Cruz Cortés Nareli
Aguirre Anaya Eleazar
Villegas Alejandre Francisco
Título Feature selection to detect botnets using machine learning algorithms
Tipo Congreso
Sub-tipo Memoria
Descripción International Conference on Electronics, Communications and Computers (CONIELECOMP)
Resumen In this paper, a novel method to do feature selection to detect botnets at their phase of Command and Control (C&C) is presented. A major problem is that researchers have proposed features based on their expertise, but there is no a method to evaluate these features since some of these features could get a lower detection rate than other. To this aim, we find the feature set based on connections of botnets at their phase of C&C, that maximizes the detection rate of these botnets. A Genetic Algorithm (GA) was used to select the set of features that gives the highest detection rate. We used the machine learning algorithm C4.5, this algorithm did the classification between connections belonging or not to a botnet. The datasets used in this paper were extracted from the repositories ISOT and ISCX. Some tests were done to get the best parameters in a GA and the algorithm C4.5. We also performed experiments in order to obtain the best set of features for each botnet analyzed (specific), and for each type of botnet (general) too. The results are shown at the end of the paper, in which a considerable reduction of features and a higher detection rate than the related work presented were obtained
Observaciones ; DOI: 10.1109/CONIELECOMP.2017.7891834
Lugar Puebla
País Mexico
No. de páginas Article number 7891834
Vol. / Cap.
Inicio 2017-02-22
ISBN/ISSN 9781509036219