Autores
Gallegos García Gina
Título Asymmetric encryption by optical Kerr nonlinearities exhibited by electrochromic NiO thin films
Tipo Revista
Sub-tipo JCR
Descripción Optics Express
Resumen Herein is analyzed how an electric field can induce a band gap shift in NiO films to generate an enhancement in their third-order optical nonlinearities. An electrochromic effect seems to be responsible for changes in absorbance and modification in off-resonance nonlinear refractive index. The optical Kerr effect was determined as the dominant physical mechanism emerging from the third-order optical susceptibility processes present in a nanosecond two-wave mixing configuration at 532 nm wavelength. Absence of any important multi-photonic absorption was validated by the constant trace of high-irradiance optical transmittance in single-beam mode. The inspection of nonlinear optical signals allowed us to propose an exclusive disjunctive logic gate assisted by an electrochromic effect in an optical Kerr gate. Asymmetric encryption by our XOR system with the influence of a switchable probe beam transmittance and electrical signals in the sample was studied. Immediate applications for developing multifunctional quantum systems driven by dynamic parameters in electrochromic and nonlinear optical materials were highlighted. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
Observaciones DOI 10.1364/OE.456255
Lugar Washington, DC
País Estados Unidos
No. de páginas 39849-39859
Vol. / Cap. v. 30 no. 22
Inicio 2022-10-24
Fin
ISBN/ISSN