| Resumen |
Cervical cytology processing involves the morphological analysis of cervical cells to detect abnormalities. In recent years, machine learning and deep learning algorithms have been explored to automate this process. This study investigates the use of color space transformations as a preprocessing technique to reorganize visual information and improve classification performance using isolated cell images. Twelve color space transformations were compared, including RGB, CMYK, HSV, Grayscale, CIELAB, YUV, the individual RGB channels, and combinations of these channels (RG, RB, and GB). Two classification strategies were employed: binary classification (normal vs. abnormal) and five-class classification. The SIPaKMeD dataset was used, with images resized to 256x256 pixels via zero-padding. Data augmentation included random flipping and +/- 10 degrees rotations applied with a 50% probability, followed by normalization. A custom CNN architecture was developed, comprising four convolutional layers followed by two fully connected layers and an output layer. The model achieved average precision, recall, and F1-score values of 91.39%, 91.34%, and 91.31% for the five-class case, respectively, and 99.69%, 96.68%, and 96.89% for the binary classification, respectively; these results were compared with a VGG-16 network. Furthermore, CMYK, HSV, and the RG channel combination consistently outperformed other color spaces, highlighting their potential to enhance classification accuracy. |