Autores
Hussain Nisar
Qasim Amna
Mehak Gull
Kolesnikova Olga
Gelbukh Alexander
Sidorov Grigori
Título Hybrid Machine Learning and Deep Learning Approaches for Insult Detection in Roman Urdu Text
Tipo Revista
Sub-tipo CONACYT
Descripción AI
Resumen This study introduces a new model for detecting insults in Roman Urdu, filling an important gap in natural language processing (NLP) for low-resource languages. The transliterated nature of Roman Urdu also poses specific challenges from a computational linguistics perspective, including non-standardized grammar, variation in spellings for the same word, and high levels of code-mixing with English, which together make automated insult detection for Roman Urdu a highly complex problem. To address these problems, we created a large-scale dataset with 46,045 labeled comments from social media websites such as Twitter, Facebook, and YouTube. This is the first dataset for insult detection for Roman Urdu that was created and annotated with insulting and non-insulting content. Advanced preprocessing methods such as text cleaning, text normalization, and tokenization are used in the study, as well as feature extraction using TF–IDF through unigram (Uni), bigram (Bi), trigram (Tri), and their unions: Uni+Bi+Trigram. We compared ten machine learning algorithms (logistic regression, support vector machines, random forest, gradient boosting, AdaBoost, and XGBoost) and three deep learning topologies (CNN, LSTM, and Bi-LSTM). Different models were compared, and ensemble ones were proven to give the highest F1-scores, reaching 97.79%, 97.78%, and 95.25%, respectively, for AdaBoost, decision tree, TF–IDF, and Uni+Bi+Trigram configurations. Deeper learning models also performed on par, with CNN achieving an F1-score of 97.01%. Overall, the results highlight the utility of n-gram features and the combination of robust classifiers in detecting insults. This study makes strides in improving NLP for Roman Urdu, yet further research has established the foundation of pre-trained transformers and hybrid approaches; this could overcome existing systems and platform limitations. This study has conscious implications, mainly on the construction of automated moderation tools to achieve safer online spaces, especially for South Asian social media websites. © 2025 by the authors.
Observaciones DOI 10.3390/ai6020033
Lugar Basel
País Suiza
No. de páginas Article number 33
Vol. / Cap. v. 16 no. 2
Inicio 2025-02-01
Fin
ISBN/ISSN