Autores
Oropeza Rodríguez José Luis
Felipe Riverón Edgardo Manuel
Suárez Guerra Sergio
Título Speech Recognition Using Energy, MFCCs and Rho Parameters to Classify Syllables in the Spanish Language
Tipo Revista
Sub-tipo JCR
Descripción Lecture Notes in Artificial Intelligence; 5th Mexican international conference on Artificial Intelligence
Resumen This paper presents an approach for the automatic speech re-cognition using syllabic units. Its segmentation is based on using the Short-Term Total Energy Function (STTEF) and the Energy Function of the High Frequency (ERO parameter) higher than 3,5 KHz of the speech signal. Training for the classification of the syllables is based on ten related Spanish language rules for syllable splitting. Recognition is based on a Continuous Density Hidden Markov Models and the bigram model language. The approach was tested using two voice corpus of natural speech, one constructed for researching in our laboratory (experimental) and the other one, the corpus Latino40 commonly used in speech researches. The use of ERO and MFCCs parameter increases speech recognition by 5.5% when compared with recognition using STTEF in discontinuous speech and improved more than 2% in continuous speech with three states. When the number of states is incremented to five, the recognition rate is improved proportionally to 98% for the discontinuous speech and to 81% for the continuous one.
Observaciones ISBN:3-540-49026-4 978-3-540-49026-5
Lugar
País Mexico
No. de páginas 1057-1066
Vol. / Cap.
Inicio 2006-11-13
Fin 2006-11-17
ISBN/ISSN 978-3-540-49026-5