. In the following sections
the main approaches used for mining this kind of data will be presented.
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2.4.1 Decision models

Several machine learning models have been proposed based on logical/symbolic
techniques. From these, two of them are more widely in use:

Decision trees

A decision tree uses a strategy of divide and conquer. Its strategy is to divide a
difficult problem into several simpler sub-problems and recursively apply the same
strategy to the sub-problems. A decision tree is a direct acyclic graph where each
node can be a decision node or a leaf node. In the simplest model, each leaf node is
labeled with a class and each decision node has a condition based on some attributes
[77]. A decision tree is learned by recursively replacing leaves by test nodes, starting
at the root. The attribute to test at a node is chosen by comparing all the available
attributes and choosing the best one according to some heuristic measure. Currently,
decision trees are one of the most popular methods for data stream classification.

The algorithms proposed by Domingos and Hulten [12, 13], have been the inspi-
rations for several of the tree models used for data stream classification. In [12],
the authors proposed a Very Fast Decision Tree learner (VFDT). It uses Hoeffding
bounds, which guaranty that the tree can be learned in constant time (more pre-
cisely, in time that is worst-case proportional to the number of attributes), while
being nearly identical to the trees a conventional batch learner would produce, given
enough number of examples. One main problem to build the tree is to decide exactly
how many examples are necessary at each node to choose the appropriate attribute
to test. This problem was solved by using a statistical measure known as the Ho-
effding bound. The main goal is to ensure that, with high probability, the chosen
attribute using n examples (where n is as small as possible) is the same that would
have been chosen using infinite examples. Concept-adapting Very Fast Decision Tree
learner (CVFDT) presented in [13] is an extension of VFDT that adds the ability to
detect and respond to changes in the example-generating process. CVFDT works
by keeping an up-to-date decision tree from a window of examples. However, it does
not need to learn a new model every time a new example arrives; instead, it updates
the statistics at its nodes. This will statistically have no effect if the underlying con-
cept is stationary. However, if the concept is changing, some splits that previously
passed the Hoeffding test will no longer pass, because an alternative attribute now
has higher gain. In this case CVFDT begins to grow an alternative sub-tree with
the new best attribute as its root; when this alternative tree becomes more accurate
that the old one, the old sub-tree is replaced by the new one.

In [14], Liang et al. addressed the problem of learning VFDT by using only
positive and unlabeled samples with both certain and uncertain attributes; where
several causes can be generating the uncertainty such as missing values, imprecise
measurement, and privacy protection. Some binary classification problems can be
better modeled as one-class classification scenarios, where target concept elements
are called positive samples. For example, in the case of credit fraud detection, the
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user behaviors that cause bad economic effect could be looked as positive samples.
Under this scenario a sample st from the stream is represented by st = (x, y, l) where
x is a tuple with d attributes; y ∈ {y0, y1} represents the class label of sample st, with
y0 for negative samples and y1 for positive samples; l ∈ {l0, l1} represents whether
the class label of st is available to the learner (l1) or not (l0). For the learner, only
positive samples are labeled, while the rest are used as unlabeled samples. So if l = l1,
we are sure that the sample belongs to the target concept (positive samples), and if
l = l0, the true class label of st is unknown. Based on the CVFDT algorithm [13],
the authors proposed an improvement called puuCVFDT (positive and unlabeled
uncertain CVFT). They transform the original CVFDT to cope with numerical
and categorical data with both certain and uncertain attributes under positive and
unlabeled learning scenario. To grow a puuCVFDT tree, an uncertain sample is
partitioned into fractional samples and assigned to tree’s nodes, starting from the
tree root recursively. The sufficient statistics at each node are collected from these
fractional samples and these statistics will be used to evaluate a heuristic measure
for identifying the best split attribute. They proposed a measure called uncertain
information gain for positive and unlabeled samples (puuIG) as splitting measures
which is calculated using the subsets of fractional examples and the probability to
observe the target concept in current data stream.

Li et al. proposed an algorithm called OcVFDT (One-class VFDT) in [15]. The
proposal is based on VFDT [12] and POSC4.5 [89] using only positive labeled and
unlabeled examples. In one class classification problems, the classifier is trained
to differentiate one class of objects – target class – from the rest of objects. This
algorithm only deals with discrete values while continuous attributes have to be
discretized. Based on POSC4.5 a One-class Information Gain (OcIG) is used to
measure information gain at each node and choose the best splitting attribute. The
estimated probability of the observed positive samples from the data stream is used
to calculate OcIG. As the true value of the probability is unknown, they enumerate
nine possible values from 0.1 to 0.9., and construct a forest with nine different
OcVFDTs. Then the best tree is chosen by estimating the classification performance
of the trees with a chunk of validating samples.

An improvement to OcVFDTs was introduce by Qin et al. in [16]. The proposed
method called PUVFDT (Positive and Unlabeled VFDT) uses an efficient method
to estimate the parameter PosLevel, that represents the estimated probability of
the observed positive samples from the data stream. It also introduces the ability
to handle numeric attributes. The information gain measure for a splitting point
is calculated using the PosLevel parameter and a random sample of the observed
positive labeled and unlabeled instances. The standard algorithm to construct a
decision tree usually assigns a constant at each leaf . In many cases, the constant
is the majority class of the examples that fall at the leaf node. In this work, they
explore the idea of using Positive Naive Bayes (PNB) classifiers at the leaf nodes of
PUVFDT, which takes into account not only the prior distribution of the classes,
but also the conditional probabilities of the attribute-values given the class label.
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The problem of multi-label classification has hardly been studied for data stream
scenarios. In multi-label classification, instead of a single class-label, each example
can be associated with multiple labels. In [17], Read et al. proposed a framework
for learning from and evaluating on multi-label data streams. In multi-label classi-
fication, we must deal with the extra dimension of L binary labels per example, as
opposed to the simple 0/1 classification accuracy measure. The Hoeffding tree [12],
is one of the state-of-the-art classifiers for single-label data streams, and performs
prediction by choosing the majority class of the examples that fall at each leaf. In
this work, the authors extend the Hoeffding tree to deal with multi-labeled data: a
multi-label Hoeffding tree. Their strategy is to construct a Hoeffding tree and an
incremental majority-labelset classifier (the multi-label version of majority-class) is
used as the default classifier on the leaves of the tree. Another important contri-
bution of the proposed framework is its capacity to model and generate evolving
synthetic multi-label data. The method is able to simulate dependencies between
labels as found in real data, as well as any number and type of attributes, and their
relationships to the label space. Furthermore, it can simulate how these dependen-
cies and relationships evolve over time.

Most existing classification algorithms for data stream assume that the class labels
are immediately available. However, for real world applications, this is no always
true. In [18], Wu et al. propose a semi-supervised classification algorithm for data
streams with concept drift and unlabeled data named SUN. This proposal uses a
clustering algorithm developed from k-modes and implemented to produce concept
clusters at leaves in an incremental decision tree. In this work, the gap in labeled
data is filled by labelling relevant unlabeled data to improve the performance of the
current learner. First it builds an incremental decision tree and several statistics
are calculated. After a threshold is reached, a k-modes algorithm is instantiated at
each available leaf to label unlabeled data and reuse the information of those new
labeled data at the current node for future split-test. If the statistical count at this
node is up to a pre-defined value, the merit of the split-test is evaluated using a
heuristic method based on information gain and Hoeffding bounds. With every new
data chunk new concept clusters are generated. Clusters generated over the last
data chunk are kept as a set of historical concept clusters. The method uses the
deviation between these old concepts clusters and new ones to distinguish concept
drift from noise.

Rutkowski et al., presented a decision tree for mining data streams based on the
ID3 algorithm [19]. They emphasize that the key point of constructing a decision
tree is to determine the best attribute to split the considered node. For data streams,
the dominant problem is to establish the best attribute in each node, given that the
stream is of infinite size. Given a dataset of n elements in the considered node,
we want to know if the best attribute computed from this dataset is also the best
attribute for the whole data stream, with some fixed probability 1 - δ. The main
contribution of this work is a statistical test used to determine which attribute is
best to split the node, with some probability given by the user. One relevant remark
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that the authors made is that their result should replace the Hoeffding bound, which
has been used incorrectly in the CVFDT algorithm. They stress that the idea of
the CVFDT algorithm published originally by Domingos and Hulten [13], in 2001
is correct, however the authors incorrectly used the Hoeffding bound in their paper.
The same authors presented a similar work in [20], but in this case the method is
based on a CART tree.

A fuzzy pattern tree is presented by Shaker et al. in [21] for binary classification
from a data stream. A fuzzy pattern tree is a hierarchical, tree-like structure, whose
inner nodes are marked with generalized (fuzzy) logical and arithmetic operators,
whereas the leaf nodes are associated with fuzzy predicates on input attributes. A
pattern tree propagates information from the leaf to the root node: a node takes
the values of its descendants as input, combines them using the respective operator,
and submits the output to its predecessor. It implements a recursive function that
maps a combination of attribute values entered in the leaf nodes to a number in the
unit interval, which will be delivered as the output by the root of the tree. Model
adaptation is performed by anticipating possible local changes of the current model,
and confirming these changes through statistical hypothesis testing. The basic idea
of this evolving version of fuzzy pattern tree learning is to maintain an ensemble
of pattern trees, consisting of an active model and a set of neighbor models. The
active model is used to make predictions, while the neighbor models can be seen as
anticipated adaptations: they are kept ready to replace the current model in case of
a drop in performance, caused, for example, by a drift of the concept to be learned.
More specifically, the set of neighbor models is always defined by the set of trees
that are close to the current model, in the sense of being derivable from this model
by means of a single edit operation, namely an expansion or a pruning step.

Decision rules

A decision rule is a logic predicate of the form if-then that is used to represent
and learn the relationships between entities, which characterize a class [90]. The
rule induction process tries to generate a set of rules that is consistent with the
training data. Rules can be learned from different methods such as: decision trees,
grammars and direct induction algorithms.

One of the first method proposed for rule induction in an online environment was
FLORA (FLOating Rough Approximation) [22]. To deal with concept drift and
hidden contexts, this framework uses the following strategy: keep only a window of
trusted examples, store concept descriptions and re-use them when a previous con-
text re-appears, and finally use some heuristics to control these two functions. In the
FLORA framework, a concept description or hypothesis is represented in the form
of three description sets: the ADES (Accepted DEScriptors) containing description
items matching only positive examples, the NDES (Negative DEScriptors) similarly
summarizes the negative examples, and PDES (Potential DEScriptors) containing
description items that are too general, matching positive examples, but also some
negative ones. ADES, is used to classify new incoming examples, NDES is used to
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prevent over-generalization of ADES, and PDES acts as a reservoir of description
items that are currently too general but might become relevant in the future. For
each set a counter is kept, that specify how many positive and negative examples in
the current window match the individual descriptions in ADES, NDES and PDES.
The counters are updated with any addition to or deletion from a window and are
used to decide when to move an item from one set to another or when to drop it
from the hypotheses. In any case, items are retained only if they cover at least
one (positive or negative) example in the current window. In this work they also
present FLORA2, an improved version which introduces two heuristics to detect
concept drift and acts accordingly by shrinking the window if concept drift occur,
and keeping the window size fixed when the concept seems stable.

In 2006 Ferrer-Troyano et al., presented FACIL (Fast and Adaptive Classifier by
Incremental Learning) [23], an incremental classifier based on decision rules. The
classifier uses a partial instance memory where examples are rejected if they do not
describe a decision boundary. Within the rule learning process, a rule is said to
be consistent when it does not cover any negative example (examples with different
label). The core of this method lies in avoiding specific rules and allowing rules
that may be inconsistent by linking them to positive and negative examples which
are very near one another. The purity of a rule is the ratio between the number of
positive examples that it covers and the total number of covered examples, positive
and negative. When a threshold is reached, the examples associated with the rule
are used to generate new positive and negative consistent rules. The classification
task is performed using consistent and inconsistent rules, the former classify new
test examples by covering while the latter classify them by distance similarly to
the nearest neighbor algorithm. In addition, the system provides an explicit forget-
ting mechanism that is executed when the examples are older than an user defined
threshold. Implicit forgetting is performed by removing examples that are no longer
relevant as they do not enforce any concept description boundary.

In a more recent work, Tomczak and Gonczarek introduce a method for decision
rule extraction called graph-based rules inducer [24], to support medical interviews
in diabetes treatment. The knowledge extraction method that they proposed uses
a graph representation to aggregate data and a forgetting factor to discard old
examples. Each arriving example can be seen as a most specific rule that have
D conditions and a decision; therefore, they can be represented by a graph. This
method uses one graph for positive examples and other for negative ones, separately.
Nodes of the graphs are associated with inputs and outputs and arcs denote logical
relations. Both graphs have the same set of vertices but they can have different
sets of arcs. Arc’s weights in the positive and negative graphs are associated with
numbers of occurrences of all pairs of inputs and an output in the example. How-
ever, positive and negative graphs reflect only aggregated examples and they can
be barely, if at all, called rule-based knowledge. Prior to describing rule induction
based on both graphs, they proposed a manner of evaluating pairs of vertices and
paths. The coverage and accuracy measures were used for evaluation. The coverage
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measure says about the generality of the rule while the accuracy measure expresses
the specialization of the rule. However, coverage and accuracy are only suitable to
measure the generalization and specialization of a rule separately; hence to reach a
balance between generalization and specialization a synthetic criterion is also pro-
posed. Finally, the proposed method uses an algorithm to reduce the search space.
The algorithm creates a new graph, from the positive and negative graphs, in which
an arc is either negative or positive. Each path that has only positive or negative
weights is regarded as an admissible rule and only rules with a quality criterion
greater than a given value θ are taken into account. The procedure for classification
of a new example is as follows. First, all possible sub-paths of the example (note:
example is treated as a path) should be found. However, only sub-paths that are
either positive or negative are considered. Second, between the considered paths,
the sub-path with the highest quality value is chosen.

2.4.2 Ensemble methods

Ensembles methods are a combination of several models whose individual predic-
tions are combined - generally by average or voting techniques - to output a final
prediction [7]. The idea behind an ensemble classifier is based on the concept that
different learning algorithms explore different search spaces and evaluations of the
hypothesis [77]. The use of ensemble methods in data stream contexts has increased,
primarily because their modularity provides a natural way of adapting to changes.

Abdulsalam et al., proposed a classifier based on random forests [25]. Random
forests are an ensemble classification technique that grows a given number of deci-
sion trees. The decision trees used for the ensemble, in this work, are constructed
according to the algorithm presented by Domingos and Hulten in [12]. The dynamic
algorithm builds a user-defined number of trees using a selected block of the incom-
ing data stream. The size of the selected block varies depending on the properties
of the stream. The tree-building strategy passes down the incoming records to the
tree, until they reach the frontier nodes. Every time a frontier node has seen a block
of records of user-defined size, both the Hoeffding and Gini tests are applied. If
the Hoeffding bound test is satisfied, then the frontier node is transformed into an
internal node with an inequality based on the best attribute and split point given
by the Gini index tests. The two children of this node become new frontier nodes.
The proposed method is able to handle intermittent arrival of labeled and unlabeled
instances and it is also able to judge whether the quality of the model is good enough
for deployment, or whether further labeled records are required. Some drawbacks
of this method are: it only handles numerical values or ordinal attributes for which
the maximum and minimum values of each attribute are known; also, it assumes
that the records are approximately uniformly distributed across all classes.

In [26], Brzezinski and Stefanowski analyze how the characteristics of incremental
and block processing can be combined to produce new types of ensemble classifiers.
They pointed out that ensemble classifiers can be categorized in two approaches:
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block-based ensembles and online ensembles. The block-based ensembles are de-
signed to work in environments were examples arrive in portions, called blocks or
chunks. Such approaches are designed to cope mainly with gradual concept drifts.
On the other hand, online ensembles are designed to learn in environments where
labels are available after each incoming example; this gives them the possibility
of reacting to concept drift much faster than block-based ensembles. The authors
claim that the periodical introduction of new candidate classifiers and incremental
updates of component classifiers should improve the ensemble’s reactions to both
sudden and gradual drifts in reasonable balance with computational costs. They
propose three general strategies for adapting block-based ensembles to online envi-
ronments. The first strategy converts a data block into a sliding window. Instead of
evaluating component classifiers every d examples, ensemble members are weighted
after each example using the last d training instances. The second strategy involves
using an incremental classifier as an extension of a block-based ensemble. The en-
semble works exactly like in the original algorithm but an additional online learner,
which is trained with each incoming example, is taken into account during compo-
nent voting. The last strategy uses a drift detector attached to an online learner
which triggers component reweighting. The three presented strategies tackle differ-
ent aspects of reacting to drifts in online environments. The experimental analysis
of each strategy led to the creation of a new online algorithm, called Online Accu-
racy Updated Ensemble (OAUE), which tries to combine the best aspects of these
strategies. OAUE maintains a weighted set of decision trees and predicts the class of
incoming examples by aggregating the predictions of components using a weighted
voting rule. Each component classifier is weighted based on its error and every d
examples a new classifier is created which will substitute the weakest classifier of
the ensemble. Very Fast Decision Trees proposed by Domingos and Hulten [12] were
used as base learners for the ensemble.

Ditzler and Polikar addressed the problem of detecting concept drift in a dataset
with class imbalance [27]. They proposed two ensemble-based approaches for learn-
ing from imbalanced data streams. Both approaches are based on a previous work
of the authors, called LEARN++.NSE [91], which train a new classifier for each
batch of data. Classification is then obtained using a weighted majority voting,
where weights are based on the averaged errors of the classifiers over recent environ-
ments. The first approach combines LEARN++.NSE with the Synthetic Minority
class Oversampling Technique (SMOTE), an oversampling method that strategi-
cally generates synthetic data for the minority class. The second approach replaces
LEARN++.NSE class independent raw classification error with a new penalty con-
straint to balance predictive accuracy on all classes by rewarding classifiers that per-
form well on both minority and majority class data. Second, it substitutes SMOTE
with a bagging-based algorithm that makes strategic use of existing minority data.
A sub-ensemble of classifiers is generated, each using all of the minority class data
and a randomly sampled subset of the majority class. In this under sampling tech-
nique majority class data is not discarded, as each ensemble member is trained on a
different bootstrap sample of the majority class data. In both approaches regression
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and classification trees were used as base learner in the ensemble.

Farid et al. in [28], proposed an adaptive ensemble classifier for mining concept
drift data streams. The ensemble is composed of three decision trees; ID3 and C4.5
algorithms were used as base learners in this work and a weighted voting technique
for classification of each test instance. The main contribution of this work is a
method for novel class detection. A similarity based clustering algorithm is used
to especially measure the class distribution of the data and monitor the arrival of
exceptional novel classes. It confirms the arrival of a novel class after the three
classifiers show abnormal class distributions by evaluating whether the number of
classified instances in a leaf node increases or decreases in comparison to a previously
calculated threshold. The algorithm assigns a weight to the current decision tree
based on its classification accuracy rate for the categorization of the original training
instances. The instances of the stream are labeled by the ensemble classifier and then
a new classifier is trained with the most recent dataset. As soon as the new classifier
becomes competitive, one of the existing classifiers in the ensemble is replaced by
it, if necessary. The classifier with the smallest weight reflecting the minimum
classification accuracy rate is chosen for replacement.

Detection of concept drift in data streams with class imbalance is a challenge
and it is a topic of intensive research. Ghazikhani et al., addressed this problem
in [29]. They proposed an online ensemble of neural network classifiers. The main
contribution of this work is a two-layer approach for handling class imbalance and
non-stationarity. The first layer handles class imbalance with a cost-sensitive learn-
ing embedded in the training phase of the neural networks. In this type of learning,
the misclassification cost is different for each class and it is adjusted to have more
balanced classification results. The objective function of these neural networks was
modified to include this cost-sensitive feature. Another issue that they considered
was diversity. Diversity is the difference between the outputs of the individual learn-
ers in the ensemble. They used different initial weights for generating diversity. The
second layer implements a new method for weighting classifiers of the ensemble. The
weight is increased when a classifier has a correct prediction and decreased other-
wise. The main innovation is considering two separate weights for the minority and
majority classes. In other words, the performance of each classifier on each class is
considered separately. The outputs of the classifiers are aggregated together using
a majority vote scheme.

In [30], Masud et al., proposed a data stream classification method that inte-
grates a novel class detection mechanism into traditional classifiers. In general, data
stream classification techniques would be unable to detect the novel class until the
classification models are trained with labeled instances of the novel class. The al-
gorithm starts with building the initial ensemble of M classifiers with the first M
labeled data chunks. The algorithm maintains three buffers: buf keeps potential
novel class instances, U buffer keeps unlabeled data points until they are labeled,
and L buffer keeps labeled instances until they are used to train a new classifier.
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At each iteration, the latest data point in the stream is classified using the selected
base algorithm. The authors tested the proposed mechanism using two different
classifiers: decision tree and k-nearest neighbor. If the instance cannot be classified
it will be pushed into U . When U reaches a pre-define threshold, the oldest element
in U will be dequeued and labeled. The labeled record will be then pushed into L.
When we have S instances in L, where S is the chunk size, a new classifier L′ is
trained using the chunk. Then, the existing ensemble is updated by choosing the
best M classifiers from the M + L′ classifiers based on their accuracies on L, and
the buffer L is emptied to receive the next chunk of training data. An unlabeled
instance is classified by taking majority vote among the classifiers in the ensemble.
The method includes a clustering algorithm which builds clusters with the training
data and a summary of each cluster is stored. Test instance outside the decision
boundary of the generated clusters are considered outliers and candidate for a novel
class. These instances are store in buf for later processing. For novel class detection
a measure of cohesion is proposed. This measure is calculated using the instances
stored in buf and the summary of the existing clusters generated from the training
data. If all of the classifiers in the ensemble discover a novel class using this measure,
then arrival of a novel class is declared.

In data stream environments, it may happen that only a small fraction of the data
can be labeled. A method to cope with scarcity of labeled data is proposed by Masud
et al. [31]. They presented a technique to train and update a classification model
using both, labeled and unlabeled instances. Each classifier is built as a collection of
micro-clusters using semi-supervised clustering, and an ensemble of these classifiers is
used to categorize unlabeled data. The input stream data is divided into equal-sized
chunks so that each chunk can be stored in main memory. When P% of instances
in a data chunk has been labeled, a new classifier is trained from that chunk. An
initial ensemble M of L classifiers is built using the first L data chunks. The existing
ensemble is used to predict the label of the test instances using majority voting. The
ensemble is updated by choosing the best models based on their individual accuracies
over the labeled training data of a new data chunk. The semi-supervised clustering
algorithm is based on cluster-impurity measure. It creates K clusters using the
partially labeled training data. The clusters are then split into pure clusters, where
a pure cluster contains unlabeled data points or labeled data points of only one class.
The summary of each pure cluster is then saved as a micro-cluster. They combine
this set of micro-clusters with labeled micro-clusters (micro-clusters that correspond
to manually labeled instances) from the last r contiguous chunks. Finally, a label
propagation technique to propagate labels from the labeled micro-clusters to the
unlabeled micro-clusters is applied. This yields a new classification model that can
be used to classify unlabeled data.

Another ensemble learning algorithm called Pool and Accuracy based Stream
Classification (PASC) is presented in [32]. The algorithm maintains a pool of clas-
sifiers to deal with recurring concepts, where each classifier describes a concept of
the environment; it is worth noting that in this proposal only one classifier from
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the pool is used to classify a test instance. Two approaches are presented to select
which classifier will be used: the first one uses the active classifier where an active
classifier is a classifier which was updated by the previous batch of instances. The
second approach uses a weighted classifier. At the beginning of the iteration, each
classifier is assigned with an initial weight. After predicting the label of an instance,
the weights are updated using the real and predicted label. In later iterations, an
instance is classified using the classifier which has the highest weight. For sake of
efficiency the weights are not updated with every instance; instead a subsample of
the batch is used. The square root of the batch size was chosen as the number of
instances selected to update the weights. Näıve Bayes classifiers were used as base
learners. In a second phase, the algorithm updates the pool of classifiers. When a
batch of instances is received, the algorithm first predicts the corresponding labels
of the instances. Then, the true label of each instance is revealed. After receiving
the true labels of the whole instances of the batch, the algorithm either chooses the
most appropriate classifier and updates it, or creates a new classifier that suits the
received data and their labels. To avoid getting redundant, there is a constraint
on the maximum number of classifiers. Three different methods to update the pool
were proposed: the first one uses the Bayes theorem, the second is similar to the
first except that it makes some assumptions to decrease the time complexity of the
method, and the third one is a heuristic method which turns out to be more efficient
than the other two. Any of these methods output the best classifier of the pool and
a similarity measure. If the similarity measure is more than a predefined threshold
parameter, the data batch and its labels should be given to the best classifier to
be updated. Otherwise, if there is a free space in the pool or a free space can be
created, a new classifier will be created with the newly arrived batch and its labels.
To create a free space, it is checked to see whether a merging process can be done
to merge two classifiers of the pool.

In [33], a supervised neural constructivist system (SNCS) is presented. The sys-
tem design is based on Michigan-style neural learning classifier system (N-LCS) that
evolves a population of Multilayer Perceptrons (MLP) on-line. Michigan-style LCSs
are open frameworks that foster crossbreeding between different learning paradigms.
Three key aspects are required for every implementation of Michigan-style LCS: (1)
a knowledge representation, based on classifiers, which enables the system to map
sensorial status with actions, (2) an apportionment of credit mechanism which eval-
uates the classifiers, and (3) a knowledge discovery mechanism. LCSs are on-line
machine learning techniques that use genetic algorithms (GAs) and an apportion-
ment of credit mechanism to evolve a rule-based knowledge. In order to improve
flexibility and obtain accurate models beyond the limitations of rule-based systems,
the use of neural networks has become popular, resulting in the N-LCS. In this work,
the authors proposed a Michigan-style LCS which uses MLPs as classifiers and a GA
is used to evolve the topology of the MLPs. To estimate the quality of the classifier,
the authors proposed a set of parameters: fitness, experience, time and accuracy.
After each learning step, the experience, accuracy and fitness of the classifiers are
updated in an incremental way. To maintain a compact and accurate population,
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once the training phase is finished, the final population is reduced deleting those
classifiers that have low experience.

Saunier and Midenet proposed a traffic management application for road safety
diagnosis in signalized intersections [34]. Such application requires dealing with data
streams that may be subject to concept drift over various time scales. An expert
provides imprecise labels based on video recordings of the traffic scenes. In order to
improve the performance – overall and for each class – and the stability of learning in
a stream, this paper presents an ensemble method based on incremental algorithms
that rely on their sensitivity to the processing order of instances. Most incremental
algorithms build different hypotheses if the training instances are presented in dif-
ferent orders. These hypotheses can then be combined through a voting technique.
This paper explores the use of the order in which the instances are presented to
create different ensembles of classifiers. The severity, or proximity to a potential
car collision, is measured by the spatio-temporal distance between the interacting
vehicles, and is related to their probability of collision. The aim of the proposed
method is to predict the severity indicators. Näıve Bayes classifiers are used as base
learner in these ensembles. The approach relies on selecting a subset of the available
instances for learning. The selection criterion of labeled instances was implemented
by selecting instances that are misclassified by the current hypothesis. During the
active learning process the hypotheses are iteratively used for prediction and then
updated with the newly labeled instances. In batch mode, the proposed method ini-
tializes k hypothesis randomly drawn from the training dataset, then the rest of the
dataset is presented in a random order to each hypothesis and processed according
to the selection criterion. When learning online, with a data stream S, the order of
the data instances cannot be controlled. The proposed algorithm initializes a set of
diverse hypotheses on the initialization labeled dataset of size n. Each instance in
the stream S is then considered for selection by each hypothesis: since the selection
criterion depends on each hypothesis, each having a different initialization, they will
pick different instances from the same data stream.

2.4.3 Instance based models

Instances Based Learning (IBL) algorithms use specific instances during classi-
fication and prediction tasks. The primary output of IBL algorithms is a concept
description as a function that maps instances to categories. An instance-based con-
cept description includes a set of stored instances. This set of instances can change
after each training instance is processed. Concept descriptions are determined by
how the IBL algorithm’s similarity and classification functions use the current set
of saved instances [92]. IBL algorithms are derived from the well-known nearest
neighbor classifier initially proposed by Cover and Hart [93]. These algorithms use
similarity functions to yield matches between instances. Model-based algorithms
induce a general model from data and use this model for further reasoning; contrary
to this, IBL algorithms store the data and postpone the processing until a prediction
is requested (which earned the name of lazy classifiers). Predictions or classifications
are derived from the information provided by the stored instances.
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Algorithms for data stream contexts have to be incremental, highly adaptive and
capable of handling concept change. In the case of IBL algorithms, incremental
learning and model adaptation is very simple, since it comes to updating the stored
instances, but high computational costs arise while classifying test instances or per-
forming a new prediction. Consequentially, IBL might be preferable in applications
where the incoming number of instance is large when compared with the number of
queries that have to be performed [5].

Beringer and Hüllermeier developed an IBL algorithm for data streams classifica-
tion [5]. The system maintains an implicit concept description in the form of a case
base (a window with a number of instances). On arrival of a new example, this is
added to the case base. It is also checked whether other examples might be removed,
either since they have become redundant or since they are outliers. A set C of exam-
ples within a neighborhood of the recently added example are considered candidates
for removal. A statistical test is also incorporated to detect abrupt change of con-
cept. In case a change is detected, an estimate of the change is calculated in order
to determine the number of examples that need to be removed from the case base.
Examples to be removed are chosen at random according to a distribution which
is spatially uniform but temporally skewed. The case base is updated taking into
account three indicators: temporal relevance, spatial relevance and consistency.

Another model that uses the advantage of instance based learning is presented in
[35]. In this work, a model named Similarity-based Data Stream Classifier (SimC)
is introduced. The system maintains an implicit concept description in the form
of a case base, introducing an insertion/removal policy that adapts quickly to the
data tendency and maintains a representative, small set of examples and estimators.
An initial model is built using the first 100 instances, which are stored in groups,
where each class will be represented by certain number of groups. Once the initial
model is built, it will be used to classify new instances and will be updated. The
classification function is a standard k-NN with a default value of k = 1, but this
parameter can also be defined by the user. The classifier uses the heterogeneous
distance measure HVDM [94], which is updated with each insertion and deletion
in the case base. For the appropriate selection of instances, SimC uses estimators
that provide general information about each group and each instance stored in the
case base: the mean instance of each group, the age of the group, usefulness, and
consistency. The instance selection policy of SimC, that updates the model, relies
on the combination of these estimators

Shaker and Hüllermeier presented a instance based algorithm that can be applied
to classification and regression problems in data stream scenarios [36]. The proposed
algorithm is called IBLStream. The basic idea is an evolving version of fuzzy pattern
tree learning (eFPT) to maintain an ensemble of pattern trees, consisting of a current
(active) model and a set of neighbor models. The current model is used to make
predictions, while the neighbor models can be seen as anticipated adaptations: they
are kept ready to replace the current model in case of a drop in performance, caused,
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for example, by a drift of the concept to be learned. The set of neighbor models is
always defined by the set of trees that are close to the current model in the sense
of being derivable from this model by means of a single edit operation, namely an
expansion or a pruning step. An expansion replaces a leaf L of the current tree by a
tree-node. A pruning step is essentially undoing an expansion. More precisely, each
inner node except the root can be replaced by one of its sibling nodes, which means
that the subtree rooted by this node is lifted by one level, while the subtree rooted
by the other sibling is pruned. For each time step t, the error rate of the current
model and, likewise, of all neighbors is calculated on a sliding window consisting of
the last n training examples. The length of the sliding window, n, is a parameter of
the method; as a default a value of n = 100 was used, which is large from the point
of view of statistical hypothesis testing and small enough to enable a fast reaction
to changes of the data generating process.

2.4.4 Clustering methods

Clustering can be defined as a procedure to partitioning a group of objects into
several sub-groups, such that the similarities between elements of a sub-group are
high while similarities with elements of a different sub-group are low. Most ap-
proaches use distance between instances as a metric for similarity. This strategy is
prohibitive for data stream contexts as it requires a quadratic search space regarding
to the number of instances.

The data stream clustering problem is defined by [77] as “maintaining a con-
tinuously consistent good clustering of the sequence of data observed so far, using
a small amount of memory and time”. In the early development of data stream
clustering, the focus of the research was to construct a suitable data structure for
data streams based on traditional methods. Some of the methods developed dur-
ing this phase were: Birch algorithm, LocalSearch algorithm, Stream algorithm and
CluStream algorithm [37]. As the development of data stream clustering algorithms
continued the research focuses on two aspects: the first one is the clustering for
irregularly distributed data; the second is how to detect outliers and exclude the
interference of noisy data.

In [38], a new k-means clustering algorithm for data streams, called
StreamKM++ is proposed. The stream algorithm maintains a small sketch of the
input using a merge-and-reduce technique. The data is organized in a small number
of samples, each representing 2im input points (for some integer i and a fixed value
m). When two samples representing the same number of input points exist an union
(merge) is executed and a new sample (reduce) is created. This small sketch is called
coreset. A coreset for a set P is a small weighted set, such that for any set of k
cluster centers the clustering cost of the coreset is an approximation for the cluster-
ing cost of the original set P with a small relative error. The coreset construction
is based on the idea of the k-means++ seeding procedure introduced in [95]. To
overcome some disadvantage of the k-means++ seeding procedure, a tree structure
was implemented to store the coreset which allows the algorithm to compute the
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probabilities to choose the next sample point in a faster way. The obtained results
show that the running time to construct the clusters was improved when compared
with other clustering algorithms, but the quality of the clusters remains the same.

Wang et al. proposed a data stream clustering algorithm, termed Support Vector-
based Stream clustering (SVStream) in [39]. Support vectors (SVs) can obtain
flexible and accurate data descriptions by mapping the data into a kernel space.
Support vector domain description (SVDD) is a sphere-shaped data description. By
using a nonlinear transformation, SVDD can obtain a very flexible and accurate data
description relying on only a small number of SVs. The algorithm searches for the
smallest sphere that encloses most of the data points in the feature space, which is
described by the center µ and the radius R. In this scheme, data points are classified
into three types: inner points, which lie either inside or on the sphere surface,
support vectors, which lie on the sphere surface, and bounded support vectors, which
lie either outside or on the sphere surface. To achieve cluster labeling, an adjacency
matrix A is computed using the input data and the radius R. Clusters are defined
as the connected components of the graph induced by A. The authors consider
that the data elements of a stream arrive over time in chunks of equal size. To
adapt to changes they propose a multi-sphere representation, where multiple spheres
are dynamically maintained in a sphere set. When a new data chunk arrives, if a
dramatic change occurs, a new sphere is created; otherwise, only the existing spheres
are updated or merged to take into account the new chunk. The data elements of
this new chunk are assigned with cluster labels according to the cluster boundaries
constructed by the sphere set. Another important issue lies in properly discarding
bounded support vector (BSVs). Since as new data arrive, more and more BSVs
are generated, causing a dramatic demand for storage and computation, but cannot
be directly discarded because some of them would become new SVs in later steps.
To tackle this problem, a BSV decaying mechanism is proposed, which assigns each
BSV with an age, through which appropriate BSVs are discarded as outliers.

In [40], a stream clustering algorithm to detect twitter spammer accounts is intro-
duced. Three proposals were presented in this work: a modified DenStream [41], a
modified StreamKM++ [38] and a combination of these two methods. The authors
proposed that instead of dealing with this problem as a classification task it will be
viewed as an anomaly detection task. In this anomaly detection approach, a cluster-
ing model is built on normal twitter users with all outliers being treated as spammers.
DenStream is a density based clustering algorithm which uses micro-cluster synopsis
designed to summarize the clusters and a pruning strategy that allows the growth
of new cluster while promptly getting rid of outliers. DenStream was modified by
using p-micro-clusters to model normal instances and o-micro-clusters for outlier
instances. If any incoming point is not merged with a p-micro-cluster, it is classified
as abnormal and placed in the outlier buffer until deletion. It also removes the func-
tion for an o-micro-cluster to become a p-micro-cluster, this modified DenStream
can only cluster instances that are considered normal. StreamKM++ is a k-means
based clustering algorithm which uses the concept of a coreset which is defined as
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a weighted subset of the input. StreamKM++ first extracts a small set of points
from the data stream and uses a merge and reduce scheme to keep the coresets
manageable. The proposed modified version of StreamKM++ an additional param-
eter ε was added as the threshold for a point to be considered part of a cluster and
a detection scheme was implemented in order to classify points the moment they
arrive. As each new point comes in, the modified StreamKM++ finds the nearest
coreset cluster based on the most recent set of centers and calculates the Euclidean
distance. If the distance is above the value of ε, then the point is detected as spam
and is not inserted into the nearest coreset. Using this technique, spam instances
are prevented from entering into the coresets. The third proposal combines the two
modified algorithms DenStream and StreamKM++. StreamKM++ algorithm is
used to classify instances with zero false negatives and then outputs all predicted
classes to be used by DenStream. DenStream assumes that every StreamKM++
predicted normal instance is correct, which lowers the false positive rate and by
carefully choosing a moderate value for ε, DenStream also corrects many of the false
positive mistakes made by StreamKM++ and makes the final predictions.

2.4.5 Neural network models

Neural networks are inspired by physiological knowledge of the organization of
the brain. They are structured as a set of interconnected identical units known
as neurons. The interconnections are used to send signals from one neuron to the
others, in either an enhanced or inhibited way. This enhancement or inhibition is
obtained by adjusting connection weights [96]. For data stream scenarios, neural
network-based models have been scarcely used, due to its limitation for these con-
texts. In a neural network, for example, a new observation causes an update of the
network weights, and this influence on the network cannot simply be canceled later
on; at best, it can be reduced gradually over the course of time. [35]. Moreover,
updating the weights with the arrival of each new example will require high com-
putational cost which is not a desirable characteristic for data stream algorithms.
However a few works where neural networks are used for data stream scenarios are
presented in the current literature. They also have been used as base classifiers for
ensemble methods [29, 33].

In [42], an online perceptron classifier for non-stationary and imbalanced data
streams is proposed. This classifier uses the recursive least square (RLS) adap-
tive filter error model. Recursive least square is a type of adaptive filter in which
the parameters are adapted by minimizing the sum of the errors in all the previ-
ous instants. The algorithm is trained with gradient descent method. The error
model is suitable for classifying non-stationary and imbalanced data streams. Non-
stationarity is handled with the forgetting factor of the RLS error model. An error
weighting ability is embedded into the RLS error model to handle class imbalance
for two-class datasets. The error weight at instant i, would be adjusted such that
the error of the class with minor data is more important than the one for the major
class. The training procedure of perceptron classifier is online, i.e., the parameters
of the perceptron are updated with each incoming instance.
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2.4.6 Support vector machines

Support Vector Machines (SVMs) are linear discriminant models generally used
for pattern classification and regression. SVMs rely on pre-processing the input data
to represent patterns into a higher dimensional space [90]. Using a proper nonlinear
mapping function patterns can be mapped to a sufficiently higher dimension, where
a hyperplane that separates the data can always be found. SVMs have been used for
different tasks in data streams scenarios such as sentiment analysis, fault detection
and prediction, medical applications, spam detection, and multi-label classification.

Zhang et al. [43], presented a learning framework for data stream context based
on Support Vector Machine (SVM). First, diverse training examples are categorized
into four types and learning priorities are assigned to them. Four categories are
defined: labeled and from the target domain (type I), labeled and from a similar
domain (type II), unlabeled and from the target domain (type III), and unlabeled
and from a similar domain (type IV). Then, four learning cases are derived based
on the proportion and priority of the different categories of training examples: type
I dominates (case 1), type III dominates (case 2), type II dominates (case 3), and
type IV dominates (case 4). Finally, for each learning case, one out of four SVM-
based training models is used: classical SVM, semi-supervised SVM, transfer semi-
supervised SVM, and relational k-means transfer semi-supervised SVM. To select
the appropriate learning model it is necessary to estimate the number of examples of
each type. An estimation method based on the concept drifting probability and the
labeling rate is proposed. The authors established the learning priority of the four
types of training examples as follows: typeI > typeIII > typeII > typeIV . When a
particular type dominates the training examples, examples with lower priorities will
not be used for training.

Active learning for sentiment analysis on data streams has also been addressed
using SVM methods. Kranjc et al. [44] introduced a cloud-based scientific workflow
platform, which is able to perform online dynamic adaptive sentiment analysis on
twitter data. They used a linear SVM for sentiment classification. The classification
algorithm first learns from a labeled set of tweets, and then classified new incoming
tweets from the data stream. The incoming tweets are divided into batches. The
algorithm selects most suitable tweets from a first batch for hand-labeling and puts
them in a query pool. This process is repeated for every following batch and every
time the query pool is updated and the tweets are reordered according to how
suitable for hand-labeling they are. If the user decides to conduct hand labeling is
given a selected number of top tweets from the query pool. Tweets can be labeled
as positive, negative or neutral. When the manual labeling process is executed, the
labeled tweets are moved to a labeled pool that later will be use to re-train the
model.

Smailović et al. [45] presented a methodology that analyzes whether the senti-
ments expressed in twitter feeds, which discuss selected companies and their prod-
ucts, can indicate their stock price changes. The authors proposed the use of a
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Pegasos SVM [46] to classify the tweets as positive, negative, and neutral. Once
the tweets were classified, a sentiment indicator for predictive sentiment analysis in
finance, named positive sentiment probability is calculated. This indicator is the
ratio between positive tweets and the number of tweets in one day. It indicates
the probability that the sentiment of a randomly selected tweet on a given day is
positive. Finally, the Granger causality analysis was used to correlate positive senti-
ment probability and stock closing price. Granger analysis is a statistical hypothesis
test for discovering whether one time series is effective for forecasting another time
series. In this work, the Granger test is used to check whether there is a predictive
relationship between sentiments in tweets and stock closing prices.

Krawczyk and Woźniak [47] proposed a version of incremental one-class classifier
for mining stationary data streams. The proposed method uses an one-class SVM
(OCSVM), that assigns weights to each object according to its level of usefulness.
It computes a closed boundary in a form of a hypersphere enclosing all the objects
from the target class. An object belongs to the target class, if it falls within this
hypersphere; otherwise it belongs to outliers. The OCSVM assigns higher weights to
instances that carry useful information, while delegating lower weights to irrelevant,
recurrent or noisy examples. They introduce two schemes for estimating weights
for new incoming data. The first one establishes the weight based on the distance
from the center of a hypersphere to the incoming example, while the other assigns
higher weights to the new incoming examples. According to their experiments the
first weighting method achieved better results.

2.4.7 Frequent pattern mining

Frequent patterns are those items, sequences or substructures that reprise in
database transactions with a user specified frequency. An itemset with frequency
greater than or equal to a minimum user defined threshold will be considered as a
frequent pattern. [48]. One of the first works in this area was presented by Agrawal
and Srikant in 1994 [49]. They considered the problem of discovering association
rules between items in a large database of sales transactions. Two algorithms were
proposed to detect all sets of items (itemsets) that have minimum support, i.e,. a
minimal number of transactions that use the itemsets. Later, those itemsets will
be used to generate rules. Since then, frequent pattern mining task has gained
popularity and become an active area of research in data stream contexts.

Nori et al. presented an algorithm for mining closed frequent itemsets using a
sliding window approach [50]. Closed frequent itemsets have smaller sizes than a
complete set of frequent patterns while they contain the same information. There-
fore it is more desirable to keep closed frequent itemsets rather that maintaining a
complete set of frequent itemsets. In the proposed algorithm, a prefix tree based
data structure is used for better maintaining the sliding window transactions and
to fast computing the support of the itemsets when the window is updated. In this
model only W of the most recently received transactions are considered for mining
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purpose, where W is determined by the user. When a new transaction arrives, the
oldest transaction expires and departs from the window.

In [51], an approach to discover frequent patterns from data streams in the pres-
ence of concept drift is presented. This approach is based on a process called support
approximation. Given a transactional data stream and a minimum support (speci-
fied by the user), the goal of this research is to discover the itemsets whose counts
are above the minimum support. The authors stated that for each itemset, the cor-
relations between attributes in the data produce a relationship of frequency between
the itemset and its subsets. They call this a support relationship. Therefore, given
some concept of a data stream, there is a corresponding set of support-relationship
instances. For support relationship modeling a multi-layer perceptron was used and
a genetic algorithm was used for the determination of both the suitable structure
and connection weights, where the structure is considered the number of hidden-
layer nodes in the neural network model. The basic idea is that a synopsis of the
data stream should be maintained from the constructed support-relationship model.
With a constructed support-relationship model, given k total counts of some item-
sets from length 1 to length k, the count of an itemset that grows from these itemsets
can be approximated. This process is called support approximation or count ap-
proximation. The support of an itemset of size k + 1 whose count is unknown can
be approximated if the counts of its subsets of length k and below are all known.
In order to do so, a dynamically synopsis that contains itemsets of the first k orders
is kept. To optimize the maintenance of the synopsis a prefix tree that is ordered
lexicographically was proposed as data structure.

Lee et al. introduced a weighted maximal frequent pattern mining over data
streams based on an sliding window model (WMFP-SW) [52]. The method performs
mining operations based on tree structures. The first one, WMFP-FP-tree, is a tree
constructed with weighted data and only one scan over the sliding window. As
window changes, a part of the tree is removed, new data is added into the tree,
and then tree restructuring operations are performed. A second tree structure,
called WMFP-SW-tree, is composed of a header table including items’ supports (or
counts), weights, and node links and is used to manage extracted information from
the window and conducting subset checking operations. A global WMFP-SW-tree is
constructed with transaction data composing the current window while conditional
WMFP-SW-trees are generated with partial data corresponding to each item in
the header table. The overall mining procedure is as follows. (1) Transactions
are read as many as the defined size of the window, and they are inserted into a
global WMFP-SW-tree. (2) The tree is restructured according to support (counts)
descending order of the inserted items, if necessary. (3) If there occurs a mining
request, WMFP-SW mining operations are performed with the restructured global
tree. (4) If new transaction data are entered to data streams, transactions included
in previous steps are deleted while new ones are inserted into the tree. (5) After
returning to the step 2, iterate until the WMFP mining procedure is completely
finished.
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2.4.8 Fuzzy models

Fuzzy models, also known as fuzzy-rule-based or fuzzy inference systems, are
systems capable of modeling the qualitative aspect of human knowledge and reason-
ing processes without using a precise quantitative analysis [53]. These systems are
composed of five functional blocks: a rule base composed of fuzzy if-then rules, a
database defining membership function, a decision-making unit, a fuzzification in-
terface and a defuzzification interface. Traditionally fuzzy inference systems employ
a fixed structure closely related to an expert knowledge. During the last decade
several approaches have been proposed to address the online identification of the
structure for fuzzy inference systems [53–55].

In [56], Angelov proposed a data-driven method called simplified evolving Takagi-
Sugeno (simpl eTS ). The proposed method allows complete autonomous knowledge
extraction from stream data. The system automatically detects the shift in data
distribution of a data stream and reacts by evolving the system structure. The
structure is determined by a computationally simple evolving clustering method
that analyses if the arriving example covers a new area of the data space, in which
case a new cluster/rule is created while a redundant cluster/rule will be deleted.
The quality of the local models and the respective automatically generated fuzzy
rule base can be monitored online by qualitative measures, such as utility, which
accumulates the weight of the rule contribution to the overall output.

2.4.9 Other approaches

In previous sections several of the most common tasks in data stream contexts
were presented, but since it has become a main research topic during recent years,
new challenges for machine learning algorithms have arisen. Because of this numer-
ous approaches have been proposed to address these challenges. In this section some
seldom addressed aspect of data stream mining are presented. Even when these ap-
proaches are rarely use, it is important to include them in this research work to try
to achieve a better understanding of the work performed in the field of data stream
mining.

A method infrequently used for data stream contexts is genetic algorithms (GA).
Vivekanandan and Nedunchezhian present a scalable and adaptable online genetic
algorithm to extract classification rules from data streams with concept drifts in
[57]. The proposed method does not use a fixed static data set for fitness calculation.
Instead, it extracts a small snapshot of the training example from the current part of
the data stream whenever data is required for the fitness calculation. It also builds
rules for all the classes separately in a parallel independent iterative manner. In
the beginning of the process the candidate rule set for all the classes is generated
randomly and the incoming data stream is divided into chunks of fixed size. After
fully receiving a chunk of the data stream an iteration of the GA is performed and
during this process, better candidate rules for all the classes are generated based on
the received chunk of the data stream. A single window can be used to store the
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subset of the stream received as a whole, but the accuracy of the rules produced
by the algorithm may degrade. To avoid this, the method uses separate multiple
windows, one for each class, to store the stream data. Each window size depends
upon the overall distribution of the corresponding class. As the stream evolves, the
size of each window can also be altered based on the average distribution of the
classes observed from the window in the previous k chunks of the stream that have
been examined so far, where the constant k is defined by the user. If a window of
a class becomes full while loading the stream, the oldest records in that particular
window will be removed to make space for the new incoming records. All the data
in all the windows put together will create a snapshot of the stream whose class
distribution is approximately equivalent to the overall class distribution of the whole
stream and this provides a stable data set for mining.

In [58], a hormone based nearest neighbor classification algorithm for data stream
classification is presented. The proposed method uses an artificial endocrine system
(AES) for updating and condensing the samples in the classifier. An AES is a
model that simulates the manner in which a biological endocrine system processes
information. It allows cells in a large system to communicate and interact with
each other forming an entire system. The algorithm only keeps the samples on the
boundaries between different classes and the amount of the boundary samples is
decided a prior. Interior samples in a class are seen as unimportant points which
should be discarded in this process. Each record is seen as a position that can
accommodate only one artificial endocrine cell. Ktotal endocrine cells are initialized
in the initial stage. With the evolution of the data stream, the endocrine cells
keep on changing their positions to track the changing boundaries between different
classes. Each endocrine cell has a perceiving sensor and a releaser. Only one kind of
hormone can be released by an endocrine cell and the class of the hormone released
was decided by the position where the cell resided in. Each endocrine cell can
perceive all kinds of hormones coming from other endocrine cells. When the same
kind of hormones is perceived by an endocrine cell, the hormone concentration will be
accumulated. On the contrary, when different kinds of hormones are perceived, the
concentration will be reduced. During classification phase the algorithm calculates
the distances between the new arrived record and all of the endocrine cells. The
class label of the nearest position where the endocrine cell resided in will be set to
the new record.

Most of the approaches in data stream contexts assume that data comes already
pre-processed or that pre-processing is an integral part of a learning algorithm. Pre-
processing of data streams has been largely overlooked in this research field. In [59],
the authors presented a study of adaptive pre-processing methods and as a result
of their analysis a prototype approach for combining adaptive pre-processing with
adaptive predictor online was proposed. The main focus of this study is to determine
under what circumstances decoupling the adaptability of the pre-processor and the
predictor is beneficial to prediction accuracy. According to the authors, concept
drift typically refers to changing relations between the input data and the target
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variable. Since there is no data evolution, only labels change; such a drift typically
would not require adaptation of the pre-processing and adapting the predictor would
be sufficient. Data evolution is likely to require adaptation of the pre-processor
because the input data representation changes. This drift in isolation, however,
may not require adaptation of the predictor, if the relation between the classes does
not change. In such cases, it may be sufficient to adjust the pre-processing so that
new data is repositioned to appear, where the old data previously were appearing.
In cases, where both types of drift take place, we may or may not need to adapt
the pre-processing, but typically we would need to adapt the predictor. Changes
in data may cause that both adaptations are required, but it may be optimal to
execute those adaptations asynchronously, i.e., at different times after the change.
They used a parametric Näıve Bayes as predictor and identified three scenarios
where decoupling adaptive pre-processing and prediction may be beneficial: the
two components need different amount of data for training, changes in data do not
change the relation between the classes, and changes in pre-processing need to be
introduced while updates to the predictor are continuously executed.
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Chapter 3

Materials y methods

In this chapter, materials and methods used for the development of the proposed
methodology are presented. First section, introduces the main aspects of the clas-
sifier used as base learner in the data stream classification methodology proposed
in this research work. Section 3.2 presents some concepts related to the sliding
windows approach, which will be used as one of the methods to implement con-
cept drift detection and a forgetting mechanism in the proposed methodology. In
section 3.3 a statistical adaptable method to update a sliding window is described.
This will be tested as the second method to adapt Gamma classifier for concept
drift detection. An evaluation method for data stream classification algorithms is
depicted in section 3.4 which will be used to assess the proposed methodology. The
new methodology will be compared with other data stream classification algorithms.
The MOA implementation of these algorithms will be used thus a brief description
of this software is presented in section 3.5. Finally, section 3.6 presents the datasets
used for experimental evaluation of the methodology.

3.1 The Gamma classifier

3.1.1 Alpha and Beta operators

In this sub-section, the Alpha (α) y Beta (β) operators are discussed. These
operators are a key part in the implementation of the Gamma classifier, which
will be used as base learner in the proposed methodology. The Alpha and Beta
operators were introduced in [68, 97] and are the basis of the Alpha-Beta associative
memories. The operators are defined in a tabular manner, as shown in tables 3.1
and 3.2. Considering two sets, A and B, defined as:

A = {0,1} B = {0,1,2}
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Table 3.1: Alpha operator’s definition

α ∶ A ×A→ B

x y α(x, y)

0 0 1

0 1 0

1 0 2

1 1 1

Table 3.2: Beta operator’s definition

β ∶ B ×A→ A

x y β(x, y)

0 0 0

0 1 0

1 0 0

1 1 1

2 0 1

2 1 1

3.1.2 Uβ operator

In this sub-section the Uβ operator is presented, as originally defined in [98]. The
unary Uβ operator receives as input an n-dimensional binary vector x and outputs
a non-negative integer number.

Definition 3.1.1 Let A be a set defined as A = {0,1}, n ∈ Z+ and x ∈ An a binary
vector of size n, with the i-th component represented by xi. Then Uβ(x) is define as
follows: Uβ(x) is an operator that receives a n-dimensional binary vector as an input
argument and it outputs a non-negative integer that is calculated using the following
expression:

Uβ(x) =
n

∑
i=1

β(xi, xi)



3.1. The Gamma classifier 36

Example 3.1.1 Let x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

; calculate Uβ(x)

Given the definition 3.1.1, Uβ(x) =
6

∑
i=1

β(xi, xi), thus Uβ(x) = β(1,1) + β(1,1) +

β(0,0) + β(1,1) + β(0,0) + β(1,1) = 1 + 1 + 0 + 1 + 0 + 1 = 4. Then Uβ(x) = 4.

Example 3.1.2 Let x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

0

1

1

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

; calculate Uβ(x)

In this case, Uβ(x) =
8

∑
i=1

β(xi, xi), thus Uβ(x) = β(1,1) + β(0,0) + β(0,0) + β(1,1) +

β(1,1) + β(1,1) + β(0,0) + β(1,1) = 1 + 0 + 0 + 1 + 1 + 1 + 0 + 1 = 5. Then Uβ(x) = 5.

3.1.3 Pruning operator

Let x ∈ An and y ∈ Am, where n,m ∈ Z+ and n < m, be two binary vectors of size n
and m respectively; then y pruned by x, denoted by y∣∣x, is a n-dimensional binary
vector whose i − th component is define as follows:

(y∣∣x)i = yi+m−n

where (i = 1,2, ..., n).
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Example 3.1.3 For instance, let y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

1

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, x =
⎛
⎜⎜⎜⎜
⎝

0

1

0

⎞
⎟⎟⎟⎟
⎠

, m = 6, and n = 3 then y∣∣x is

calculated as follows:

(y∣∣x)1 = y1+6−3 = y4
(y∣∣x)2 = y2+6−3 = y5
(y∣∣x)3 = y3+6−3 = y6

(y∣∣x) =
⎛
⎜⎜⎜⎜
⎝

1

0

1

⎞
⎟⎟⎟⎟
⎠

Thus, only the 4th, 5th, and 6th elements of y will be used in y∣∣x. Notice that the
first m−n components of y are discarded when building y∣∣x. As we will see in next
sections the Gamma classifier works considering similarities between binary vectors
so these components will not be relevant as they are always counted as different by
the classifier.

3.1.4 Modified Johnson-Möbius code

As presented in previous subsection, the Uβ(x) operator needs a binary vector
as input, thus a coding method is required for numerical vectors. A simple binary
conversion can introduce additive or subtractive noise and even both as shown in
table 3.3. As mentioned before the Gamma classifier works based on the similarities
of two vector. If we take as an example the numbers 2 and 3 in decimal, they are not
equal but similar with only one unit of difference between them; while in a binary
coding the difference between 001 and 010 is of two bits. In this case the binary
codification introduces additive noise that can affect the classification performance.
As an alternative binary codification the modified Johnson-Möbius code was used.
The modified Johnson-Möbius code, proposed in [99], which is a variation on the
classical Johnson-Möbius code, allows us to convert a set of real numbers into binary
representations while preserving the relationship between the numbers in decimal.
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Table 3.3: Example of binary and modified Johnson-Möbius codified numbers

Decimal number Binary number Modified Johnson-Möbius )

0 000 0000

1 001 0001

2 010 0011

3 011 0111

4 100 1111

Algorithm 3.1.1 Modified Johnson-Möbius coding algorithm

1. Let R be a set of real number such that

R = {r1, r2, ..., ri, ..., rn}

where n is a positive integer and let ri be the minimum number in R.

2. If there is one or more negative numbers in the set, create a new set from R
subtracting the minimum (of the set of numbers) ri from each number in R,
leaving only non-negative real numbers

T = {t1, t2, ..., ti, ..., tn}

where tj = rj − ri,∀j ∈ {1,2, ..., n} and particularly ti = 0.

3. Choose a fixed number d such that d ∈ Z+. Truncate each number of the set
T to have only d decimals.

4. Scale up all the numbers of the set obtained in the previous step, by multiplying
all numbers by an appropriate power of 10 (10d), in order to leave only non-
negative integer numbers

E = {e1, e2, ..., ei, ..., em, ..., en}

where ej = tj ⋅ 10d,∀j ∈ {1,2, ..., n} and let em be the maximum number in E.

5. For each i = 1,2, ..., n, concatenate (em−ei) zeros with ei ones, where em is the
maximum non-negative integer number in E, and ei is the current non-negative
integer number to be coded.
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Example 3.1.4 Let R = {2.4,−0.7,1.826,1.5} ;R ∈ R.

Step 1: Let R = {2.4,−0.7,1.826,1.5}.

Step 2: There is a negative number (-0.7), thus the subtraction operation has to
be performed

2.4 - (-0.7) = 3.1
-0.7 - (-0.7) = 0
1.826 - (-0.7) = 2.526
1.5 - (-0.7) = 2.2

After the subtraction a transformed set is obtained: T = {3.1,0.0,2.526,2.2}.

Step 3: A fixed number is chosen, d = 1 and all the number in T will be truncate
to have one decimal. The following set is obtained T = {3.1,0.0,2.5,2.2}.

Step 4: Then scale up all the numbers in T using (10)d = (10)1 as scale factor.
The resulting set is E = {31,0,25,22}, where em = 31.

Step 5: For each number ei in E, concatenate (em − ei) zeros with ei ones. Each
number will be codified using 31 bits.

1. e1 = 31, there will be (31 - 31 = 0) zeros concatenate with 31 ones.

2. e2 = 0, there will be (31 - 0 = 31) zeros concatenate with 0 ones.

3. e3 = 25, there will be (31 - 25 = 6) zeros concatenate with 25 ones.

4. e4 = 22, there will be (31 - 22 = 9) zeros concatenate with 22 ones.

The resulting codes for all the numbers of the original set for this example are
presented in table 3.4.

Table 3.4: Example of modified Johnson-Möbius codified numbers

Number Codified number (using modified Johnson-Möbius coding)

31 1111111111111111111111111111111

0 0000000000000000000000000000000

25 0000001111111111111111111111111

31 0000000001111111111111111111111
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3.1.5 Generalized Gamma operator

The Gamma similarity operator is based on the Alpha and Beta operations,
which belong to the Alpha-Beta associative memories. This operator indicates
whether two vectors are similar or not, given a degree of dissimilarity θ. This
parameter specifies the tolerance, when comparing two vectors, to be considered
similar, however they have differences [98]. The Gamma operator is defined as follow:

Definition 3.1.2 Let A be a set defined as A = {0,1}, two numbers n,m ∈ Z+,
two binary vector of size n and m, respectively, x ∈ An and y ∈ Am with the i-
th component of each vector represented by xi and yi, respectively, and θ a non-
negative integer. The generalized similarity Gamma operator γg(x, y, θ) is defined
as: γg(x, y, θ) is an operator that receives two binary vectors x and y, and a non-
negative integer θ as input arguments, and the output is a binary number, for which
there are two cases:

Case 1. If n =m then the output is computed according to the following expression:

γg(x, y, θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if m − Uβ[α(x, y) mod2] ≤ θ

0 otherwise

Case 2. If n <m then the output is computed according to the following expression:

γg(x, y, θ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if m − Uβ[α(x, y∣∣x) mod2] ≤ θ

0 otherwise

where mod2 indicates the usual modulo 2 operator.

Example 3.1.5 Let x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

1

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

1

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and θ = 3; calculate γg(x, y, θ)

Step 1: In this example n =m = 6.
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Step 2: α(x, y) is calculated and the following vector it is obtained: α(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

1

2

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Step 3: Apply modulo 2 to each component of the vector obtained in the previous
step. The following vector is obtained:

α(x, y) mod2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

1

0

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Step 4: Apply the Uβ operator to the vector obtained in step 3.

Uβ[α(x, y) mod2] = Uβ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

1

0

1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 4;

then perform the subtraction m−Uβ[α(x, y) mod2] = 6−4 = 2; 2 ≤ θ; thus γg(x, y, θ) =
1.
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Example 3.1.6 Let x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

0

0

1

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

0

1

1

1

0

1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and θ = 1; calculate γg(x, y, θ)

Step 1: In this example n =m = 8.

Step 2: α(x, y) is calculate and it is obtained the following vector: α(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

0

0

1

2

0

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Step 3: Apply modulo 2 to each component of the vector obtained in the previous
step. The following vector is obtained:

α(x, y) mod2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

0

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Step 4: Apply the Uβ operator to the vector obtained in step 3.
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Uβ[α(x, y) mod2] = Uβ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

0

0

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 3;

then perform the subtraction m−Uβ[α(x, y) mod2] = 8−3 = 5; 5 /≤ θ; thus γg(x, y, θ) =
0

Example 3.1.7 Let x =
⎛
⎜⎜⎜⎜
⎝

1

0

1

⎞
⎟⎟⎟⎟
⎠

, y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and θ = 0; calculate γg(x, y, θ)

Step 1: In this example n = 3 and m = 4. Then y has to be truncate using the
pruning operator (y∣∣x) as defined in section 3.1.3. The new vector is:

(y∣∣x) is

⎛
⎜⎜⎜⎜
⎝

1

0

1

⎞
⎟⎟⎟⎟
⎠

Step 2: α[x, (y∣∣x)] is calculate and it is obtained the following vector:

α[x, (y∣∣x)] =
⎛
⎜⎜⎜⎜
⎝

1

1

1

⎞
⎟⎟⎟⎟
⎠

.

Step 3: Apply modulo 2 to each component of the vector obtained in the previous
step. The following vector is obtained:

α[x, (y∣∣x)] mod2 =
⎛
⎜⎜⎜⎜
⎝

1

1

1

⎞
⎟⎟⎟⎟
⎠

.
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Step 4: Apply the Uβ operator to the vector obtained in step 3.

Uβ[α[x, (y∣∣x)] mod2] = Uβ

⎛
⎜⎜⎜⎜
⎝

1

1

1

⎞
⎟⎟⎟⎟
⎠
= 3;

then perform the subtraction m − Uβ[α[x, (y∣∣x)] mod2] = 4 − 3 = 1; 1 /≤ θ; thus
γg(x, y, θ) = 0. Note that although the x and y sections that were compared are
identical, the two vectors are not. As θ = 0 the result is consistent, since when θ = 0,
it is required that both vectors are identical to obtain a result of 1. It is worth
noting that this two vectors will be considered similar by the classifier if θ = 1, since
this value allows one bit of dissimilarity between the two vectors. In this particular
case the dissimilarity bit will be the one truncated by the pruning operator.

3.1.6 Gamma classifier algorithm

The Gamma classifier is a high performance pattern classifier, which was origi-
nally presented in [98]. The classifier uses the similarity Gamma operator presented
in sub-section 3.1.5. It also uses the modified Johnson-Möbius coding algorithm
presented in sub-section 3.1.4 to code the input vectors. In this sub-section the
Gamma classifier algorithm is presented in its generalized form as described in [69].
The fundamental set the Gamma classifier uses as base case (i.e., the ideal case), is
defined as follows:

Definition 3.1.3 Let the fundamental set of the Gamma classifier be the set of
patterns associated to a class, of the form {(xµ,yµ) ∣µ = 1,2, . . . , p} where xµ is a
pattern and yµ is its associated class. For such a fundamental set, the following
three properties hold:

xi ≠ xj ∀i, j ∈ {1,2, . . . , p}such that i ≠ j

meaning there are no repeated patterns,

xi = xj Ô⇒ yi = yj ∀i, j ∈ {1,2, . . . , p}

which makes sure no pattern may have associated more than one class, and

yi ≠ yj Ô⇒ xi ≠ xj ∀i, j ∈ {1,2, . . . , p}

that is, different classes have different patterns associated to each other.

Combined, these three properties imply that the fundamental set must induce a re-
lationship between the set of patterns to the set of classes, in a way that such rela-
tionship fulfills a function characteristics.
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Figure 3.1: Block diagram of the Gamma classifier algorithm (first part)

Algorithm 3.1.2 Gamma classifier algorithm

Let {(xµ,yµ) ∣µ = 1,2, . . . , p} be the fundamental pattern set with cardinality p;
when a test pattern x̃, which is an n-dimensional real valued vector x̃ ∈ Rn, with
n ∈ Z+, is presented to the Gamma classifier, the following step are performed:
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Figure 3.2: Block diagram of the Gamma classifier algorithm (second part)

1. Code the components of each pattern of the fundamental set using the modified

Johnson-Möbius code, obtaining a value em =
p

⋁
i=1

xij for j = 1,2, , n. With this

step each component xij is transformed in a binary vector of dimension em (j).
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2. Convert each component of x̃ using the modified Johnson-Möbius code, with
the same parameters used to coding the fundamental set (step 1). In case
that any of the components of x̃ is greater that the corresponding em obtained
when coding the fundamental set (x̃ξ > em (ξ)), make that component equal to
em (ξ) and store the original value in the variable mgammaξ. If we obtain a
negative value from any of the components once they were shifted, make that
component equal to 0 and assign the value em (ξ) + ∣x̃ξ ∣ to mgammaξ.

3. Calculate the stop parameter ρ and the pause parameter ρ0. Depending on
the problem at hand, some suggested possibilities for these parameters are:

• ρ =
n

⋀
j=1

(
p

⋁
i=1

xij).

• ρ = 1
n

n

∑
j=1

(
p

⋁
i=1

xij).

• ρ =
n

⋁
j=1

(
p

⋁
i=1

xij).

• ρ0 =
n

⋀
j=1

(
p

⋁
i=1

xij), particularly if ρ =
n

⋁
j=1

(
p

⋁
i=1

xij).

• ρ0 > ρ, when we want to force a known class to unknown patterns.

4. Determine the pause threshold u. Considering that the value of this threshold
depends strongly on the characteristics of the problem and the properties of
the fundamental set, the following suggestions are offered as initial values:

• u = 0.

• u = n.

5. Determine the weights of each dimension wi ∈ R+ for i = 1,2, . . . , n. Empiri-
cally, the following ranges as initial values are suggested:

• Between [1.5,2] if the dimension is feature-wise linearly separable for all
the classes.

• Between [1,1.5] if the dimension is feature-wise linearly separable for
some classes or feature-wise partially separable for all classes.

• Between [0.8,1.2] if the dimension is feature-wise partially separable for
some or all classes.

• Between (0,0.5] if the dimension is feature-wise non separable.

6. Transform the index of all the patterns in the fundamental set, such that the
single index that a pattern had originally (i.e., xµ) will become two indexes:
one for the class they belong to (i.e., i), and another for their position in the
class (i.e., ω). Under these conditions, the notation for pattern xµ will be
transformed to xiω.
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7. Initialize θ = 0.

8. Compute the similarity Gamma operator γg (xµj , x̃j, θ), according to definition
3.1.2, between each component of all the patterns in the fundamental set
and the corresponding components of x̃, considering that mgammaξ is the
dimension of the binary vector x̃ξ, when needed.

9. If theta = 0, test whether x̃ is a fundamental pattern, by calculating the initial
weighted sums c0µ, using the results obtained in the previous step, for each
fundamental pattern µ = 1,2, . . . , p:

c0µ =
n

∑
j=1

wjγg (xµj , x̃j, θ)

10. If there is a unique maximum, whose value equals n, assign the class associated
to such maximum to the test pattern.

ỹ = yj such that
p

⋁
µ=1

c0µ = c0j = n

Otherwise, continue.

11. Compute the similarity Gamma operator γg (xiωj , x̃j, θ), according to defini-
tion 3.1.2, between each component of the fundamental patterns in each class
and the corresponding components of x̃, considering that mgammaξ is the
dimension of the binary vector x̃ξ, when needed.

12. Compute a weighted sum ci, using the results obtained in the previous step,
for each class i = 1,2, . . . ,m:

ci =
∑ki
ω=1∑n

j=1wj ⋅ γg (xiωj , x̃j, θ)
ki

where ki is the cardinality of class i in the fundamental set.

13. If there is more than one maximum among the different weighted sum ci,
increment θ by 1 and repeat steps 11 and 12 until:

(a) There is a unique maximum among the ci.

(b) The pause parameter is reached: θ = ρ0;
(c) The stop condition is fulfilled: θ ≥ ρ.

14. If the pause parameter is reached (θ = ρ0), compare the maximum value of the
weighted sums ci with the pause threshold.
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(a) If
m

⋁
i=1

ci ≤ u then the unknown class is assigned to the pattern:

Cx̃ = C0

(b) If
m

⋁
i=1

ci > u then continue to step 11.

15. If there is a unique maximum, assign x̃ to the class corresponding to such
maximum:

ỹ = yj such that
m

⋁
i=1

ci = cj

16. If the stop parameter is reached, no unique maximum was found. In such case,
assign ỹ to the class of the first maximum.

3.2 Sliding windows

A widespread approach for data stream mining is the use of a sliding window to
handle the data. Generally, we are not interested in keeping all the information of
the data stream, particularly when we have to meet the constraints of space and time
required for such algorithms. This approach keeps a window with only a portion of
the stream. It is useful to deal with concept drift, by eliminating those data points
that came from an old concept. It can also provide a way of limiting the analyzed
data stream tuples to the most relevant instances.

According to [100], the sliding window size can be fixed or variable over time:

• Sliding windows of a fixed size.

• Sliding windows of variable size.

3.2.1 Sliding windows of fixed size

Sliding windows of fixed size store in memory a fixed number of the w most recent
examples. Whenever a new example arrives, it is saved to memory and the oldest
one is discarded. This simple adaptive learning method is often used as a baseline
in evaluation of new algorithms.

This method is the most straightforward tactic used for sliding windows. These
types of windows are similar to first in, first out data structures. Whenever an
element i is observed and inserted into the window, the oldest element in the windows
(i.e., i − w) is forgotten, where w represents the window size. The parameter w is
assumed to be externally defined, and fixed through the execution of the algorithm.
FLORA [22] is one of the earliest examples of this batch-based instance selection
approach. Certain versions of the FLORA algorithm also include a mechanism that



3.2. Sliding windows 50

uses an adaptive window narrowing or widening according to the extent of concept
drift.

Datar et al. [81] have considered the problem of maintaining statistics over sliding
windows of fixed size. They identified a simple counting problem whose solution
is a prerequisite for efficient maintenance of a variety of more complex statistical
aggregates. Given a stream of bits, maintain a count of the number of 1’s in the
last W elements seen from the stream. They showed that, using O(1

ε log
2W ) bits of

memory, it is possible to estimate the number of 1’s to within a factor of 1+ ε. They
also give a matching lower bound of Ω(1

ε log
2W ) memory bits for any deterministic or

randomized algorithm. They extended their scheme to maintain the sum of the last
W elements of a stream of integers in a known range [0,B], and provide matching
upper and lower bounds for this more general problem as well.

The main challenge for the fixed size window approach, is the definition of the
value for w. Generally, the selection for the value of w is caught in a tradeoff between
stability and flexibility. If the window is small, it takes care of the requirement to
use low memory and the system will react quickly in phases with concept changes
but in more stable phases it can affect the learner performance due to insufficient
training data in the window; while a large window would produce good and stable
learning results in periods of stability but cannot react quickly to concept changes.
Unfortunately, the user does not know in advance the behavior of changes in the
data stream so the choice for w will not be optimal. And even more since the rate
of change can itself changes, the optimal value of w have to change too.

Another method to improve the forgetting mechanism when using a fixed size
window is to consider that examples decay over time. The idea behind this approach
is to choose a decay constant or decay function to weight the examples based on
the assumption that the most recent data should be given a larger weight. Older
examples receive smaller weights and are treated as less important by the base
classifier. A decay function determines the weight of each data based on the elapsed
time since the item was first observed. In [101], several decay function are presented.

3.2.2 Sliding windows of variable size

Sliding windows of variable size vary the number of examples in a window over
time, typically, depending on the indications of a change detector. A straightforward
approach is to shrink the window whenever a change is detected such that the
training data reflects the most recent concept, and grow the window otherwise.

This second approach uses windows of variable length, and generally monitors the
evolution of the model’s error to decide whether change has occurred. A reference
algorithm is ADWIN (ADaptive sliding WINdow) presented by Bifet and Gavalda
[102]. ADWIN keeps a window of variable length that reflects the change in the
data. A statistical test is kept to indicate when changes occur in the data. If the
test indicates a change in the distribution of the data, the window is shrunk to
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keep only data items that still seem to be valid. When data seems to be stationary,
the window is enlarged to work on more data and reduce variance. And important
characteristic of this method is that it does not maintain the window explicitly, but
compresses it using a variant of the exponential histogram technique. This means
that it keeps a window of length w using only O(logw) memory, which is important
to the requirement of low memory use.

Another example of sliding window of variable size is presented in [103] which de-
scribes an online classification system that uses a fuzzy network. The system called
OLIN (On Line Information Network) gets a continuous stream of non-stationary
data and builds a network based on a sliding window of the latest examples. The
system dynamically adapts the size of the training window and the frequency of
model re-construction to the current rate of concept drift. OLIN uses the statistical
significance of the difference between the training and the validation accuracy of the
current model as an indicator of concept stability. OLIN adjusts dynamically the
number of examples between model reconstructions by using the following heuristic:
keep the current model for more examples if the concept appears to be stable and
reduce drastically the size of the validation window, if a concept drift is detected.
OLIN generates a new model for every new sliding window. This approach ensures
accurate and relevant models over time and therefore an increase in the classification
accuracy. However, the OLIN algorithm has a major drawback, which is the high
cost of generating new models. OLIN does not take into account the costs involved
in replacing the existing model with a new one.

3.3 Concept drift detection using statistical pro-

cess control

This section is strongly based on the work published by Gama et al. in [8, 77].
The authors present a method for change detection using the probability distribution
of the input examples. The method controls the online error of the algorithm. First,
a warning level and a drift level are defined. Then, a new context is declared, if in a
sequence of examples, the error increases reaching the warning level at example kw
[Fig. 3.3(1)], and the drift level at example kd [Fig. 3.3(2)]. Finally, the algorithm
learns a new model using only the examples from kw to kd [Fig. 3.3(3)].

Suppose a sequence of examples, in the form of pairs (Ð→xi , yi). For each example,
the current decision model predicts ŷi, that can be either True (ŷi = yi) or False (ŷi ≠
yi). For each point i in the sequence of examples, the error-rate is the probability
of observing a False, pi, with standard deviation given by:

si =
√

pi(1 − pi)
i
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Figure 3.3: Concept drift detection using statistical process control

The drift detection method manages two registers during the training of the
learning algorithm, pmin and smin. For each new processed example i, if pi + si is
lower than pmin + smin, these values are replaced by pi and si.

For a sufficiently large number of examples, the binomial distribution is closely
approximated by a normal distribution with the same mean and variance. Consid-
ering that the probability distribution is unchanged when the context is static, then
the 1−α/2 confidence interval for p with n > 30 examples is approximately pi±z∗si.
Where the parameter z depends on the desired confidence level.

Stable

phase

Warning

level

Drift

level

Figure 3.4: Block diagram for concept drift detection state transition

Suppose that in the sequence of examples, there is an example j with correspon-
dent pj and sj. We define three possible states for the system:
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• In-Control: while pj+sj < pmin+β∗smin. The error of the system is stable. The
example j is generated from the same distribution of the previous examples.

• Out-of-Control: whenever pj + sj ≥ pmin + α ∗ smin. The error is increasing,
and reaches a level that is significantly higher from the past recent examples.
With probability 1 − α/2 the current examples are generated from a different
distribution.

• Warning: whenever the system is in between the two margins. The error is
increasing but without reaching an action level. This is a not decidable state.
The causes of error increase can be due to noise, drift, small inability of the
decision model, among others. Thus, more examples are needed to make a
decision.

Fig. 3.4 describe the state transition of the method. It is not possible to move
from a stationary state to a drift state without passing the warning state. However,
it is possible to move from a warning state to a stationary state. For example, we can
observe an increase of the error reaching the warning level, followed by a decrease.
We can assume that such situation corresponds to a false alarm, most probably due
to noisy data, without changing of context.

This drift detection method provides information not only when drift occurs but
also the rate of change. The distance between warning level and drift level provides
such information. Small distances imply fast change rate while larger distances
indicate slower changes. Considering only the warning zone, the ratio between the
number of errors and the number of processed examples is an indication of the
rate of change. A major characteristic is the use of the variance of the estimated
error to define the action boundaries. The boundaries are not fixed but decrease as
confidence in the estimated error increase. The method can be directly implemented
inside on-line and incremental algorithms, or as a wrapper to batch learners.

3.4 Evaluating stream algorithms

An important issue for all intelligent learning algorithms is the design of a frame-
work for evaluation and comparison with other models. In data stream contexts
this is still an open topic of research and it has not been yet fully addressed. The
contents of the rest of this section is mainly based on [87]. In this work, Gama et
al. presented a very complete and well fundamented study on assessing data stream
learning algorithms. The authors proposed the use of prequential error with forget-
ting mechanism to provide reliable errors estimators. They demonstrated that, in
stationary data and for consistent learning algorithms, the holdout estimator, the
prequential error and the prequential error estimated over a sliding window or using
fading factors, all converge to the Bayes error 1.

1It is important to mention that the software MOA [107] implements most of the methods
discussed in this work.
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Again, let us assume a sequence of examples in the form of pairs (xi, yi). For each
example, the current decision model predicts ŷi, that can be either True (ŷi = yi) or
False (ŷi ≠ yi). For each point i in the sequence, the error-rate is the probability of
observing False, pi. The authors stated that if the distribution of the examples is
stationary and the examples are independent, the error rate of a consistent learning
algorithm (pi) will decrease when the number of training examples, i, increases.

To evaluate a learning model in data stream contexts, two feasible alternatives
are presented in the literature: the predictive sequential (or prequential) and the
holdout. In [87], several evaluation metrics are proposed based on an accumulated
sum of a 0 − 1 loss function L between the predicted values (ŷi) and the observed
values (yi).

Holdout evaluation, the current decision model is applied to a test set at regular
time intervals (or set of examples). For a large enough holdout, the loss estimated
in the holdout is an unbiased estimator. In a holdout test set with M examples, the
0 − 1 loss is computed as:

He(i) =
1

M

M

∑
k=1

L(yk, ŷk) =
1

M

M

∑
k=1

ek

Predictive sequential (or prequential), the error of a model is computed from the
sequence of examples. For each example in the stream, the actual model makes a
prediction based only on the example attribute-values. We should point out that, in
the prequential framework, we do not need to know the true value yi for all points
in the stream. The framework can be used in situations of limited feedback by
computing the loss function and Si for points where yi is known. The prequential
error, computed at time i, is based on an accumulated sum of a loss function between
the prediction and observed values:

Pe(i) =
1

i

i

∑
k=1

L(yk, ŷk) =
1

i

i

∑
k=1

ek

Error estimators using sliding windows, sliding windows are one of the most used
forgetting strategies. They are used to compute statistics over the most recent
past. The prequential error is computed, at time i, over a sliding window of size w
(ek∣k ∈ [i −w, i]) as:

Pw(i) =
1

w

i

∑
k=i−w+1

L(yk, ŷk) =
1

w

i

∑
k=i−w+1

ek

Error estimators using fading factors, another approach to discount older informa-
tion across time consists of using fading factors. The prequential error computed at
time i, with fading factor α, can be written as:
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Pα(i) =
1

i

i

∑
k=1

αi−kL(yk, ŷk) =
1

i

i

∑
k=1

αi−kek

3.5 MOA

Massive Online Analysis (MOA) is a software environment for implementing al-
gorithms and running experiments for online learning from evolving data streams
[6]. MOA contains a collection of offline and online algorithms for both classification
and clustering as well as tools for evaluation on data streams with concept drifts.
MOA also can be used to build synthetic data streams using generators, reading
ARFF files, or joining several streams.

MOA will be used in this work to perform the comparative analysis between
the proposed methodology and several algorithms commonly used in data stream
scenarios. Several reasons were taken into account to select this platform:

• MOA has synthetic data streams generators that allow simulating potentially
infinite sequences of data with different characteristics (different types of con-
cept drifts and recurrent concepts, among others).

• It implements several popular algorithms used for data stream classification
such as Hoeffding trees, AWE and ensembles methods.

• Assessing machine learning algorithms is one of the most relevant and difficult
problems in data mining. MOA implements most of the evaluation metrics
discusses in previous section. This will provide a general methodology to
evaluate the learning algorithms in a data stream scenario.

3.5.1 Classifiers

This sub-section introduces some of the algorithms for data stream classification
that are implemented in MOA. These algorithms will be used during the exper-
imental phase of this work to perform a comparative analysis with the proposed
methodology. The algorithms selection was made with the aim of covering the spec-
trum of the different approaches commonly used in data streams classification.

Näıve Bayes

It implements a Näıve Bayes incremental learner. It is a classifier algorithm
known for its simplicity and low computational cost. Given nC different classes,
the trained Näıve Bayes classifier predicts for every unlabeled instance I the class
C to which it belongs by computing the probability of I being in class C. This
algorithm is naturally incremental: upon receiving a new example (or a batch of
new examples), it simply increments the relevant counts. Predictions can be made
at any time from the current counts.
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Perceptron-DDM

This implements a single perceptron classifier that performs a multiclass learning
incrementally. It incorporate the drift detection method proposed by Gama et al.
[8] to detect concept drift.

Active classifier

Active learning focuses on learning an accurate model with as few labels as pos-
sible. Stream data poses additional challenges for active learning, since the data
distribution may change over time and classifiers need to adapt. Conventional ac-
tive learning strategies concentrate on querying the most uncertain instances, which
are typically concentrated around the decision boundary. If changes do not occur
close to the boundary, they will be missed and classifiers will fail to adapt. MOA
implements four active learning strategies for stream data that explicitly handle con-
cept drift. They are based on randomization, fixed uncertainty, dynamic allocation
of labeling efforts over time, and randomization of the search space. It also contains
the selective sampling strategy, which uses a variable labeling threshold.

Hoeffding tree

A Hoeffding tree is an incremental, anytime decision tree induction algorithm that
is capable of learning from massive data streams, assuming that the distribution
generating examples does not change over time. Hoeffding trees exploit the fact
that a small sample can often be enough to choose an optimal splitting attribute.
This idea is supported mathematically by the Hoeffding bound, which quantifies
the number of observations needed to estimate some statistics within a prescribed
precision (in this case, the goodness of an attribute to become a splitting attribute).
Using the Hoeffding bound one can show that its output is asymptotically nearly
identical to that of a non-incremental learner using infinitely many examples.

IBL-DS

IBL-DS is an incremental learner based on instances. The system maintains an
implicit concept description in the form of a case base. On arrival of a new example,
this is added to the case base. It is also checked whether other examples might
be removed, either since they have become redundant or since they are outliers.
The case base is updated taking into account three indicators: temporal relevance,
spatial relevance and consistency. It is implemented under MOA as presented in [5].

AWE

AWE is a weighted ensemble of classifiers proposed by Wang et al. [104]. This
ensemble method uses a weighted approach that assigns each classifier weight, such
that the weight is reversely proportional to the classifier’s expected error. The mean
squared error was used for estimation of the classification error. The algorithm will
keep an ensemble of K classifiers, where K is a user defined parameter. When a new
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chunk of data arrives, a new classifier is trained and the K top weighted classifiers
are kept. In MOA several classifiers can be used as base learners such as: Hoeffding
trees, Näıve Bayes, Perceptrons, among others.

OzaBoostAdwin

OzaBoost is an incremental on-line boosting proposed by Oza and Russell [105].
This boosting algorithm uses the Poisson distribution for deciding the random prob-
ability that an example is used for training. Each base model of the ensemble is
generated using a weighted training set. Each time a training example is misclassified
by a base model, the Poisson distribution parameter associated with that example
is increased when presented to the next base model; otherwise it is decreased. This
implementation of MOA incorporates Adwin [102] to OzaBoot for adaptive windows
handling.

SGD

SGD is a stochastic approximation of the gradient descent optimization method
for minimizing an objective function. The true gradient of the function is approx-
imated by the gradient of a single randomly picked example. MOA implements
stochastic gradient descent for learning various linear models: binary class SVM,
binary class logistic regression and linear regression.

Spegasos

Implements the stochastic variant of the Pegasos (Primal Estimated sub-
GrAdient SOlver for SVM) method of Shalev-Shwartz et al. [46]. This method
proposed a simple stochastic sub-gradient descent algorithm to solve an empirical
loss minimization problem with a penalty term for the norm of the classifier that is
being learned. At each iteration, a single training example is chosen at random and
used to estimate a sub-gradient of the objective, and a step with pre-determined
step-size is taken in the opposite direction. The algorithm is used to solve the
optimization problem cast by a SVM linear kernel.

Consult [106], for further details on the implementation of theses algorithms.

3.6 Datasets

This section provides a brief description of the data streams used during the
experimental phase of this work. The proposed solution has been tested using syn-
thetic and real data streams. Due to the large number of examples required to
evaluate data stream classification problems, just a few suitable real data streams
are available. A few data streams with enough examples are hosted in [107, 108]. For
further evaluation, the use of synthetic data streams generators becomes necessary.
The synthetics data streams used during the experiments were generated using the
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MOA framework mentioned in previous section. A summary of the main character-
istics of the data streams is shown in Table 3.5. Descriptions of the data streams
were taken from [107, 108] in the case of real ones and from [106] for the synthetics.
Several datasets commonly present in current literature for data stream scenarios
were evaluated. Only datasets with numerical attributes were selected as the clas-
sifier that will be used works by default with this type of data. No pre-processing
procedures were applied to the selected datasets.

Table 3.5: Datasets characteristics

Dataset Instances Attributes Classes

Agrawal 100,000 10 2

Bank 45,211 16 2

CoverType 581,012 54 7

Electricity 45,312 8 2

Hyperplane 100,000 10 2

RandomRBF 100,000 10 2

3.6.1 Real data streams

In this sub-section we describe the real data streams that will be used during
the experimental phase of this work. The used datasets are public and available for
download from [107] and [108].

Bank marketing dataset. The bank marketing dataset is available from the UCI
Machine Learning Repository [108]. This data is related to direct marketing cam-
paigns (phone calls) of a Portuguese banking institution. The classification goal is
to predict if the client will subscribe or not to a term deposit. It contains 45,211
instances. Each instance has 16 attributes and the class label. The dataset has two
classes that identified if a bank term deposit would be or would not be subscribed.

Electricity dataset. This data was collected from the Australian New South Wales
electricity market. In this market, prices are not fixed and are affected by demand
and supply of the market. The prices of the market are set every five minutes. The
dataset was first described by Harries in [109]. During the time period, described in
the dataset, the electricity market was expanded with the inclusion of adjacent areas,
which leads to more elaborate management of the supply. The excess production
of one region could be sold on the adjacent region. The electricity dataset contains
45,312 instances. Each example of the dataset refers to a period of 30 minutes
(i.e., there are 48 instances for each time period of one day). Each example on
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the dataset has 8 fields: the day of week, the time stamp, the New South Wales
electricity demand, the New South Wales electricity price, the Victoria electricity
demand, the Victoria electricity price, the scheduled electricity transfer between
states, and the class label. The class label identifies the change of the price relative
to a moving average of the last 24 hours. The normalized version of this dataset
was used, so that the numerical values are between 0 and 1. The dataset is available
from [107].

Forest covertype dataset. The forest covertype dataset is one of the largest datasets
available from the UCI Machine Learning Repository [108]. This dataset contains
information that describes forest cover types from cartographic variables. A given
observation (30× 30 meter cell) was determined from the US Forest Service (USFS)
Region 2 Resource Information System (RIS) data. It contains 581,012 instances and
54 attributes. Data is in raw form (not scaled) and contains binary (0 or 1) columns
of data for qualitative independent variables (wilderness areas and soil types). The
dataset has 7 classes that identify the type of forest cover.

3.6.2 Synthetic data streams

In this sub-section we describe the synthetic data streams that will be used during
the experimental phase of this work. All the synthetic data streams used in this work
were generated using the MOA framework. This framework can be downloaded from
[107].

Agrawal data stream. This generator was originally introduced by Agrawal et al. in
[110]. The generator produces a stream containing nine attributes. Although not
explicitly stated by the authors, a sensible conclusion is that these attributes describe
hypothetical loan applications. There are ten functions defined for generating binary
class labels from the attributes. Presumably these determine whether the loan
should be approved. Perturbations shift numeric attributes from their true value,
adding an offset drawn randomly from a uniform distribution, the range of which is
a specified percentage of the total value range [106]. For each experiment, a data
stream with 100,000 examples was generated.

RandomRBF data stream. This generator was devised to offer an alternate complex
concept type that is not straightforward to approximate with a decision tree model.
The RBF (Radial Basis Function) generator works as follows. A fixed number
of random centroids are generated. Each center has a random position and it is
associated with a standard deviation, a class label, and a weight. New examples are
generated by selecting a center at random, taking weights into consideration so that
centers with higher weight are more likely to be chosen. A random direction is chosen
to offset the attribute values from the central point. The length of the displacement
is randomly drawn from a Gaussian distribution with standard deviation determined
by the chosen centroid. The chosen centroid also determines the class label of the
example. Only numeric attributes are generated [106]. For the experiments, a
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data stream with 100,000 data instances, 10 numerical attributes, and 2 classes was
generated.

Rotating hyperplane data stream. A hyperplane in d-dimensional space is the set of
points x that satisfy the following expression [106]:

d

∑
i=1

xiwi = w0 =
d

∑
i=1

wi

where xi is the ith coordinate of x, examples for which ∑d
i=1 xiwi ≥ w0 are labeled

positive and examples for which ∑d
i=1 xiwi < w0 are labeled negative. Hyperplanes

are useful for simulating time-changing concepts, because orientation and position
of the hyperplane can be adjusted in a gradual way if we change the relative size
of the weights. MOA introduces change to this data stream by adding drift to each
weight attribute using this formula: wi = wi +dδ, where δ is the probability that the
direction of change is reversed and d is the change applied to every example. For the
experiments, a data stream with 100,000 data instances, 10 numerical attributes,
and 2 classes was generated.
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Chapter 4

Proposed solution

This chapter describes the proposed methodology for pattern classification task
over a data stream based on an associative model. The proposed methodology uses
the Gamma classifier as base learner combined with a sliding window approach to
handle concept drift and the space and time constraints inherent to this type of
scenarios. Three different methods to update the sliding windows were tested and
a comparative analysis was performed.

4.1 Setting the problem

A data stream S can be defined as a sequence of data elements of the form
S = {s1, s2, . . . , snow} from a universe of size D, where D is huge and potentially
infinite. We assume that each element si can have one of the following forms:

• si = (xτ , yτ), where xτ is an input vector of size n and yτ is the class label
associate to xτ .

• si = (xτ), where xτ is an input vector of size n and it is a unlabeled data
element.

4.1.1 Challenges

Concept drift. In data streams the information is not static and usually changes
over time. This problem is called concept drift in current literature. This phe-
nomenon can greatly influence the performance of a learning model; mainly because
the model learned from past data that may have become irrelevant and consequently
the performance of the model will decay.

Recurrent concept. Because of the forgetting mechanism used during the data stream
classification process a concept can be forgotten. If the concept reappears after
some time, the learner will probably misclassify new arriving instances that belong
to this old concept. A mechanism should be implemented to handle this issue.
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One approach is to keep prototypes of the classes in a secondary memory using the
discarded instances of the forgetting mechanism.

Novel class. Given the changing nature of data streams, it is possible that at some
point a new class emerge. The learning algorithms need to incorporate a mechanism
to include the new knowledge that is being generated by the data stream.

4.1.2 Goal

The main goal of this work is to design a methodology that minimizes the clas-
sification error while handling the change in the distribution of the input data, the
occurrence of recurrent concepts and the emergence of new classes. The method-
ology will use a sliding window approach to incorporate new knowledge from the
incoming data and also forget old information when data is outdated. This will
allow it to handle concept drift. It also incorporates a recurrent memory where
a prototype of the so-far seen classes will be stored. This memory will allow the
model to keep a history of the concepts and use it in case old concepts that have
been forgotten re-appear.

4.2 Proposed solution

The proposed solution uses the Gamma classifier as base learned and combines
it with a sliding window approach, referred to as DS-Gamma. The biggest advan-
tage that this instance base classifier provides is that adaptation to change in the
behavior of the incoming data can be achieved with updating the elements in the
sliding windows. Giving this characteristic, three different methods are proposed
for updating such window. Each one of them implements a different combination of
learning/forgetting policies. The learning (insertion)/ forgetting (removal) policies
were designed to guarantee the relevance of the data, and the consistency of the
current model.

In order to add flexibility to the methodology a modular approach has been
adopted. Different sub-systems are used to perform each of the functions to accom-
plish the task of data stream classification (i.e., learning phase, forgetting mecha-
nism, re-learning policy). Due to this features, modification of the methodology can
be done in a very easy way. This gives the methodology a great flexibility for its
application to a wide variety of classification problems.

To start the process of classification the methodology will wait to have w labeled
patterns. This parameter is the maximum size of the windows and it is user defined.
A small data summary is created using these first labeled patterns. During the
process of classification this data summary will be updated. The data summary
contains the classes that have been seen so far, some counter and a prototype for
each class. If a class is forgotten due to the forgetting mechanism, the prototype
of the class will remain in the data summary, to be used in case that the class re-
appears (recurrent concept). This data summary is also a flexible structure that
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allows incorporating a new emerging class to the summary when needed (novel
class detection). In this way the methodology will incorporate the new knowledge
generated by the data stream to the classification process. The prototype of the
class is calculated using the recursive version of the sample mean using the following
expression [77]:

xi =
(i − 1) × xi1 + xi

i

The methodology will have two modalities of work depending on whether the input
pattern is assigned with a class label or not:

Arriving of unlabeled patterns. When a pattern xi arrives without an associated class
label, the DS-Gamma classifier will try to classify it. If classification is successful
the model will output a class label ỹi for the input pattern xi. If classification was
not possible the input pattern xi will be stored in a buffer as a candidate for a novel
class. Fig. 4.1 depicts the process for unlabeled patterns.

s


Sliding

Window

New classes 

candidate

ix )~,( ii yx

),( 0yxi

Successful

Classification?

yes

no

Figure 4.1: Process diagram for unlabeled records
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Arriving of labeled patterns. When an input pattern (xi, yi) arrives at time i the
DS-Gamma classifier will try to classify it. If classification is successful the model
will output a class label ỹi. The predicted class label ỹi will be used to assess the
model using the prequential error over a sliding window, as described in section 3.4.
It will also be used to update the sliding window and the summary data. The update
will depend on the method of sliding window being used. Later in this section, the
three proposed sliding window updating methods will be explained. Fig. 4.2 depicts
the process for labeled patterns.

The following describes the proposed methods for updating the sliding window.

4.2.1 First approach: sliding window of fixed size

This first approach implements a sliding window of fixed size. This approach
achieves concept drift detection in an indirect way, by considering only the most
recent data. This is the simplest approach for sliding windows and it is generally
presented as a base line for comparing with other methods. Algorithm 4.2.1 outlines
the general steps used as learning policy. Initially, the windows is created with the
first w labeled records. Then the classifier attempts to classify the instance. Finally,
if the instance has a class label assigned, this is used to update the window.

Algorithm 4.2.1 Fixed size window’s learning policy algorithm

1: Initialize window
2: for each xi do
3: if i < w then
4: Add xi to the tail of the window.
5: else
6: Use xi to classify
7: if xi is a labeled instance then
8: Add xi to the tail of the window.

Classifiers that deal with concept drifts are forced to implement forgetting, adap-
tation, or drift detection mechanisms in order to adjust to changing environments.
The forgetting mechanisms can be divided in explicit and implicit. Explicit forget-
ting takes places when the examples are older than a user defined threshold. Implicit
forgetting is performed by removing examples that are no longer relevant [23]. This
approach assumes that the oldest information is less relevant, consequently the old-
est item in the window is deleted. Algorithm 4.2.2 presents the basic forgetting
policy implemented in this approach.

4.2.2 Second approach: sliding window using a statistical
control process (SCP)

As a second approach, combining the Gamma classifier with a statistical process
control to detect concept drift is proposed. This method to update a sliding window
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Algorithm 4.2.2 Fixed size window’s forgetting policy algorithm

1: for each xi do
2: if i > w then
3: Remove xi−w+1 from the window.

was proposed by Gama et al. [8]. Algorithm 4.2.3 describes how the learning and
forgetting mechanisms work.

Algorithm 4.2.3 SCP algorithm

1: Let (xi, yi) be the current example to classify
2: Let ỹi be the predicted class
3: Compute the mean error pi and variance si
4: if pi + si < pmin + smin then
5: pmin ← pi
6: smin ← si
7: if pi + si < pmin + β ∗ smin then /* In control */
8: warning ← False
9: Add the example (xi, yi) to the sliding window
10: if w ≥ max window size then
11: Delete the oldest element in the sliding window xi−w+1

12: else
13: if pi + si < pmin + α ∗ smin then /* Warning zone */
14: if NOT warning then
15: warning ← True

16: buffer ← buffer ∪ (xi, yi)
17: Add the example (xi, yi) to the sliding window
18: if w ≥ max window size then
19: Delete the oldest element in the sliding window xi−w+1

20: else/* Out of control */
21: Update the sliding window with the elements of buffer
22: Clean the buffer
23: warning ← False
24: Reset pmin and smin

The method used in this section is an extension of the work presented in [77].
The error is calculated using a 0-1 loss function:

L(y, ŷ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if y ≠ ŷ

0 otherwise



4.2. Proposed solution 67

4.2.3 Third approach: sliding window based on the Gamma
similarity operator

This approach was devised to take advantage of one intrinsic characteristic of the
Gamma classifier, the γ similarity operator. Given a parameter of dissimilarity θ,
this operator indicates whether two vectors are similar or not.

During the classification process of a given instance x̃, an initial sum c0µ per each
instance in the window and the arriving instances to be classified, was computed
(see section 3.1.6). At the end of the classification process for x̃, this sum will
hold a counter indicating how many components of the two compared instances are
similar. This behavior can be exploited to compare the instances in the sliding
window with the most recently classified instance and establish a grade of similarity
between them. It is worth noting that this sum was already calculated during the
classification process, thus it does not implicate an extra-processing step for the
method.

For this work, empirically, a value of c0µ = ∑n
j=1 γg (xµj , x̃j, θ) > n/2 was chosen to

consider that two instances are similar, where n is the number of attributes of the
instance. The instances will be considered dissimilar otherwise.

Based on the result of the sum of the similarity operator between the classified
instance x̃ and a given instance of the sliding window xi, and the classes to which
each instance belongs, four types of instances was established:

• Type 1. This type is assigned when there is high similarity between xi and
x̃ (c0µ > n/2) but they belong to different classes. These kinds of instances
are always problematic for any classification algorithm, since they are similar
but from different classes they will probably introduce ambiguity during the
classification process. In this case x̃ represents the most recent knowledge and
has to be incorporated to the window. Thus xi with type 1 will be a candidate
to be discarded from the sliding window.

• Type 2. This type is assigned when there is low similarity between xi and
x̃ (c0µ ≤ n/2) and they belong to the same class. These instances can also
be problematic because even when they belong to the same class, show few
similarities between them. This situation is likely to indicate noise or an
outlier. These instances will also become good candidates to be discarded
from the sliding window.

• Type 3. This type is assigned when there is high similarity between xi and
x̃ (c0µ > n/2) and they belong to the same class. These kinds of instances
may not introduce uncertainty to the classification process but can represent
redundant information. And given that x̃ represents the latest knowledge,
it has to be incorporated to the window, thus the xi assigned with type 3
becomes a candidate for elimination as redundant information.
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• Type 4. This type is assigned when there is low similarity between xi and x̃
(c0µ ≤ n/2) and they belong to different classes. These are generally the most
desirable kind of instances. For this method these type of instances will be
the last candidate to be eliminated from the sliding window.

For this method, the instance type is considered an indicator of the level of
usefulness of the instance in the sliding window and how much it can contribute to
the classification process. Those instances of less help in the classification will be
eliminated from the window. Fig. 4.3 shows the diagram for the process of assigning
the instance types. Algorithm 4.2.4 describes the method to update a sliding window
using the Gamma similarity approach.

Similarity
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Figure 4.3: Block diagram for type assignation based on the γ similarity operator

When this method was initially devised the hypothesis was that instances of type
1 will be the most harmful to the classification process. In order to demonstrate
this assumption several experiments using the real and synthetic datasets were per-
formed. Four rounds of experiments were performed for this method. In each round
only one type of instance was selected to be removed from the window. Table 4.1
shows the results obtained from theses rounds of experiments.
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Algorithm 4.2.4 Gamma similarity algorithm

1: input: selected type /* The type of instances to be deleted from the window*/
2: Let (xi, yi) be the current example to classify
3: Let ỹi be the predicted class
4: for j = 0 to window size do
5: if c0µ > n/2 then
6: if yi = yj then
7: typej ← 3
8: else
9: typej ← 1

10: else
11: if yi = yj then
12: typej ← 2
13: else
14: typej ← 4

15: for j = 0 to window size do
16: Select the oldest instance where typej = selected type
17:

18: if NOT select instance of selected type then
19: Delete the oldest element in the sliding window xi−w+1

Table 4.1: Accuracy comparison of the similarity method using different instance
types

Data stream
Agrawal Bank CoverType Electricity Hyperplane RandomRBF

Acc. σ Acc. σ Acc. σ Acc. σ Acc. σ Acc. σ

DS-Gamma (Fixed size) 92.82 0.10 78.96 0.22 47.77 4.31 77.14 - 86.30 1.35 70.85 2.54

DS-Gamma (SPC) 93.36 0.22 85.33 0.15 50.67 10.52 84.11 - 87.19 1.19 71.53 2.58

DS-Gamma (Similarity-Type1) 94.42 0.19 86.07 0.06 44.01 8.66 80.18 - 87.31 1.34 72.19 2.53

DS-Gamma (Similarity-Type2) 93.95 0.09 86.01 0.13 46.88 7.33 79.00 - 87.16 1.38 71.56 2.57

DS-Gamma (Similarity-Type3) 93.91 0.11 85.87 0.14 45.28 6.76 78.36 - 87.19 1.37 71.48 2.61

DS-Gamma (Similarity-Type4) 66.40 0.11 85.69 0.24 44.54 7.43 81.45 - 86.92 1.39 70.09 2.84

From the results shown in table 4.1, it can be observed that, as expected, when
instances of type 1 are selected to be remove from the window, the classification
performance was improved. Therefore, type 1 was selected for all the experiments
of this method.
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Chapter 5

Experimental results

In this chapter the results of some of the performed experiments with the pro-
posed methodology are presented. A comparative assessment with other repre-
sentative algorithms for data stream context is performed taking into account the
non-stationary distribution of the data and the memory and time constrain for this
kind of algorithms.

5.1 Experimental design

One of the specific objectives of this work is to perform a consistent comparative
analysis between the classification performance of our proposal and the classifica-
tion performance of other well-known data stream pattern classification algorithms.
Evaluation of data stream algorithms is a relatively new field that has not been stud-
ied as well as evaluation on batch learning. In traditional batch learning assessment
has been mainly limited to evaluating a model using different random reordering of
the same static dataset (k-fold cross validation, leave-one-out, and bootstrap) [7].
For data stream scenarios the problem of possible infinite data raises new challenges.
On the other hand, the batch evaluation approaches cannot effectively measure ac-
curacy of a model in a context with concepts that change over time. In the data
stream setting, one of the main concerns is how to design an evaluation practice
that allows us to obtain a reliable measure of accuracy over time. According to [6],
two main approaches arise.

Holdout. In traditional batch learning when the volume of the data reaches a scale
where cross-validation is too time-consuming, it is often accepted to instead measure
performance on a single holdout set. An extension of this approach can be applied
for data stream scenarios. First a set of M instances is used to train the model; then
a set of the following unseen N instances is used to test the model; then it is again
trained with the next M instances and tested with the subsequence N instances and
so forth.

Interleaved test-then-train or prequential. In this approach, each individual example
can be used to test the model before it is used for training, and from this the
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accuracy can be incrementally updated. When intentionally performed in this order,
the model is always being tested on examples that have not been seen.

In section 3.4, several evaluation methods for data stream contexts were dis-
cussed, including the prequential error estimated over a sliding window. Since the
methodology proposed in this work used a sliding window approach, this evaluation
metric was chosen to assess the proposed methodology. The prequential error Pw
between the predicted ŷk values and the observed values yk was calculated using the
following expression [87] where L is a 0 − 1 loss function:

Pw(i) =
1

w

i

∑
k=i−w+1

L(yk, ŷk) =
1

w

i

∑
k=i−w+1

ek

To ensure a valid comparison of classification performance, the same conditions
and validation schemes were applied in each experiment. Classification performance
of each of the compared algorithms, including our proposal, was calculated using
the prequential error approach. These results will be used to perform a compara-
tive study on the performance of our proposal and other data stream classification
algorithms. The selection of algorithms to be compared with our proposal, was
performed with the idea of covering the broad spectrum of approaches commonly
used in the current literature for data stream contexts, such as Hoeffding tree, in-
stance based learning, Näıve Bayes with DDM (Drift Detection Method), SVM,
and ensemble methods. All of these algorithms are implemented under the MOA
framework. A brief description of the used algorithms can be found in section 3.5.
Further details on the implementation of these algorithms can be found in [106].

For all data streams used during the experimental phase, with exception of the
electricity dataset, the experiments were executed 10 times and the average of the
performance and execution time results are presented. Records in the electricity
dataset have a temporal relation that should not be altered; for this reason with this
specific dataset the experiment was executed just one time. The bank and cover-
type datasets were reordered 10 times using the randomized filter from the WEKA
platform [111] for each experiment. For the synthetics data streams (agrawal, rotat-
ing hyperplane, and randomRBF), 10 data streams were generated using the MOA
platform; for each one of them a different random seed was used. Performance was
calculated using the prequential error introduced in section 3.4. The total time used
for classification was also measured to evaluate the efficiency of each algorithm. All
experiments were conducted using a personal computer with an Intel Core i3-2100
processor running Ubuntu 13.04 64-bit operating system with 4096GB of RAM.

5.2 Results and discussion

In this section, we present and discuss the results obtained by the DS-Gamma
classifier during the experimental phase, throughout which six data streams (three
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real and three synthetic) were used to obtain the classification and time performance
for each of the compared classification algorithms.

First, we evaluate the sensibility of the proposed methodology to the change
on the windows size when using a fixed size sliding window, which is a parameter
that can largely influence the performance of the classifier. Later, this evaluation
was used to select the window size for the fixed size window approach. Table 5.1
shows the average accuracy of the DS-Gamma classifier with fixed window sizes
for different window sizes; best accuracy for each data stream is emphasized with
boldface. Table 5.2 shows the average total time used to classify each data stream.
The results of the average performance with indicator of the standard deviation are
also depicted in 5.1.

In general, the DS-Gamma classifier performance improved as the window size
increases with the exception of Electricity data stream, for this data stream perfor-
mance is better with smaller window sizes. It is worth noting that the DS-Gamma
classifier achieved its best performance for the Electricity data stream with a win-
dow size of 50 with a performance of 89.12%. This performance is better than all
the performances achieved by all the other compared algorithms in the set of ex-
periments with a window of size equal to 1000. For the other data streams, the
best performance was generally obtained with window sizes between 500 and 1000.
With window sizes greater than 1000 performance keeps stable and in some cases
even degrades, as we can observe in the results from the Bank and Hyperplane data
streams in Fig. 5.1. On the other hand the increase in the size of the windows will
cause an increase in the execution time. These factors are important to take into
consideration to decide in a tradeoff between time and accuracy. A size of 1000
instances was selected to perform subsequent experiments. Fig. 5.2 shows the av-
erage classification time for different window size. A linear trend line (dotted line)
and the coefficient of determination R2 were included in the graphic for each data
stream. The R2 values ranging between 0.9743 and 0.9866 show that time is growing
in linear way as the size of the window increases.

Table 5.1: DS-Gamma (fixed size) accuracy for different window sizes

Data stream
Window size

50 100 200 500 750 1000 1250 1500 1750 2000

Agrawal 79.64 85.97 89.86 92.59 92.88 92.82 92.67 92.51 92.32 92.07

Bank 68.19 73.40 77.05 79.13 79.12 78.96 78.60 78.24 77.76 77.37

CoverType 38.21 37.61 39.70 44.30 46.59 47.77 48.62 49.19 49.51 49.74

Electricity 89.12 85.26 81.71 79.84 78.58 77.14 76.36 75.94 75.31 74.49

Hyperplane 78.25 82.65 85.28 86.56 86.55 86.30 85.98 85.65 85.34 85.00

RandomRBF 64.61 67.39 69.33 70.56 70.81 70.85 70.74 70.63 70.50 70.33
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Figure 5.1: DS-Gamma (fixed size) accuracy for different window sizes
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Table 5.2: DS-Gamma (fixed size) classification time (s) for different window sizes

Data stream
Window size

50 100 200 500 750 1000 1250 1500 1750 2000

Agrawal 2.24 4.50 7.93 19.26 28.04 39.00 45.92 57.57 63.90 73.49

Bank 0.66 1.14 2.07 4.75 7.01 9.17 11.54 14.55 15.83 17.87

CoverType 83.47 140.81 251.20 340.05 254.12 335.03 428.94 522.39 669.24 676.99

Electricity 0.34 0.53 0.98 2.33 3.56 4.63 5.99 7.05 8.30 9.49

Hyperplane 2.24 4.01 7.56 18.19 26.76 30.28 44.28 52.96 61.87 70.63

RandomRBF 2.79 4.09 7.73 18.54 27.35 30.72 45.02 54.12 62.23 71.04

To evaluate the DS-Gamma classifier, we compared its performance with other
data stream classifiers. Table 5.3 presents the performance results of each evaluated
algorithm on each data stream, including the standard deviation. Best performance
is emphasized with boldface. We also include boxplot with the same results in Fig.
5.3. For the Agrawal data stream, the DS-Gamma classifier using the approach
of similarity achieved the best performances. OzaBoostAdwin presents the best
performance for the CoverType and Electricity data streams, but this ensemble
classifier exhibits the highest classification time for all the data streams, as we can
observe in Table 5.4 and Fig. 5.4. This can be a serious disadvantage, especially in
data stream scenarios. The lowest times are achieved by the perceptron with Drift
Detection Method (DDM), but its performance is generally low when compared to
the other methods.

A fact that caught our attention was the low performance of the DS-Gamma
classifier for the CoverType data stream. This data stream presents a heavy class
imbalance that seems to be negatively affecting the performance of the classifier.
As we can observe in step (12) of the Gamma classifier algorithm presented in
section 3.1.2, classification relies on a weighted sum per class; when a class greatly
outnumbers the other(s), this sum will be biased to the class with most members.
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Figure 5.2: DS-Gamma (fixed size) classification time (s) for different window sizes
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Table 5.3: Accuracy comparison for the DS-Gamma

Data stream
Agrawal Bank CoverType Electricity Hyperplane RandomRBF

Acc. σ Acc. σ Acc. σ Acc. σ Acc. σ Acc. σ

Bayes-DDM 88.16 0.19 83.38 1.41 67.61 6.81 81.05 - 86.02 1.39 71.87 3.82

Perceptron-DDM 67.20 0.11 73.43 10.53 70.76 5.55 78.61 - 85.65 1.49 71.88 5.93

Hoeffding Tree 94.39 0.24 88.52 0.11 72.29 2.68 82.41 - 82.41 5.62 86.72 1.69

Active Classifier 90.82 1.62 88.21 0.14 67.31 1.03 78.59 - 79.50 6.55 75.32 2.70

IBL-DS 86.76 0.48 86.52 0.21 61.73 9.46 75.34 - 84.20 0.77 93.32 1.21

AWE 92.17 0.59 87.90 0.38 76.16 3.66 78.36 - 85.88 1.65 91.98 1.14

OzaBoostAdwin 87.11 2.62 87.67 0.50 78.55 4.97 87.92 - 83.21 1.91 91.49 1.14

SGD 67.20 0.11 76.56 1.66 59.01 7.37 84.52 - 83.19 0.42 61.74 3.31

SPegaso 55.82 0.17 77.46 1.99 50.47 5.17 57.60 - 52.80 6.08 53.33 3.13

DS-Gamma (Fixed size) 92.82 0.10 78.96 0.22 47.77 4.31 77.14 - 86.30 1.35 70.85 2.54

DS-Gamma (SPC) 93.36 0.22 85.33 0.15 50.67 10.52 84.11 - 87.19 1.19 71.53 2.58

DS-Gamma (Similarity) 94.42 0.08 86.07 0.06 44.01 8.66 80.18 - 87.31 1.34 72.19 2.53

Table 5.4: Time (s) comparison for the DS-Gamma

Data stream
Agrawal Bank CoverType Electricity Hyperplane RandomRBF

Time σ Time σ Time σ Time σ Time σ Time σ

Bayes-DDM 0.62 0.11 0.39 0.08 17.76 1.62 0.61 - 0.70 0.01 0.69 0.01

Perceptron-DDM 0.40 0.02 0.20 0.05 8.28 0.10 0.19 - 0.45 0.02 0.44 0.02

Hoeffding Tree 0.98 0.23 0.54 0.03 30.05 11.06 0.78 - 1.36 0.05 1.40 0.05

Active Classifier 0.64 0.03 0.26 0.02 15.14 0.74 0.23 - 0.72 0.04 0.70 0.02

IBL-DS 53.19 2.11 38.51 8.26 1057.60 60.95 8.61 - 86.39 0.96 88.10 1.06

AWE 14.32 0.20 6.63 0.30 1012.47 304.41 6.70 - 18.03 3.64 37.52 3.03

OzaBoostAdwin 192.62 44.47 46.93 10.56 10589.73 3896.64 39.75 - 223.99 51.34 57.04 16.66

SGD 0.14 0.04 0.11 0.009 4.035 0.07 0.12 - 0.27 0.02 0.27 0.02

SPegaso 0.22 0.006 0.11 0.016 1.684 0.12 0.12 - 0.31 0.05 0.24 0.01

DS-Gamma (Fixed size) 39.00 3.58 9.16 0.05 335.03 12.91 4.63 - 30.28 0.79 30.72 0.94

DS-Gamma (SPC) 112.62 5.61 29.47 0,04 1662.78 444.99 9.04 - 86.24 3.96 104.83 3.96

DS-Gamma (Similarity) 143.13 0.82 34.25 0.08 1918.61 8.43 24.18 - 114.79 3.79 72.19 2.53

From the results in Table 5.3, we can observe that the performance obtained by
the classifier using the SCP and the similarity approach has improved when com-
pared to that shown by the DS-Gamma classifier using a fixed size window approach.
The performance when using the new method to update the sliding window based
on the similarity operator shows goods results. In 4 of the 6 tested data streams, this
approach shows better results that the other two proposed methods for updating
the sliding window (fixed size and SCP).
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Figure 5.3: DS-Gamma accuracy comparison
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Figure 5.4: DS-Gamma classification time comparison
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To statistically compare the results obtained by the DS-Gamma classifier and
the other evaluated algorithms the Wilcoxon signed-ranks test was used. Tables
5.5, 5.6, and 5.7 show the values of the asymptotic significance (2-sided) obtained
by the Wilcoxon test using a level of confidence α = 0.05. In the case of the DS-
Gama with the approach of fixed size window (Table 5.5), the obtained values are
all greater than α, so the null hypothesis is not rejected and we can infer that there
are no significant differences among the compared algorithms.

For the case of the DS-Gamma with SCP and similarity approach (Table 5.6
and 5.7) the only value smaller than the level of significance α was obtained when
compared with the SPegasos classifier. In this case the null hypothesis is rejected
meaning that there is a statistically significant difference between the two classifiers.

Table 5.5: Test de Wilcoxon for DS-Gamma (fixed window)

Compared algorithms Asymptotic significance (2-sided)

DS-Gamma - Bayes-DDM 0.345

DS-Gamma - Perceptron-DDM 0.917

DS-Gamma - Hoeffding Tree 0.116

DS-Gamma - Active Classifier 0.463

DS-Gamma - IBL-DS 0.345

DS-Gamma - AWE 0.116

DS-Gamma - OzaBoostAdwin 0.116

DS-Gamma - SGD 0.753

DS-Gamma - SPegasos 0.116

DS-Gamma - DS-Gamma (SCP) 0.116

DS-Gamma - DS-Gamma (Similarity) 0.249
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Table 5.6: Test de Wilcoxon for DS-Gamma (SCP)

Compared algorithms Asymptotic significance (2-sided)

DS-Gamma - Bayes-DDM 0.753

DS-Gamma - Perceptron-DDM 0.600

DS-Gamma - Hoeffding Tree 0.345

DS-Gamma - Active Classifier 0.917

DS-Gamma - IBL-DS 0.463

DS-Gamma - AWE 0.249

DS-Gamma - OzaBoostAdwin 0.345

DS-Gamma - SGD 0.116

DS-Gamma - SPegasos 0.028

DS-Gamma - DS-Gamma (Fixed window) 0.116

DS-Gamma - DS-Gamma (Similarity) 0.917

Table 5.7: Test de Wilcoxon for DS-Gamma (fixed window)

Compared algorithms Asymptotic significance (2-sided)

DS-Gamma - Bayes-DDM 0.753

DS-Gamma - Perceptron-DDM 0.463

DS-Gamma - Hoeffding Tree 0.173

DS-Gamma - Active Classifier 0.917

DS-Gamma - IBL-DS 0.463

DS-Gamma - AWE 0.345

DS-Gamma - OzaBoostAdwin 0.173

DS-Gamma - SGD 0.345

DS-Gamma - SPegasos 0.046

DS-Gamma - DS-Gamma (Fixed window) 0.249

DS-Gamma - DS-Gamma (SCP) 0.917
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Chapter 6

Conclusions and future work

In this chapter we present the resulting conclusions of the research work presented
in this thesis. We also propose some ideas for future work related to the research
topic in this thesis. These proposals can be guideline for the development of new
research works that investigate some aspects of the topic not covered in the thesis.

6.1 Conclusions

In this work, we describe a novel methodology for the task of pattern classifica-
tion over a continuous data stream based on an associative model. The proposed
methodology is a supervised pattern recognition model based on the Gamma clas-
sifier combined with different methods to update a sliding window. One of the
methods is an original proposal based on the γ similarity operator to determine the
usefulness of a pattern in the sliding window. Given the reliance of the proposed
methodology on the Gamma classifier as a base learner, this proposal has been given
the name DS-Gamma (Data Stream Gamma) classifier.

An extensive study of the state of the art was performed and to our knowledge
this is the first time that an associative approach has been used to address data
stream classification problems. The main approaches used for data stream mining
are the following: decision models, ensemble methods, instance based models, clus-
tering methods, neural network models, support vector machines, frequent pattern
mining, and other approaches such as fuzzy, genetic, and bioinspired algorithms,
which address seldom studied aspects of data stream mining.

Decision trees are one of the most popular methods for data stream classification,
followed by ensembles methods and instance based learning; for the latter, incre-
mental learning and model adaptation is very simple, since it comes to updating the
stored instances. For data stream scenarios, neural network-based models have been
scarcely used, due to its limitation for these contexts, such as high computational
cost and the time to update the model. On the other hand, SVMs have been used for
different tasks in data stream scenarios such as sentiment analysis, fault detection
and prediction, medical applications, spam detection, and multi-label classification.
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Most of current machine learning algorithms assume that training data was gener-
ated from a stationary distribution; however, two of the main issues in learning from
a data stream are concept drift and concept evolution, which imply non-stationary
distributions. Detection of concept drift in data streams with class imbalance is a
challenge and it is a topic of intensive research. Most existing classification algo-
rithms for data streaming assume that the class labels are immediately available;
however, for real world applications, this is not always true. The major difficulties in
data stream classification are related to memory space, processing and classification
time, and change/evolution of the target concepts. In this context, classification al-
gorithms have to be able to extract knowledge with only one, or few, passes over the
data in a swift manner and using as little resources as possible. In general terms,
the modularity and simplicity of the proposed methodology is a great advantage
over the other compared methods of the state of the art.

After performing a study of the datasets commonly used for the task of pattern
classification on data streams, a group of 3 real and 3 synthetic datasets were se-
lected, which were used to test the proposed methodology. The number of instances
of these datasets ranges from 45,211 to 100,000, and the number of attributes goes
from 8 to 54. With respect to number of classes, one of the datasets has 7 classes,
while the other five datasets have 2 classes.

During the experimental phase, the proposed methodology was tested using differ-
ent data stream scenarios with the aforementioned real and synthetic data streams.
The proposed methodology presented competitive results in terms of performance
and classification time when compared with some of the state-of-the-art algorithms
for data stream classification.

Three sliding window updating methods were tested in combination with the
Gamma classifier: fixed size window, statistical controlled process, and Gamma
similarity update; being the last one an original proposal introduced in this thesis
based on the Gamma similarity operator to determine the usefulness of the patterns
in the sliding window.

For the fixed size window method, the effect of the window size over the classifi-
cation accuracy and time was studied. In general, accuracy improved as the window
size increased. We observed that best performances were obtained with window sizes
between 500 and 1000. For larger window sizes performance remained stable and
in some cases even declined. For the Gamma similarity method, it was expected
to be affected by the type of instances selected to be removed from the window.
Several experiments were performed selecting a different type of instance each time
to observe the impact on the classification performance. From the results obtained,
as expected, when instances of type 1 (high similarity, different classes) are selected
to be remove from the window, the classification performance was improved.

Since the proposed method based its classification on a weighted sum per class,
it is strongly affected by severe class imbalance, as we can observe from the results
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obtained with the experiments performed with the forest covertype dataset. This
is a heavily imbalance dataset, where the accuracy of the classifier was the worst of
the compared algorithms.

Despite of the good performance of the DS-Gamma classifier, there are still some
limitations to tackle:

• When the values in the training set do not induce a function, the performance
of the classifier is negatively affected. It is worth noting that this issue is also
true for most classification models.

• The values of some parameters such as the weights, the stop parameter and
the similarity criteria, are still determined with a process of trial and error
that is a very time consuming process.

• Heavily unbalanced datasets will degrade the performance of the classifier.

6.2 Future Work

The methodology presented in this thesis fulfilled the goals proposed at the be-
ginning of this work. However, the results obtained have opened several lines of
research that would make it possible to extent the initial proposal to address related
issues. The following summarizes some of these future lines of research.

The execution time showed by the DS-Gamma classifier can be improved. An
optimization of the algorithm to improve the classification time is proposed as future
work.

We believed that combining the strategy of similarity to determine the usefulness
of the patterns with a method to variable adapt the sliding window, such as SCP,
can lead to an increase in the performance of the DS-Gamma classifier. As future
work, an implementation of a method to update a sliding window combining these
two approaches can be carried out.

For data stream algorithms, one important aspect is the amount of memory used.
The DS-Gamma uses a fixed size amount of memory, but a detailed evaluation to
exactly measure the memory consumption of the proposed methodology should be
performed.

Develop an appropriate method for automatic estimation of the values for the pa-
rameters of the DS-Gamma classifier such as weights, stop parameter, and similarity
criteria.

Test an updating sliding window method based on monitoring distributions on
two different time-windows. One possible method is the one proposed by Kuncheva
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in [10], where two criteria to estimate the probability of the change between two win-
dows, Kullback-Leibler distance [83] and Hotelling’s T-square test for equal means
[84] are introduced.

Considering how imbalance datasets affect the DS-Gamma classifier, a mechanism
to address severe class imbalance should be integrated to the methodology to improve
classification accuracy.
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[102] Bifet, A. & Gavaldà, R. (2006). Kalman filters and adaptive win-
dows for learning in data streams. Discovery Science. Lecture Notes in
Computer Science, 4265, 29-40.

[103] Last, M. (2002). Online classification of nonstationary data streams.
Intelligent Data Analysis, 6(2), 129-147.

[104] Wang, H., Fan, W., Yu, P.S. & Han, J. (2003). Mining concept-
drifting data streams using ensemble classifiers. Proceedings of the 9th
ACM International Conference on Knowledge Discovery and Data Min-
ing, Washington D.C., USA, 226-235.

[105] Oza, N. & Russell, S. (2001). Online bagging and boosting. Pro-
ceedings of the 8th Internatinoal Workshop in Artificial Intelligence and
Statistics, Key West, Florida, USA,105-112.

[106] Bifet, A., Kirkby, R., Kranen, P. & Reutemann, P.
(2012). Massive online analysis manual. Available for download from
http://moa.cms.waikato.ac.nz/documentation/.



REFERENCES
94

[107] Massive Online Analysis (MOA). Available for download from
http://moa.cms.waikato.ac.nz.

[108] Bache, K. & Lichman, M. (2013). UCI machine learning repos-
itory, School of Information and Computer Science, University of
California, Irvine, California, USA. Available for download from
http://archive.ics.uci.edu/ml.

[109] Harries, M. (1999). Splice-2 comparative evaluation: electricity pricing.
Technical report, The University of South Wales, 1999.

[110] Agrawal, R., Imielinski, T. & Swami, A. (1993). Database mining:
a performance perspective. IEEE Transactions on Knowledge and Data
Engineering, 5(6), 914-925.

[111] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P. & Witten, I.H. (2010). WEKA 3: data mining software in java.
Available for download from http://www.cs.waikato.ac.nz/ml/weka/.


