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RESUMEN

El diseño de algoritmos para resolver problemas de Optimización Combinatoria es una

tarea desafiante debido a la naturaleza de intractabilidad que poseen los mismos. Uno de los

problemas fundamentales, y también uno de los más estudiados en el área, es el problema

del Particionado de Grafos. En años recientes, se han desarrollado distintos algoritmos basa-

dos en Deep Learning para lidiar con éste y otros problemas de Optimización Combinatoria,

los cuales han mostrado resultados satisfactorios. Uno de las algoritmos más famosos, entre

los antes mencionados, es Generalizable Approximate Partitioning (GAP) framework. El

objetivo de este trabajo es presentar una extensión de este framework que funcione para

grafos mas generales, i.e. grafos sin atributos, y generalice bien para grafos grandes.

Una de las primeras observaciones hechas en esta investigación es que debido al hecho

que el framework GAP usa una arquitectura basada en Graph Convolutional Networks,

éste tiende a desempeñarse lentamente en grafos grandes. Por lo tanto, se llevaron a cabo

algunas modificaciones significantes que mantienen las ventajas que ofrecen las Graph

Convolutional Networks y al mismo tiempo reducen el tiempo de cómputo sin perder la

potencia del framework original.

Además, se observó que el framework GAP funciona únicamente con grafos con carac-

terísticas en sus nodos como consecuencia de la arquitectura seleccionada por sus autores.

Esta dependencia fue elmininada a través de un enfoque basado en caminatas aleatorias

para generar las características de los nodos. Esta se puede considerar como una modifi-

cación importante porque el algoritmo ahora depende únicamente de la estructura del grafo

lo cuál es suficiente para el problema del Particionado de Grafos.

La última parte de esta investigación muestra cómo se adaptó una técnica de negative

sampling al algoritmo propuesto para acelerar y hacer más efectivo el proceso de encontrar

particiones balanceadas sin sacrificar la calidad de las particiones antes mencionadas. El

algoritmo propuesto mostró resultados comparables con algoritmos ampliamente usados

para el particionado de grafos como lo es METIS.
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ABSTRACT

T
he design of algorithms that solve Combinatorial Optimization problems is a chal-

lenging task due to their intractable nature. One of the fundamental and most studied

problems in the area is the Graph Partitioning problem. In recent years, several Deep

Learning algorithms have been developed to deal with this and other Combinatorial Opti-

mization problems, which have shown satisfactory results. One of the famous ones is the

Generalizable Approximate Partitioning (GAP) framework. This work aims to present an

extension of this framework that works for more general graphs and generalizes well to large

ones.

One of the first observations made in this research is that the GAP framework uses an

architecture based on Graph Convolutional Networks (GCN’s) which tends to be slow for big

graphs. Therefore, significant modifications were carried out that preserve the advantages

that Graph Neural Networks offer and at the same time reduce the computation time without

losing the power of the original framework.

In addition, it was noted that as a consequence of the model architecture chosen by its

authors, GAP requires graphs with node features. That dependency was eliminated by using

a random walk approach to generate node features. This was an important modification

because the algorithm now relies purely on the graph’s structure which is enough for the

Graph Partitioning Problem.

The last part of this research shows how to use a negative sampling technique to ac-

celerate and improve the process of finding balanced partitions without sacrificing the

quality of said partitions. The proposed algorithm shows results comparable with widely

used partitioning algorithms like METIS.
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1
INTRODUCTION

1.1 Presentation

Combinatorial Optimization is a prominent field that results from the intersection of math-

ematics and theoretical computer science, specifically from areas such as combinatorics,

algorithm theory, and operations research. Combinatorial Optimization problems are char-

acterized by their solution space that consists of a finite collection of objects. This collection

of objects typically grows exponentially in size, so going through all the objects and selecting

the optimal one is not feasible [33].

The computational complexity behind solving Combinatorial Optimization (CO) prob-

lems is a very well-known concern, but the main motivation to solving them is the number

of real-life problems that can be modeled using this framework. Thus, developing new

techniques that provide Combinatorial Optimization algorithms which perform well has

been in the spotlight for more than 50 years [25], and it is the subject matter of this research.

Considering the aforementioned, it is important to note what the essence of a CO algo-

rithm is. As explained eloquently by Maltby and Ross [26], a CO algorithm uses mathematical

methods either to make the search of possible solutions faster or to reduce the size of the set

of feasible solutions. Some of the state-of-the-art techniques that have been proposed to

produce those algorithms can be summarized as:

• Heuristic methods: a series of strategies where experience-based techniques are fol-

lowed to solve the problem. Generally used when classical methods are too slow and

1



CHAPTER 1. INTRODUCTION

when an approximate solution is enough for the implicit purposes.

• Branch and bound method: consists of a systematic division of the solution space

where the core elements are called branches. Then, branches are recursively explored

and compared against estimated bounds of the optimal solution. [28]

• Mixed/Integer Programming: some of the decision variables in the problem are con-

strained to be integer values at the optimal solution, and then, the problem can be

solved by one or several methods before mentioned.

Figure 1.1: Illustration of the process of solving a CO algorithm with the branch and bound
method [20].

For further information about the most popular strategies or an exhaustive explanation

of those techniques, those considered to be good resources are [10] and [21].

It is well known that most CO problems can be modeled with mathematical graphs [25].

Hence, most of the efforts in developing CO algorithms are dedicated to solving graph prob-

lems. These efforts have incremented in the last decade on account of the rapid growth in

digital technology. Along with this change, the computing needs and the usual assumptions

that algorithms used to make have become more demanding in terms of resource allocation.

On one hand, there is a need to research new theoretical proposals and to further

investigate the new constraints that modern problems imply. Then, one could use this

knowledge to influence the way new strategies approach those problems. On the other hand,

there is a pragmatic need to solve those problems in real life and come up with practical

and efficient solutions in a considerably small amount of time. In short, the theoretical and

practical aspects need to be considered as part of the equation in contemporary applications

where strong optimization strategies, like heuristic methods and Integer Programming, are

just not enough.

The ability to address the underlying issues that emerge in those kinds of problems has

been improved drastically during the last years. Those huge steps are directed to obtain fast

2



CHAPTER 1. INTRODUCTION

approximations for CO problems and have given rise to new ways to find algorithms that

provide empirically-efficient solutions.

Some recent approaches are being designed to take advantage of Machine Learning

capabilities. In particular, Deep Learning strategies are providing alternative ways to deal

with some of the underlying issues that arise with those kinds of problems. For specific

problems, those approaches have shown to be the most successful in terms of running time

efficiency, less human intervention, and the quality of the solutions.

Balanced graph partitioning is one of the fundamental Combinatorial Optimization

problems and one which has gotten the best from Deep Learning. Stated in simple words,

the Balanced Graph Partitioning Problem is the task of finding a partition of a given graph

into mutually exclusive sub-graphs, i.e. they do not share nodes, and the partitions have the

same size relative to a given measure. Finding a partition with the desired characteristics

is a hard task, but the importance of solving it has incremented in recent years due to its

numerous applications.

1.2 Objectives

1.2.1 General objective

The main target of this research is to develop a machine learning algorithm that solves

the graph partitioning problem which is capable of performing on abstract graphs and

large-scale graph instances and provide a more robust algorithm.

1.2.2 Specific objectives

The following objectives will help accomplish the general objective:

• To understand and analyze the Generalizable Approximate Partitioning (GAP) frame-

work and to use it for solving the graph partitioning problem.

• To design an algorithm based on GAP that works for general (non-attributed) graphs

and at the same time relies completely on their structure.

• To build a framework that is easy to modify in order to use different objective functions

in the partitioning stage.

3



CHAPTER 1. INTRODUCTION

• To explore different types of sampling and study the impact they have in the efficiency

of the algorithm.

1.3 Justification

Graphs are a mathematical representation of what is colloquially known as networks. They

are used to describe the relationships between objects and allows one to model an extensive

amount of real life problems. Due to their modeling capacity and their power of abstraction,

they are widely studied in different areas of computer science and applied mathematics.

The Graph Partitioning (GP) problem is relevant in solving a big number of graph-related

tasks. Frequently, GP is employed as a pre-processing subroutine to solve a distinct graph-

related problem. If the edges that cross between the partition groups are relatively small

compared to the original graph, then the partitioned graph may be more appropriate for

analysis and problem-solving than the original [23].

Finding good-quality partitions of a graph is generally the first step of distributed graph

computing tasks. The next paragraphs are dedicated to describe some of the most distin-

guished applications of GP. Applications of GP to solve graph-related and other abstract

computer science problems are presented first followed by some applications to other areas

and real-life situations.

One of the first and most useful applications of GP that one can find in literature is graph

compression. A popular method for graph compression is the reordering method, which

bisects a graph into two sets of equal cardinality aiming to minimize a compression-related

objective function. Graph bisection is a special case of GP where the objective number of

partitions is two. For instance, Bouritsas et. al. [2] showed a way to use a Machine Learning

approach combined with a parametric GP algorithm to solve this task.

Another important application of GP is to implement graph sparsification. Graph spar-

sification is the task of representin big graphs in a way that takes less space in memory

but preserves most of the relevant properties. Spielman and Teng [35] proposed a novel

nearly-linear time partitioning algorithm that is used to produce spectral sparsifiers. The

same partitioning algorithm is used by their authors to efficiently solve linear systems [37].

In an more recent work, Gatti et. al. [12] presented a way to solve sparse symmetric systems

of linear equations using the nested dissection ordering algorithm. This algorithm is a divide

and conquer heuristic based on GP. Previous work in this algorithms was made by Gupta [17].

Graph partitioning also plays an essential role in paralleling computations and the design

4



CHAPTER 1. INTRODUCTION

of new algorithms on large graphs. For example, in the device placement problem one aims

to distribute work accross multiple devices. This is a relevant problem in Deep Learning in

situations where it is important to train Neural Networks accross multiple devices [27].

In other applications, Sun et. al. [38] proposed a solution for the problem "intentional

islanding in power systems considering load generation balance" where the main compo-

nent is GP. For their part, Grady and Schwartz [16] made use of the isoperimetric constant to

generate a GP algorithm that segmentate images.

Undoubtedly, the most recent direction where the GP problem has gained importance

is in its application for clustering in complex networks. Those types of networks include

but are not limited to social networks, transportation networks, web graphs, and biological

networks. For an example, see Figure 1.2.

Figure 1.2: The global mobility network. Representation of 4069 airports worldwide where
gray lines between them are direct connections [3].

An extensive report about the relationship between clustering in complex networks and

GP can be found in [9]. That book is a collection of the classical approaches that involves

this two related problems. The reader can also look over [36] for a more recently-related

research.

The approaches followed by most of the mentioned research applications use state-

of-the-art GP algorithms. Some of the same algorithms for those tasks are unexplored in

modern large-scale graphs, and they do not consider the growth in size of the emerging

graph data in the following years. The possibility that they become obsolete in the near

future needs to be studied carefully alongside with the development of new strategies that

overcome the impending challenges.

Something important to highlight is that the target is not only load-balance but some-

5



CHAPTER 1. INTRODUCTION

times the minimization of communication volume. This is a consideration not all of the

existing approaches have and something worth researching.

In this context, the project "A Graph Neural Network Approach for Large-Scale Graph

Partitioning" was created as a proposal to address some of those challenges. It took one of

the most successful frameworks to create a flexible algorithm that can be used in a variety of

graphs.

1.4 Project scope and limitations

During the development of this project the following considerations were taken:

• The algorithm has not been tested on real-world graphs. Most of the graphs where

the experiments took place were taken from a famous dataset where some of the

most successful partitioning algorithms have been tested. Even though this offers a

good comparison point, the size of those graphs is pretty small compared to massive

graphs like the Amazon or Pinterest networks. The largest graph in the dataset contains

500,000 nodes.

• In general, the graphs used for running the experiments are not dense. However,

some of the graphs are dense, but they belong to the category of small-size graphs

with less than 50,000 nodes. Although a number of real-world graphs are sparse, it is

suspected that special considerations should be contemplated during the training of

the algorithm in the future.

• Most of the parameter values are based on previous work where they were shown to

have good performance or they were recommended by the original authors. Nonethe-

less, more experiments in different scenarios should be run to determine better values

for the GP specific task.

• The machines where the experiments were executed have very limited computing

power compared to the ambitions of this project. Though hardware specifications

in those machines were enough to run experiments on the dataset, but it would be

impossible to process complex networks with this technology.

• The proposed algorithm was not designed to run in a distributed environment. Experi-

ments were run in single thread, and the algorithm was trained only in GPU. Modifying

6



CHAPTER 1. INTRODUCTION

the algorithm so it can run in parallel and distributing the training load between the

GPU and the CPU are interesting research topics.

• The proposed algorithm has been tested only to bisect graphs. While it can work to

partition a graph in more than two groups, the hyperparameters choice needs to be

studied in more detail.

• The proposed framework only accepts certain input formats for the graphs, specifically

JOSTLE and METIS formats.

1.5 Research Problem

Several new approaches and algorithms for the graph partitioning problem have arisen

during the two decades. This effort has incremented during the last five years due to the

creation of modern artificial techniques, in particular, Deep Learning (DL) techniques.

The most recent and successful DL techniques over graphs make use of Graph Neural

Networks (GNN’s). The study of this architecture for the graph partitioning problem is just

emerging and plenty of research studies need to be done. According to the quality of the

partitions obtained, one of the most successful DL based algorithms is the Generalizable

Approximate Partitioning (GAP) framework [29]. However, when analyzing the algorithm,

several limitations were found, as described bellow.

• It requires node features

• The framework has computing limitations.

• It has only been tested on 10000-node graphs

• It cannot be easily adapted to different loss functions

Gatti et. al.[13] made a great effort to improve the GAP framework. Though their algo-

rithm work on large graphs and solved some other downsides found in GAP, it cannot be

easily adapted to more partitions due to the limited features they chose to use.

7



CHAPTER 1. INTRODUCTION

1.6 Hypothesis

The GAP framework can be extended to work with larger graphs than the one used in the

original paper, the feature dependency can be removed to work on more general graphs,

and the computing without losing the quality of the solutions in the original algorithm.

1.7 Project organization

The organization of the remaining parts of the thesis is as follows:

• In Chapter 2, basic mathematical terminology is presented which is going to be used

in the next chapters. Next, this chapter provides a glance at the spectral methods used

to solve the GP problem. Then, it finishes with a review of some of the most popular

Deep Learning techniques for GP.

• In Chapter 3, the proposed graph partitioning algorithm for large-scale graphs is

presented. It provides a description of the main components in the modules of the

framework. Then, it shows how those modules can be used by the algorithm to effec-

tively perform in abstract graphs. Finally, an incorporated sampling technique is used

to improve the training process.

• In Chapter 4, the experiments carried out are described along with the dataset and

the comparison metrics used in them. The proposed solution is compared to state-

of-the-art methods given the proposed metrics. At the end, the obtained results are

summarized.

• In Chapter 5, a summary of the contributions of this project is given. The advantages

of the proposed algorithm over other existing approaches are mentioned as well as

further research areas found during its development.

8
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2
THEORY AND CONCEPTUAL FRAMEWORK

A brief definition the mathematical concepts in the next chapters is found bellow. They are

include some of the definitions and principal postulates used in spectral graph theory in

which is based this work.

2.1 Preliminaries

Theorem 2.1.1. For every n ×n symmetric real matrix, the eigenvalues are real and the

eigenvectors can be chosen real and orthonormal.

Theorem 2.1.2 (Courant-Fisher Formula). Let A be an n ×n real symmetric matrix with

eigenvalues λ1 ≤λ2 ≤ ·· · ≤λn and corresponding eigenvectors v1, v2, ..., vn . Then

λ1 = min
‖x‖=1

xT Ax = min
x 6=0

xT Ax

xT x
,

λ2 = min
‖x‖=1
x⊥v1

xT Ax = min
x 6=0

xT Ax

xT x
,

λn =λmax = max
‖x‖=1
x⊥v1

xT Ax = max
x 6=0

x⊥v1

xT Ax

xT x
.

In general, for 1 ≤ k ≤ n, let Sk denote the span of v1, v2, ..., vk (with S0 = {0}). Then

λk = min
‖x‖=1
x∈S⊥

k−1

xT Ax = min
x 6=0

x∈S⊥
k−1

xT Ax

xT x
.

9



CHAPTER 2. THEORY AND CONCEPTUAL FRAMEWORK

2.2 Graphs and Laplacian Matrices

For the rest of the chapter, let G = (V ,E) be a graph, where V = {v1, v2, ..., vn} is the non-

empty set of nodes (or vertices) and E is the set of edges, composed by pairs of the form

(vi , v j ), where vi , v j ∈V .

It is assumed that all graphs are undirected, meaning that if (vi , v j ) ∈ E , then (v j , vi ) ∈ E ,

for every vi , v j ∈V . For that reason, the edge (vi , v j ) will be represented as the unordered

set
{

vi , v j
}
.

A convenient way to represent a graph is through an adjacency matrix A ∈R|V |×|V |. Giving

a specific order to the graph nodes, one can represent the edges as binary entries in this

matrix:

A[vi , v j ] =
1 if

{
vi , v j

} ∈ E

0 otherwise

Let N(vi ) denote the neighborhood of node vi , i.e., the set of the adjacent nodes to it.

The quantity that represents the number of nodes in N(vi ) is called the degree of the vertex

vi . This is one of the most obvious and informative feature for the structure of the graph and

is denoted by

di =
n∑

j=1
A[v j , vi ].

Finally, we can summarize that graph’s information in the degree matrix D which is

defined as the diagonal matrix with the degrees d1,d2, ...,dn on the diagonal.

2.2.1 The Unnormalized Laplacian

The unnormalized graph Laplacian matrix L is defined as

L = D − A

Proposition 2.2.1 (Some properties of L). The matrix L, as defined above, satisfies the fol-

lowing properties:

1. For every vector x = (x1, x2, ..., xn) ∈R we have

xT Lx = 1

2

n∑
i=1

n∑
j=1

(
xi −x j

)2

2. L is symmetric and positive semi-definite

10
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3. L has n non-negative, real-valued, eigenvalues λ1 ≤λ2 ≤ ·· · ≤λn

4. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one

vector 1.

2.2.2 Normalized Laplacians

The symmetric normalized Laplacian matrix Ls ym is defined as

Ls ym = D− 1
2 LD− 1

2

while the random walk Laplacian is defined as

Lr w = D−1L

2.2.3 The graph partitioning problem

In order to introduce the graph partitioning problem in its different settings, the mathemati-

cal definition of the concepts involved are presented below.

Definition 2.2.1. Given a graph G = (V ,E ) and an integer K , a partition of G is a collection of

K subsets P1,P2, ...,PK ⊂V such that:

1. Pi ∩P j =; for i 6= j , where i , j ∈ {1,2, ...,K }

2. ∪K
k=1Pk =V

A partition of a graph can be seen as simply removing edges from the original graph

in such way the obtained partitions are subgraphs. There are many ways a graph can be

partitioned into subgraphs and the way it gets done depends completely on the application

of interest. However, independently of the problem to solve, the objective relies on minimiz-

ing the connections between the partitions in the original graph. The following concepts

provides a useful notation to turn the problem into an optimization one.

For a collection S ⊂V of vertices, we define the edge boundary ∂(S) to consist of all edges

in E with exactly one endpoint in S, that is,

∂(S) := {{u, v} ∈ E | u ∉ S and v ∈ S}

Now the problem turns into finding a partition P1,P2, ...,PK such that minimizes the cut

value of the partition, usually called just cut, which is defined as

CUT(P1,P2, ...,PK ) := 1

2

K∑
k=1

|∂(Pk )| (2.1)

11
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The notion of cut allows to measure the quality of any partition, and it can be solved in

polynomial time. Nevertheless, solving the min cut problem in real-world problems often

leads to very imbalanced partitions consisting of one-node groups.

For a collection of vertices S ⊂V , consider the following quantity related to the edges of

a subgraph

VOL(S) := ∑
vi∈S

di

This quantity allows to defining a different way to measure the quality of a partition that not

only depends on the number of vertices but the total communication between them.

Inspired in that, and in the variety of applications that benefit from their formulation,

the next quantities provides two different ways of measuring the size of the partitions. In

colloquial terms, a partitioning algorihtm can aims to load-balance and/or to minimize the

communication volume.

RATIOCUT(P1,P2, ...,PK ) := 1

2

K∑
k=1

|∂ (Pk )|
|Pk |

=
K∑

k=1

CUT(Pk ,Pk )

|Pk |

NORMCUT(P1,P2, ...,PK ) := 1

2

K∑
k=1

|∂ (Pk )|
VOL(Pk )

=
K∑

k=1

CUT(Pk ,Pk )

VOL(Pk )

2.2.4 The spectral method and Chegger’s inequality

Cheeger’s inequality

For a graph G = (V ,E) the conductance or Cheeger ratio of a set S ⊂V is the ratio of the

fraction of edges in the cut (S,S) o the volume of S,

φ(S) = E(S,S)

VOL(S)

The conductance or Cheeger constant of a graph G is denoted by

φ(G) = min
S
φ(S)

12
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Theorem 2.2.1. In a graph G, the Cheeger constant φ(G) and the spectral gap λG are related

as follows:

2φ(G) ≥λG ≥ α2
G

2
≥ φ(G)2

2

where α2
G is the minimum Cheeger ratio of subsets Si consisting of vertices with the largest i

values in the eigenvector associated with l ambd aG , over all i ∈ [n]

The spectral method

1. Let v denote the second smallest eigenvector of L . Sort the vertices i of G in increasing

order of vi . Let the resulting ordering be v1 ≤ v2 ≤ ·· ·vn

2. For each i , consider the cut induced by {1,2, ..., i } and its complement. Calculate its

conductance.

3. Among these n −1 cuts, choose the one with minimum conductance.

Generalization to many partitions

1. Perform eigenvalue decomposition to find the eigenvectors of Ls ym .

2. Select the k largest eigenvectors e1,e2, ...,ek of Ls ym associated to the largest eigenval-

ues λ1,λ2, ...,λk

3. Form the matrix Y from the matrix X = [e1,e2, ...,ek ] given by

Yi j =
Xi j(∑
j X 2

i j

) 1
2

4. Treating each row of Y as a point in Rk , cluster them into k clusters using K −means

5. Finally, assign the original vertex to cluster j if and only if row i of the matrix was

assigned to cluster j

2.2.5 Generalizable Approximate Graph Partitioning (GAP) Framework

From all the Deep Learning approaches that solve the Graph Partitioning problem, one of the

most notorious not only for its simplicity but for its exceptional results, is the Generalizable

Approximate Graph Partitioning framework better known as GAP [15].

13
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GAP is a Graph Neural Network approach that proposes a continuous relaxation of the

problem using a differentiable loss function that is based on the normalized cut. According

to Nazi et al. [29], it is an unsupervised learning algorithm that is capable of generalization,

meaning that it can be trained in small graphs, which allows it to generalize into unseen

much larger ones. This section describes the model described in the original paper which

consists of two modules: the Graph Embedding Module and the Graph Partitioning Module.

See Figure 2.1.

Figure 2.1: Architecture of the Generalizable Approximate Partitioning framework [29].

In the following subsections, it is assumed that the framework takes a graph G = (V ,E)

as input, where V = {v1, v2, ..., vn}, and outputs the probabilities tensor Y ∈Rn×K , where Yi k

represents the probability that node vi belongs to partition Pk . Before going into the model

description, the deduction of the loss function is as follows.

2.2.5.1 Expected Normalized Cut Loss Function

Recall the normalized cut given by

NORMCUT(P1,P2, ...,PK ) =
K∑

k=1

CUT(Pk ,Pk )

VOL(Pk )
(2.2)

In order to calculate the normalized cut expected value, one needs to compute the

expected value of CUT(Pk ,Pk ) and VOL(Pk ) from Equation 2.2. For the deduction of those

quantities, an approach similar to the one presented in [13] will be followed .

Since Yi k represents the probability that node vi ∈ Pk , 1−Yi k is the probability that

vi ∉ Pk , hence

E[CUT(Pk ,Pk )] =
|V |∑
i=1

∑
v j∈N(vi )

Yi k (1−Y j k ) (2.3)

14
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as can it can be deducted from Figure 2.2.

Due to the fact that for a given node the adjacent nodes can be retrieved from the

adjacency matrix A, Equation 2.3 can be rewritten as follows:

E[CUT(Pk ,Pk )] =
|V |∑
i=1

|V |∑
j=1

Yi k (1−Y T
k j )Ai j (2.4)

Figure 2.2: The expected value of the number of edges in the boundary of a determined
partition Pl is given by the sum of the probabilities that each node vi ∈ V belongs to Pl ,
multiplied by the probability that each of its neighbors does not belong to Pl .

Keeping in mind that VOL(Pk ) is the sum of the degrees of the nodes in Pk , ∆ is defined

to be the column tensor where ∆i is the degree of the node vi ∈V . Then, given Y , one can

calculate the expected value of VOL(Pk ) as follows:

Γ= Y T∆

E[VOL(Pk )] = Γk

(2.5)

From the results obtained in Equation 2.4 and Equation 2.5, a way to calculate the

expected value of NORMCUT(P1,P2, ...,PK ) is given by:

E[NORMCUT(P1,P2, ...,PK )] =
K∑

k=1

|V |∑
i=1

|V |∑
j=1

Yi k (1−Y T
k j )Ai j

Γk
(2.6)

Nazi et al. [29] also showed that given the probability tensor Y , one can evaluate how

balanced those partitions are. Note that the sum of the columns in Y is the expected number

15



CHAPTER 2. THEORY AND CONCEPTUAL FRAMEWORK

of nodes in each partition, i.e., E[|Pk |] =
∑|V |

i=1 Yi k . On the other hand, in order to have

balanced partitions, the number of nodes in each one should be |V |
K . As a consequence, the

quantity
∣∣∣∑|V |

i=1 Yi k − |V |
K

∣∣∣ measures how balanced the partition Pk is.

Using the last result, and replacing the absolute value by the squared function, one can

derive the loss function from Equation 2.6. This is the one originally used in GAP that intends

to minimize the expected value of the normalized cut and at the same time balances the

cardinalities of the partitions:

L =
K∑

k=1

|V |∑
i=1

|V |∑
j=1

Yi k (1−Y T
k j )Ai j

Γk
+

K∑
k=1

( |V |∑
i=1

Yi k −
|V |
K

)2

(2.7)

2.2.5.2 The Embedding Module

In the graph embedding module, the algorithm learns node embeddings by encoding local

structure information and the node features. The embeddings are calculated using Graph

Neural Networks (GNN) which have become very popular during the recent years. To en-

sure generalization, the GAP authors opted for an inductive GNN approach by leveraging

GraphSAGE with a Graph Convolutional Network (GCN) based approach.

In the paper where GAP was presented, the authors used a 3-layer GCN using Xavier

initialization that can be found in [14]

Z = tanh(Â tanh(Â tanh(ÂX W (0))W (1))W (2))

where Â = (D + I )−
1
2 (A+ I )(D + I )−

1
2 is a normalized variant of the adjacency matrix with self

loops, X is the feature matrix, and W (l ) is a learnable parameter matrix.

2.2.5.3 The Partitioning Module

The second module of GAP is composed of a fully connected layer that takes as input a node

embedding vector z u generated in the embedding module. This fully connected layer is

then followed by a softmax layer trained to minimize the expected normalized loss function

given by Equation 2.7.

This module is the responsible for partitioning the graph by returning Y ∈ R|V |×K , the

probabilities matrix that each node belongs to each of the partitions P1,P2, ...,PK . At the

same time, it ensures that for a given node, the sum of the probabilities of belonging each of

the partitions is 1
K∑

k=0
Yi k = 1

16
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3
GRAPH PARTITIONING FOR LARGE GRAPHS

This chapter is going to develop all the concepts related to the modifications made to the

GAP framework. It contains the proposed solution and a description of why some decisions

were made.

3.1 Node Embeddings

As mentioned by Zhang et. al. [45], Graph Convolutional Networks (GCN’s) and their variants

have become a very hot topic in Machine Learning, and they are being quite frequently used

to solve plenty of problems. Indeed, the use of GCN’s to generate node embeddings, which

are just dense vector representations for the nodes in the involved graph, was a key factor

that made the GAP framework very successful in producing good-quality partitions.

Graph Convolutional Networks can solve the following limitations found in traditional

encoders [41]:

• Traditional encoders do not scale, i.e., they generate unique embeddings for each

node.

• Traditional approaches can only generate embeddings for a single fixed graph.

• They only use the graph structure, and they do not consider node features.

• Those encoders focus on a specific architecture and cannot be adapted to train with

different loss functions.

18
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3.1.1 Graph Convolutional Networks

GCN’s were originally proposed by Kifp et. al. [24]. When they first came up with their

algorithm, they proposed a model where a single layer follows the following propagation

rule:

H (l+1) = f (H (l ), A) =σ
(
D̂− 1

2 ÂD̂− 1
2 H (l )W (l )

)
(3.1)

H (0) = X , (3.2)

where W (l ) is a the learnable parameter weight matrix for the l-th network layer, Â = A+ I

is the adjacency matrix with self loops, D̂ is the diagonal node degree matrix of Â, X is the

feature matrix, and σ is a non-linear activation function. Also, note that the term D̂− 1
2 ÂD̂− 1

2

is a symmetric normalized version of the graph’s Laplacian.

Although GCN’s are extremely powerful in generating node embeddings, in practice,

they have the following downsides:

• GCN’s are slow to train. As it can be seen in Equation 3.1, they multiply feature matrices

by powers of the normalized graph’s Laplacian, i.e., they are computationally very

expensive.

• GCN’s consume a lot of memory when training. They are not suitable for either dense

graphs or large graphs.

• They present over-smoothing. After stacking multiple rounds of message passing,

GCN’s contain similar information in all node embedding representations [18].

To solve these issues in GCN’s, several solutions have been proposed that deal with

the downsides mentioned without losing the expressibility of the GCN. Some of the most

relevant solutions are FastGCN, GraphSAGE and PinSAGE.

FastGCN [6] introduced sampling to the GCN framework and reformulated the loss

function to provide a mechanism for inductive learning. They addressed the efficiency

problems found in training GCN’s by adding a batch-training scheme using Monte Carlo

techniques. Finally, FastGCN shows better generalization than its preceding framework.

Similar to FastGCN, GraphSAGE [19] is an inductive version of GCN’s. It introduces

sampling techniques that remove the dependency of having all nodes during the training

stage that improves the performance and running time. GraphSAGE naturally generalizes to

unseen nodes and can learn about the local graph structure.
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From all the mentioned solutions, PinSAGE [42] is perhaps the most complete and

successful. This is the architecture used by Pinterest for their recommendation system.

PinSAGE operates on an enormous graph with 3 billion nodes and 18 billion edges. It uses

a combination of random walks and a MapReduce-based inference to compute the node

embeddings which dramatically improves the scalability of GCN’s.

For this research, GraphSAGE was chosen due to its flexibility and its superior perfor-

mance on many graph-related tasks. As its authors suggested [19], new sampling techniques

can be easily adapted as well as an application-driven loss function. Alternative approaches

that can also be adapted are described in [46] or [18].

3.1.2 GraphSAGE

As claimed by the authors of the paper [19] where it was first proposed, GraphSAGE is

an inductive framework that generates node embeddings for previously unseen data. It

can be seen as an extension of the GCN framework to the inductive setting but it results

advantageous in this process as it:

• Performs localized convolutions without needing to use the whole normalized Lapla-

cian resulting in a reduction of the computing time. Due to the nature of the GCN’s,

they make use of the symmetrically-normalized graph’s Laplacian to compute local-

ized convolutions.

• Does not require that all nodes are present during the embeddings’ training which

results in a highly-scalable framework.

• Naturally generalizes to unseen nodes and even to entire sub-graphs.

• Is capable of recognizing local and global structural properties of nodes based only on

its neighbors even though it still depends on node features.

• Uses an unsupervised loss function that tries to preserve graph structure without

being specific on the task.

The basic idea of this framework to compute an embedding for node v can be summa-

rized by the following three steps:

1. Uniformly and randomly sample a set of nodes from the neighborhood of v .

2. Aggregate feature information from neighbors
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Having this idea in mind, the simplest form of a layer-wise propagation rule for Graph-

SAGE is given by

h(l )
v =σ

(
W (l ) ·CONCAT

(
h(l−1)

v ,h(l )
Nl (v)

))
h(l )

Nl (v) = AGGREGATEl

({
h(l−1)

u | u ∈ Nl (v)
})

(3.3)

h(0)
v = X v

where as usual W (l ) is a learnable parameter weight matrix for the l-th network layer, σ

is a non-linear activation function, {X v | v ∈ V } are the input features, AGGREGATEl are

differentiable aggregator functions, and Nl : v → 2V are neighborhood sampling functions,

for l ∈ {1,2, ...,L} where L is the number of layers.

After computing the node embedding for the l-th layer, the algorithm also performs a

normalization step by dividing the node embedding by its norm. This step is a common

technique to prevent gradient explosion.

To learn the GraphSAGE parameters and get useful predictive node representations, the

model can be trained in a fully-unsupervised manner by using the following graph-based

loss function:

JG (z u) =− log
(
σ(z T

u z v )
)−Q ·Evn∼Pn (v) log

(
σ(−z T

u z vn )
)

(3.4)

Figure 3.1: Graphical representation of the embeddings generated by GraphSAGE
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As explained by Abraham [1], the supervised loss function given by Equation 3.4 is

designed in a way that if nodes u and v are close in the original graph, their node embeddings

will be similar. See Figure 3.1.

On one hand, if u and v are close, the inner product of their representations zu and

zv is expected to be large, and the first term of Equation 3.4 will be close to zero. On the

other hand, if u and v are far away from each other, their inner product is expected to be

negative, so the value of the second term will be close to zero. Since all of the nodes that are

far away from a given node, also known as negative nodes, cannot be used to minimize the

loss function, only Q of them are sampled from the distribution of negative nodes Pn(v).

3.2 Node Features

For a graph G = (V ,E ), where V = {v1, v2, ..., vn}, the feature matrix X can be described as the

n ×F matrix where the rows Xvi are node features that depend on the graph. For example,

in the context of social networks, node features can be gender, city or any other user profile

information.

Figure 3.2: Graph with 7 nodes, five of them with 3 node features [11].

Many graphs from different applications come with rich node-feature information that

can be very representative in the node-embedding generation process. The key idea of

Graph Neural Networks is to generate representations of nodes that depend not only on the

structure of the graph but on any node-feature information.

As mentioned by Chen Wang et. al. [40], Graph Neural Networks (GNN’s) aim to learn

node representations by extracting the similarities shared between connected nodes. How-

ever, the expressive ability of a GNN is highly dependent on the quality of node features.
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In the version of the GP problem presented here, node features are irrelevant and nonex-

istent. Furthermore, in specific GP applications, graphs do not have node features. The

information that nodes or edges could contain does not determine if a node will belong to a

specific partition or if an edge will be removed in the partitioned graph. Due to these facts

and the aforementioned inherent characteristic of GCN’s, one of the main limitations found

in the GAP framework is that it requires node features.

Learning inductive representations on graphs without node features is still an open prob-

lem [46]. Nonetheless, some efforts have been accomplished which generate new research

opportunities for specific applications. The next paragraphs are dedicated to studying the

impact of considering different sources of information as node features.

Identity feature and random feature initialization are two of the most common ap-

proaches where no features are available. However, those approaches have been shown to

be equivalent: both generate fixed-node representations and make the model incapable of

generalizing to unseen nodes [18].

Another option is to use graph statistics like: node degree, node centrality,

number of closed triangles or the clustering coefficient. Cai and Wang [4] pro-

posed a degree-based approach. They used some statistics of the node’s de-

gree to generate the node features. Specifically, they used feature vectors given

by (deg r ee(v),min(DN (v)),max(DN (v)),mean((DN (v)), std(DN (v)) where DN (v) =
{deg r ee(u) | (u, v) ∈ E }. This is an interesting research that showed prominent results.

Other methods propose applying ML algorithms such as Principal Component Analysis

(PCA) to the adjacency matrix to extract the top k-eigenvalues [5, 22], but those approaches

are computationally very expensive, which is not feasible for large graphs.

To help capturing local information related to the graph’s structure, a random walk ap-

proach was selected. Given the existing research, this type of approach is favorable due to its

scalability and representational ability. Some of the already-mentioned approaches were

compared in experiments carried out by Duong et. al. [8] and Cui et. al. [7], who concluded

that matrix-decomposition-based methods are the most powerful ones in extracting posi-

tional node information. It was shown that DeepWalk produces a low-rank transformation

of the graph’s normalized Laplacian matrix [31], i.e., DeepWalk implicitly factorizes the

adjacency matrix. For that reason, DeepWalk is going to be used for this task.
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Figure 3.3: Summarized DeepWalk process for graph representation learning [44]

3.2.1 DeepWalk as feature extraction

Deep walk is a graph representation method that can learn node embeddings by inferring

local structures of the graph. This is an unsupervised learning algorithm that was inspired by

the way traditional language models encode word sequences. This algorithm is able to detect

neighboring similarities that can be used to distinguish densely-connected community

structures [30, 43].

According to the original paper [30], the DeepWalk algorithm consists of two main

components: a random walk generator and an update procedure. Those two components

are described below.

In the first component, known as the local structure stage, a random node vi is taken

uniformly from the set of nodes and is set to be the root of a random walk Wvi . Next, nodes

are sampled recursively from the last-visited vertex’s neighbors, and they are added to the

random walk until the maximum length t is reached. This process is repeated a number of

times γ for every root vertex chosen.

The second component is known as the skip-gram model, which is inspired by the skip-

gram language model that maximizes the co-occurrence probability of words in a window.

In the DeepWalk algorithm, a window size w is set to determine the context of a node

given the random walks of the last stage. Then, a vector representation of dimension d

is generated for each node and subsequently updated to maximize the probability of the

neighbors that appear in the same random walk inside the same window. This last step can

be performed using the Softmax function or, in order to accelerate the training process,

Hierarchical Softmax can be used instead [30].
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DeepWalk is one of those encoders mentioned at the beginning of the chapter that

can only generate unique embeddings for the nodes in a fixed graph. For the purposes of

generating node features, it is adequate due to its topological representation capabilities.
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4
EXPERIMENTAL RESULTS

In this Chapter, some of the technical considerations and main results are presented. The

software and hardware used to run the experiments are described along with their results.

4.1 Technical details and implementation

All experiments were run on a cloud’s virtual machine with an Intel Xeon Gold 5218 32-core

processor with 32 GB of memory, and a Tesla V100 GPU with 32 GDDR6 memory.

The algorithm was implemented using the open-source machine learning frame-

work Pytorch. The code source can be found in https://github.com/crispu93/graph_

partitioning.

4.1.1 Dataset

The dataset used to train and test the algorithm was taken from "The Graph Partitioning

Archive" [34]. The graphs are in the standard format used by JOSTLE and METIS. A descrip-

tion of the format and the requirements can be found in [39].

For the purposes of this research, the graphs contained in "The Graph Partitioning

Archive" where categorized in one of the following categories according to their vertex

cardinality:

• Small graphs: those with less than 10,000 nodes;
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• Medium graphs: those with node size between 45,000 and 75,000;

• Large graphs: those with at least 99,000 nodes but no more than 500,000.

Computation Graphs

Name Nodes Edges
add20 2395 7462
bcsstk33 8738 291583
whitaker3 9800 9462
crack 10240 30380
fe_body 45087 163734
t60k 60005 89440
wing 62032 121544
finan512 74752 261120
fe_rotor 99617 662431
598a 110971 741934
m14b 214765 1679018
auto 448695 3314611

Table 4.1: Summary of the graph characteristics. Taken from "The Graph Partitioning
Archive" [34]

It is important to mention that only small and medium graphs where used to test the

modified GAP framework. This decision was based on the computing capabilities of the

machines used. To visualize the graphs that have been used in our experiments, some

images were generated using the networkx library, see Figure 4.1. Some histograms of the

degree-based characteristics are shown in Figure 4.2, and Figure 4.3.
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(a) bcsstk33
(b) crack

(c) add32
(d) data

Figure 4.1: Visualization of some of the graphs used in the experiments.

4.1.2 Feature generation

As mentioned before in Chapter 3, DeepWalk was chosen to extract each graph’s local

information, and the embeddings generated were used as node features. The following

considerations were taken when choosing the parameter settings to generate the feature

matrix.

• For medium graphs: the original authors [30] suggested that the number of walks

started per vertex should be greater or equal than γ= 30, the latent dimension greater

or equal than d = 64, and they fixed the sensible values of w = 10 for the window

size, and t = 40 for the walk length. Those parameters were chosen because the

characteristics of the graphs in their dataset were similar to the ones used in this

research.

• For small graphs: Chen et. al. [43] carried out experiments to develop a DeepWalk-

based framework for community detection on Large-Scale graphs. As the aforemen-

tioned task is very close to the purposes of this research, and the size of the graphs of

this group is not so big, it was decided to follow their recommendations. After some
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(a) bcsstk33 (b) crack

(c) add32 (d) data

Figure 4.2: Degree histogram of small graphs: bcsstk33, crack, add32, and data. Some of the
graphs are dense.

(a) fe_body (b) finan512

(c) t60k (d) wing

Figure 4.3: Degree histogram of medium graphs. Most of the graphs are sparse.
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experiments run in the small graphs, it was found convenient to set γ = 60, d = 64,

w = 15, and t = 80.

(a) Dimension and walk length (b) Walks per-vertex and window size

Figure 4.4: Results obtained for Community detection on Large-Scale Networks [43].

For the GAP version presented here, the Karate Club API [32] implementation was used.

In contrast with the original paper, where three partitions were used, the number of parti-

tions was set to two. This adoption was taken due to the amount of parameters that had to

be set. Adding DeepWalk and GraphSage into the scene, made the parameters choice more

difficult to manage. Also, using this number of partitions, provides a good comparison point

with the results in The Graph Partitioning archive.

The algorithm modified version of GAP presented here can work with any integer number

of partitions greater or equal than 2, but further research needs to be done to find the ideal

parameter values.

4.2 Results

The algorithm was compared to METIS, which is one of the most used and reliable partition-

ing algorithms. As quality metrics, the size of the biggest generated partitioning was chosen

to measure balancedness, and the cut size was measured in number of edges removed.
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Graphs METIS Modified GAP

Name Balancedness Edge Cut Balancedness Edge Cut
add20 1214 170 1204 1190
bcsstk33 4375 987 4383 995
whitaker3 4903 135 4917 189
crack 5121 195 5146 230
fe_body 22603 207 22652 239
t60k 30876 164 30918 203

Table 4.2: Comparison of the results obtained by different algorithms in the computation
graphs
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5
CONCLUSION

An algorithm for the balanced graph partitioning was presented. It was based on the popular

Deep Learning approach Generalizable Approximate Partitioning (GAP) framework. The

modified GAP algorithm, which is presented here, showed some advantages over the frame-

work it was based on. One of the principal characteristics of the modified GAP is that it can

also work with abstract graphs without node features. This is a big improvement because

now the algorithm relies only in the grap’s structure. Also, most of the graphs used in the

scientific environment have no attributes.

Another important thing of the modifications made to GAP is the GNN architecture

it uses. While GAP is based on a GCN approach, the modified algorithm now is based on

GraphSAGE which is the inductive version of GCN’s. It gives several advantages over GAP,

but one the most important is that now the algorithm is scalable to larger graphs.

The algorithm was tested against the METIS partitioning algorithm, one of the most

popular algorithms for this task. The modified GAP did not outperform METIS in terms of

the size cut but showed similar results.

5.1 Recommendations and future work

The following issues were found during the development of this work and provide areas for

further research.

• The algorithm presented here only works for abstract graphs without edge weights. A
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good improvement would be to extend it to work for the weighted partitioning scenario.

Another possible extension is to make it work for the balanced graph partitioning

problem with tolerance.

• DeepWalk was chosen to extract features and showed good results. However, other

ways to extract useful features for non-attributed graphs are unexplored. Even though

the problem of using GNN with nodes without features, it would be interesting to look

for alternatives in this specific problem.

• The hole training process was carried out in GPU. Nevertheless, there were found

possible improvements in the training process to be run in parallel or to mix between

CPU and GPU.

• The algorithm only accepts graphs in the METIS format. A good improvement would

be to extend it to work on other popular formats.

• Training the algorithm with different graphs. A further research would be to look

for useful training sets that allow to extend the recognition of different structural

properties in graphs. For example, training the graph on only sparse, free-scale, or

complete graphs
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