Resumen |
Actually associative memories have demonstrated to be useful in pattern processing field. Hopfield model is an autoassociative memory that has problems in the recalling phase; one of them is the time of convergence or non convergence in certain cases with patterns bad recovered. In this paper, a new algorithm for the Hopfield associative memory eliminates iteration processes reducing time computing and uncertainty on pattern recalling. This algorithm is implemented using a corrective vector which is computed using the Hopfield memory. The corrective vector adjusts misclassifications in output recalled patterns. Results show a good performance of the proposed algorithm, providing an alternative tool for the pattern recognition field. |