Autores
Sossa Azuela Juan Humberto
Barrón Fernández Ricardo
Vázquez Espinoza de los Monteros Roberto Antonio
Título Transforming fundamental set of patterns to a canonical form to improve pattern recall
Tipo Revista
Sub-tipo JCR
Descripción Lecture Notes in Artificial Intelligence; 9th Ibero-American Conference on AI: Advances in Artificial Intelligence
Resumen Most results (lemmas and theorems) providing conditions under which associative memories are able to perfectly recall patterns of a fundamental set are very restrictive in most practical applications. In this note we describe a simple but effective procedure to transform a fundamental set of patterns (FSP) to a canonical form that fulfils the propositions. This way pattern recall is strongly improved. We provide numerical and real examples to reinforce the proposal.
Observaciones Advances in Artificial Intelligence – IBERAMIA 2004; Code 65317
Lugar Puebla
País Mexico
No. de páginas 687-696
Vol. / Cap. 3315
Inicio 2004-11-22
Fin 2004-11-26
ISBN/ISSN 978-3-540-23806-5