Resumen |
Wireless sensor networks (WSNs) can be typically used to achieve continuous monitoring (CM) or event detection inside the supervised area. In CM applications, each sensor node transmits periodically its sensed data to the sink node, while in event-detection driven (EDD) applications, once an event occurs, it is reported to the sink node. Hence, CM applications entail much higher energy consumption since all nodes are actively transmitting information much longer than typical EDD applications. Furthermore, in highly dense WSNs, the energy consumption is even higher. As such, the use of autonomous devices that provide a constant energy supply is becoming relevant for these environments. In this work, we propose to take advantage of the electromagnetic waves found in the radio-electric spectrum in order to supply the energy to each node in the network. To this end, the antenna and the storage and amplifications system for such device are designed. Additionally, the performance of dense CM WSN is studied using a Markov chain in order to calculate the lifetime of the system. |